7.1. Puntos singulares: el método de Frobenius

Tamaño: px
Comenzar la demostración a partir de la página:

Download "7.1. Puntos singulares: el método de Frobenius"

Transcripción

1 Capítulo Puntos singulares: el método de Frobenius Si probamos el método de desarrollo en serie en una ecuación y +p(x)y +q(x)y =0 donde p(x) ó q(x) no son anaĺıticas en x = x 0, no está garantizado el que podamos encontrar una solución en serie y(x) = n a n(x x 0 ) n. Veamos en un ejemplo cómo falla el método de las secciones anteriores. Sea la ecuación x 2 y 3 4 y =0 como p(x) = 0, q(x) = 3 es claro que x 4x 2 0 =0no es un punto ordinario, pero probamos qué pasa si escribimos una solución de la forma y(x) = n=0 a nx n Se llega a la relación de recurrencia [ n(n 1) 3 4] an =0, cuya única solución es a n =0, n. De manera que hemos encontrado la solución y(x) = 0 que no es demasiado interesante. Las ecuaciones de la forma (x x 0 ) 2 y + α(x x0)y + βy =0con α y β constantes se llaman ecuaciones de Euler y se resuelven si hacemos el cambio de variables z = ln(x x 0 ), válido para x>x Esa sustitución lleva a una ecuación lineal a coeficientes constantes para y(z) que resolvemos de la manera conocida. Deshaciendo el cambio de variables encontramos la solución y(x) para x>x 0. En el ejemplo anterior se encuentra la solución como y(x) =c 1 x3 + c 2 x, x > 0. La solución para x<0 se consigue mediante el cambio de variables z = ln( x). Fijémonos que la solución no es desarrollable en serie de potencias alrededor de x 0 =0y por eso no habiamos podido encontrarla con el método anterior.

2 La solución de la ecuación de Euler se puede encontrar directamente haciendo la prueba y(x) =(x x 0 ) r con r un número a determinar. Esto lleva a la ecuación indicial r(r 1) + αr + β Esta ecuación tiene dos soluciones r 1, r 2 que conducen a las soluciones y 1 (x) = (x x 0 ) r 1,y 2 (x) =(x x 0 ) r 2. Puede ocurrir que r 1 ó r 2 sean enteros naturales en cuyo caso sí se podría expresar la solución correspondiente en serie de potencias. Puede ocurrir también que r 1 = r 2 y entonces hay que trabajar algo más para encontrar la segunda solución, o que r 1 y r 2 sean complejos conjugados y sea conveniente separar la parte real de las dos soluciones y 1, y 2. Ferdinand Georg Frobenius ( ) encontró una manera de resolver las ecuaciones que tienen la forma de una de Euler modificada: L[y] (x x 0 ) 2 y +(x x 0 ) p(x)y + q(x)y =0 (7.1) donde ahora p(x) = n=0 p n(x x 0 ) n y q(x) = n=0 q n(x x 0 ) n sí son desarrollables en serie con radios de convergencia respectivos ρ 1 y ρ 2 mayores que cero. En la notación anterior y + p(x)y + q(x)y =0sería p(x) = (x x 0 ) 1 p(x), q(x) = (x x 0 ) 2 q(x). Cuando esto ocurre, decimos que x 0 es un punto singular regular. Frobenius tuvo la idea de probar una solución de la forma: y(x) = (x x 0 ) r siendo r y los coeficientes a n,n=0, 1, 2,... valores a determinar. n=0 a n (x x 0 ) n (7.2) Fijémonos que necesariamente a 0 0. Se demuestra que esta función de prueba conduce, al menos, a una de las dos soluciones y 1 (x), y 2 (x) (y si hay suerte a las dos). La parte difícil, que no demostraremos, es que el radio de convergencia ρ de la serie n=0 a n(x x 0 ) n cumple ρ mín(ρ 1,ρ 2 ). Antes de hacer la teoría general veremos un ejemplo. Sea la ecuación diferencial 2x 2 y xy + (1 + x)y =0 Ahora p(x) = 1/x y q(x) = (1 + x)/x 2 no son analiticas en x 0 =0. Pero como xp(x) = 1 y x 2 q(x) = 1+x sí son analiticas en x 0 =0(con un radio de convergencia infinito), Frobenius nos asegura que existe una solución de la forma y(x) =x r n=0 a nx n, donde la serie tiene un radio de convergencia infinito. Vamos a encontrar r y los coeficientes a n. Para ello calculamos las derivadas: y (x) = x r n=0 (n + r)a n x n 1 y (x) = x r n=0 (n + r)(n + r 1)a n x n 2

3 7.1 Puntos singulares: el método de Frobenius Sustituyendo en la ecuación diferencial llegamos a: a 0 [2r(r 1) r + 1] + [(2(n + 2)(n + r 1) (n + r) + 1) a n + a n 1 ] x n =0 n=1 Ecuación que escribimos como a 0 F (r)+ [F (n + r)a n + a n 1 ] x n =0 n=1 con F (r) =2r 2 3r +1. Como a 0 0, el exponente r se determina mediante la ecuación indicial: F (r) = 0, de soluciones r 1 =1, r 2 =1/2. La relación de recurrencia que satisfacen los coeficientes a n dependen ahora del valor de r: a n (r) = a n 1(r) F (n + r) Para r = r 1 =1obtenemos y para r = r 2 =1/2 a n (r = 1) = ( 1)n 2 2 (2n + 1)! a 0, n 0 a n (r =1/2) = ( 1)n 2 2 a 0, n 0 (2n)! En ningun caso está a 0 determinado. Cada una de estas dos posibilidades, r = r 1 ó r = r 2 da una solución y 1 (x), y 2 (x) que se escriben y 1 (x) =x n ( 1) n 2 2 (2n + 1)! xn y 2 (x) =x 1/2 n ( 1) n 2 2 x n (2n)! Fijémonos que hemos tomado, en los dos casos, el valor arbitrario a 0 =1. Las constantes de integración las ponemos en la solución general y(x) =c 1 y 1 (x)+c 2 y 2 (x).

4 Reordenando términos en la serie, se puede ver que las funciones y 1 (x), y 2 (x) son viejas amigas: y 1 (x) = x sin ( 2x), y 2 (x) = x cos ( 2x) En el caso general de la Ec. (7.1), la sustitución de la función de prueba Ec.(7.2) lleva a: L[y] =x r n=0 [ (n + r)(n + r 1)a n + ] n [(m + r)p n m + q n m ] a m x n =0. Que, como sabemos, implica que cada uno de los sumandos en la suma sobre el índice n tiene que ser cero. Consideramos aparte ahora el sumando n =0: r(r 1)a [(m + r)p m + q m ] a m =0, que es la ecuación indicial F (r) = 0 con F (r) =r 2 +(p 0 1)r + q 0. En los términos con n 1 separamos el término con m = n de los demás en la suma sobre m: (n + r)(n + r 1)a n + [(n + r)p n n + q n n ] a n + n 1 [p n m (m + r)+q n m ] a m Reordenando, llegamos a la relación de recurrencia: F (n + r)a n + n 1 [(m + r)p n m + q n m ] a m =0, n 1 (7.3) que debiera permitirnos encontrar a 1,a 2,a 3,... en función de la constante artbitraria a 0. Es esto siempre así? Lamentablemente, hay una cierta casuística que conviene detallar. La ecuación indicial F (r) = 0 siempre tiene dos soluciones r 1, r 2. El primer problema viene cuando r 1 = r 2, raíz doble, porque entonces es obvio que no hemos encontrado

5 7.1 Puntos singulares: el método de Frobenius 51 dos soluciones y 1 (x), y 2 (x) sino sólo una. La solución y 1 (x) = n=0 a n(r 1 )(x x 0 ) n, siempre se puede encontrar porque la relación de recurrencia es n 1 a n (r 1 )= [(m + r 1)p n m + q n m ] a m (r 1 ), n 1 (7.4) F (n + r 1 ) y nunca falla: a partir de a 0 encontramos a 1 ; dados a 0,a 1 encontramos a 2, etc. El único problema sería que existiera un entero N 1 para el cual el denominador fuera igual a 0, pero eso no puede ocurrir porque si F (N + r 1 ) = 0 quiere decir que N + r 1 es una raíz de la ecuación indicial distinta de r 1, en contra de la hipótesis de que sólo tiene una solución. Nos queda resolver cómo encontrar la segunda solución, problema al que volveremos más tarde. Incluso cuando r 1 r 2 puede haber problemas porque no es claro que la relación de recurrencia (7.3) nos permita encontrar siempre todos los coeficientes a n para n 1. El problema es que puede existir un entero N para el cual F (N + r 1 ) o F (N + r 2 ) sea igual a cero y entonces no está claro lo que pasa, porque la ecuación para encontrar a N pasa a ser: N 1 [(m + r)p N m + q N m ] a m =0 si esta ecuación (relación de consistencia) no se cumple no hay nada que hacer. Si esta relación se cumple, resulta que a N es arbitrario y tenemos entonces dos constantes de integración, a 0 y a N y conviene saber cómo reorganizamos la solución para que el número de constantes totales sea el correcto. Cuándo, si r 1 r 2, puede ocurrir que exista un valor de N 1 tal que F (N + r 1 ) = 0? Como N + r 1 es una raíz de F (r) = 0 no igual a r 1 tiene que ser igual a r 2 : N + r 1 = r 2. La otra posibilidad, mutatis mutandis es que N + r 2 = r 1. O sea que la diferencia r 1 r 2 o r 2 r 1 sea un número natural positivo N =1, 2, 3,.... Si r 1 y r 2 son números complejos distintos, eso nunca puede ocurrir. Si r 1 y r 2 son reales, usemos el convenio de que r 1 sea el mayor de los dos. Entonces la única posibilidad que lleva a la dificultad en cuestión es que r 1 r 2 = N. La primera solución y 1 (x), la que corresponde a r = r 1 se puede encontrar siempre. La segunda solución y 2 (x) que corresponde a r = r 2 se puede encontrar sólo si se verifica la relación de consistencia: N 1 [(m + r 2 )p N m + q N m ] a m (r 2 ) = 0. (7.5) En este caso, a N (r 2 ) es arbitrario. Implica eso que hay tres constantes de integración: a 0 (r 1 ),a 0 (r 2 ) y a N (r 2 )? En principio, la solución se escribiría como y(x) =a 0 (r 1 )y 1 (x)+ a 0 (r 2 )y 2 (x)+a N (r 2 )y 3 (x), siendo y 1,y 2,y 3 las series de potencias que salen del método, pero resulta que y 3 (x) es proporcional a y 1 (x). (Difícil de demostrar) Podemos, por tanto, tomar lo más sencillo, a N (r 2 ) = 0, al resolver la relación de recurrencia para r = r 2 para encontrar a n (r 2 ) en el caso n>n.

6 52 Resumen: Si x 0 es un punto singular regular de la ecuación diferencial (7.1), el método de Frobenius proporciona siempre una solución y 1 (x) = n=0 a n(r 1 )(x x 0 ) n, donde r 1 es una raíz (la mayor en caso de raíces reales) de la ecuación indicial F (r) = 0, a 0 (r 1 ) es arbitrario y la relación de recurrencia (7.3) permite encontrar a n (r 1 ) para n 1. La segunda solución se obtiene mediante un método similar excepto en los dos casos siguientes: (i) Si la segunda solución de la ecuación indicial cumple r 2 = r 1. (ii) Si r 2 = r 1 + N con N =1, 2, 3,..., y no se verifica la relación de consistencia (7.5). En cambio, si r 2 = r 1 + N con N =1, 2, 3,... y se verifica la relación de consistencia, entonces sí se puede determinar la segunda solución. En este caso, lo que ocurre es que en la relación de recurrencia a N (r 2 ) es arbitrario y lo más sencillo es tomar a N (r 2 ) = 0. Los únicos casos en los que no conocemos todavía una segunda solución son (i) r 2 = r 1 o (ii) r 2 = r 1 + N y no se verifica la relación de consistencia. Veremos en la próxima clase cómo encontrar la segunda solución en esos dos casos. Para acabar, recordemos que si r 1 y r 2 son complejos (conjugados) una dificultad de índole práctica es que puede ser más o menos difícil separar la parte real e imaginaria de las soluciones.

Una serie de potencias es una expresión del tipo: a n (x x 0 ) n (5.2) n=0

Una serie de potencias es una expresión del tipo: a n (x x 0 ) n (5.2) n=0 Capítulo 5 Nos dedicaremos ahora a desarrollar métodos específicos para encontrar la solución general de la ecuación lineal de segundo orden: y + p(x)y + q(x)y = g(x) (5.1) Sabemos que la solución general

Más detalles

Ecuación de Bessel Definición. Puntos singulares

Ecuación de Bessel Definición. Puntos singulares Capítulo 9 Ecuación de Bessel 9.1. Definición. Puntos singulares La ecuación de Bessel, una de las más importantes en física matemática, es una ecuación diferencial lineal de orden 2, x 2 y + xy +(x 2

Más detalles

Ecuaciones diferenciales lineales con coeficientes variables

Ecuaciones diferenciales lineales con coeficientes variables Tema 5 Ecuaciones diferenciales lineales con coeficientes variables 5 Existencia y unicidad Partimos de una ecuación de la forma a 0 (x y (n + a (x y (n + + a n (x y + a n (x y = b(x (5 con a 0 (x 0 donde

Más detalles

9 Soluciones en serie de ecuaciones lineales II

9 Soluciones en serie de ecuaciones lineales II 9 Soluciones en serie de ecuaciones lineales II 9.1. Ecuación indicial Si x = 0 es un punto singular regular de la ecuación y + P (x)y + Q(x)y = 0, entonces p(x) = xp (x), q(x) = x Q(x) son analíticas

Más detalles

La ED lineal de segundo orden homogénea. y (x) + p(x)y (x) + q(x)y(x) = 0 (1)

La ED lineal de segundo orden homogénea. y (x) + p(x)y (x) + q(x)y(x) = 0 (1) MATEMÁTICAS ESPECIALES II - 2018 PRÁCTICA 8 Ecuaciones diferenciales ordinarias de segundo orden con coeficientes analíticos. Parte 1 - Soluciones alrededor de un punto ordinario. La ED lineal de segundo

Más detalles

Propiedades de las funciones de Bessel

Propiedades de las funciones de Bessel Capítulo 11 Propiedades de las funciones de Bessel 11.1. Relaciones de recurrencia Si partimos de la serie que define a la función de Bessel, 11.1.1. se demuestra directamente que d dx [xν J ν (x)] x ν

Más detalles

8 Soluciones en serie de ecuaciones lineales I

8 Soluciones en serie de ecuaciones lineales I 8 Soluciones en serie de ecuaciones lineales I Algunas ecuaciones diferenciales ordinarias lineales con coecientes variables no tienen soluciones elementales. Se puede encontrar, en algunos casos, soluciones

Más detalles

Problemas resueltos del Boletín 4

Problemas resueltos del Boletín 4 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín 4 Problema 1. Resolver el siguiente sistema de ecuaciones diferenciales: { y = 1 z, z = 1 } y Solución: Lo transformamos como sigue:

Más detalles

4.2 Reducción de orden

4.2 Reducción de orden 4. educción de orden 87 Un conjunto de funciones f y ; y g que cumple con la condición anterior se llama un conjunto fundamental de soluciones. Es decir, un conjunto f y ; y g será un conjunto fundamental

Más detalles

Matemática Avanzada. Clase Nro. 20

Matemática Avanzada. Clase Nro. 20 Matemática Avanzada Clase Nro. 20 Octavio Miloni Facultad de Cs. Astronómicas y Geofísicas - Universidad Nacional de La Plata / 2 Ecuación de Legendre Polinomios de Legendre Ecuación Diferencial de Legendre

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

Lectura 6 Ampliación de Matemáticas. Grado en Ingeniería Civil

Lectura 6 Ampliación de Matemáticas. Grado en Ingeniería Civil 1 / 50 Lectura 6 Ampliación de Matemáticas. Grado en Ingeniería Civil Curso Académico 2011-2012 2 / 50 En la Lectura anterior hemos tratado la resolución de EDOs de primer orden y = f (t, y). Ahora vamos

Más detalles

Ecuaciones, inecuaciones y sistemas

Ecuaciones, inecuaciones y sistemas Ecuaciones, inecuaciones y sistemas. Matemáticas Aplicadas a las Ciencias Sociales I 1 Ecuaciones, inecuaciones y sistemas Ecuaciones con una incógnita. Ecuación.- Una ecuación es una igualdad de expresiones

Más detalles

1. Ecuaciones de primer orden

1. Ecuaciones de primer orden UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Ecuaciones diferenciales ordinarias. Definición 1. Llamamos ecuación diferencial ordinaria (E. D. O.) a una ecuación

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

El Método de Frobenius

El Método de Frobenius El Método de Frobenius Para la solución de ecuaciones diferenciales lineales ordinarias alrededor de puntos singulares regulares se utiliza el método de Frobenius 1 Dada una ecuación diferencial de segundo

Más detalles

Calculo de límites vol.1

Calculo de límites vol.1 Calculo de límites vol.1 Propiedades de los límites Teoría Ejemplos f (x)= p g( x)=q f (x)=2 g( x)= (f (x)+ g(x))= p+q (f (x) g(x))= p q (f (x) g(x))= p q ( f (x) g(x) )= p q si q 0 (k f (x))=k p k R (f

Más detalles

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema

Más detalles

1.1. Clasificación de las ecuaciones diferenciales

1.1. Clasificación de las ecuaciones diferenciales Capítulo 1 1.1. Clasificación de las ecuaciones diferenciales Una ecuación diferencial tiene como incógnita una función y que puede depender de una, y(x), o de más variables independientes, y(x 1,...,

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 17/01/2013

MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 17/01/2013 MATEMÁTICAS II - EXAMEN SEGUNDO PARCIAL - 7// Código: Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio. Considera la región R del primer cuadrante que

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

TEMA 3. Algebra. Teoría. Matemáticas

TEMA 3. Algebra. Teoría. Matemáticas 1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Lección 12. Ecuaciones lineales de segundo orden con coeficientes analíticos Introducción

Lección 12. Ecuaciones lineales de segundo orden con coeficientes analíticos Introducción Lección 2 Ecuaciones lineales de segundo orden con coeficientes analíticos 2.. Introducción En las aplicaciones aparecen a menudo ecuaciones lineales cuyos coeficientes no son constantes sino polinomios

Más detalles

Tema 4: Sistemas de ecuaciones e inecuaciones

Tema 4: Sistemas de ecuaciones e inecuaciones Tema 4: Sistemas de ecuaciones e inecuaciones Sistemas Lineales pueden ser de No lineales Gráficamente Ecuaciones se clasifican se resuelven Algebraicamente Compatible determinado Compatible indeterminado

Más detalles

Raíces de polinomios

Raíces de polinomios Raíces de polinomios En ésta página podrás conocer las herramientas necesarias para poder encontrar las raíces de polinomios de una variable con coeficientes enteros. Para ello hemos dividido esta página

Más detalles

Series de potencias. a k (x). k=1

Series de potencias. a k (x). k=1 1. Introducción Series de potencias La idea de series se puede ampliar al permitir que sus términos sean función de alguna variable (una o varias), esto es a n = a n (x). Esta extensión del concepto se

Más detalles

Lección 6: Ecuaciones diferenciales

Lección 6: Ecuaciones diferenciales Lección 6: Ecuaciones diferenciales 61 Introducción La estática comparativa ha dominado el estudio de la economía durante mucho tiempo, y aún hoy se sigue utilizando para resolver muchos problemas económicos

Más detalles

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema

Más detalles

Contenido. 2. Ecuaciones diferenciales de primer orden. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/29 29

Contenido. 2. Ecuaciones diferenciales de primer orden. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/29 29 Contenido 2. Ecuaciones diferenciales de primer orden 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/29 29 Contenido: Tema 02 2. Ecuaciones diferenciales de primer orden

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013

Más detalles

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones.

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. 1. Introducción y ejemplos. Las ecuaciones diferenciales ordinarias, e. d. o.,

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 2 Ecuaciones diferenciales lineales de primer orden y ecuaciones que se reducen a ellas.

MATEMÁTICAS ESPECIALES II PRÁCTICA 2 Ecuaciones diferenciales lineales de primer orden y ecuaciones que se reducen a ellas. MATEMÁTICAS ESPECIALES II - 2018 PRÁCTICA 2 Ecuaciones diferenciales lineales de primer orden y ecuaciones que se reducen a ellas. Una ecuación diferencial de primer orden de la forma dy + p(x) y = q(x)

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

TEMA III: FUNCIONES DE BESSEL

TEMA III: FUNCIONES DE BESSEL TEMA III: FUNCIONES DE BESSEL 1. Las funciones de Bessel de orden natural La ecuación diferencial de Bessel de orden ν, viene representada por y + 1 x y + (1 ν x )y o bien x y + xy + (x ν )y donde x R

Más detalles

CAPÍTULO 5 SOLUCIONES POR SERIES

CAPÍTULO 5 SOLUCIONES POR SERIES CAPÍTULO 5 SOLUCIONES POR SERIES 5.1. INTRODUCCION Una serie de potencias en (x a), es una expresión de la forma C n (x a) n. Toda serie de potencias tiene un intervalo de convergencia que consiste de

Más detalles

TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD

TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD 5.1. VISIÓN INTUITIVA DE LA CONTINUIDAD. TIPOS DE DISCONTINUIDADES. La idea de función continua es la que puede ser construida con un solo trazo. DISCONTINUIDADES

Más detalles

Ecuación de segundo grado

Ecuación de segundo grado UNEFA C.I.N.U. Matemáticas 0 Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008) Fundamentos de Matemáticas, Unidad 5 Ecuaciones e Inecuaciones,

Más detalles

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta, multiplicación,

Más detalles

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius

Lista de ejercicios # 2. Uso de series de potencias y de Frobenius UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-15 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA I Ciclo del 217 Lista de ejercicios # 2 Uso de series de potencias y de Frobenius Uso de series alrededor

Más detalles

Guía de Ejercicios N 1 Abril del 2011

Guía de Ejercicios N 1 Abril del 2011 Universidad de Santiago de Chile Departamento de Matemática y CC Ingeniería Civil Guía de Ejercicios N 1 Abril del 011 Autores: Ricardo Santander Baeza, Rodrigo Quezada y Rodrigo Vargas Objetivo de la

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

SUMAS BINOMIALES Y FUNCIONES HIPERGEOMÉTRICAS

SUMAS BINOMIALES Y FUNCIONES HIPERGEOMÉTRICAS SUMAS BINOMIALES Y FUNCIONES HIPERGEOMÉTRICAS Juan Carlos López Carreño, Rosalba Mendoza Suárez, UNIVERSIDAD DE PAMPLONA jclopez@unipamplona.edu.co, rosalbame@unipamplona.edu.co telefonos: 3173256131-3162350183

Más detalles

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior Cálculo infinitesimal Grado en Matemáticas Curso 2004/5 Clave de soluciones n o 6 Derivadas de orden superior 70. Hallar los polinomios de Taylor del grado indicado y en el punto indicado para las siguientes

Más detalles

Series de funciones. a k (x). k=1

Series de funciones. a k (x). k=1 Series de funciones La idea de series se puede ampliar al permitir que sus términos sean función de alguna variable (una o varias), esto es a n = a n (x). Esta extensión del concepto se serie, trae como

Más detalles

Juan Luis Varona. z [A(t) ϕ n (t) + b(t)] dt.

Juan Luis Varona. z [A(t) ϕ n (t) + b(t)] dt. RESOLUCIÓN DE ECUACIONES DIFERENCIALES LINEALES POR MEDIO DE DESARROLLOS EN SERIE Juan Luis Varona 1. SOLUCIONES ANALÍTICAS Consideremos un sistema lineal { x (t) = A(t) x(t) + b(t) [L] x(t 0 ) = x 0,

Más detalles

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 VIVIANA BARILE M 1. Decida si las funciones respectivas son linealmente

Más detalles

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.

TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales

Más detalles

3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS

3º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa POLINOMIOS º ESO PMAR POLINOMIOS DEPARTAMENTO DE MATEMÁTICAS. POLINOMIOS 1.- POLINOMIOS Una expresión algebraica está formada por números y letras asociados por medio de las operaciones aritméticas (suma, resta,

Más detalles

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así:

Llamaremos número real a cualquier fracción decimal. Las fracciones decimales periódicas se llaman números racionales, así: Capítulo 1 Números Reales 1.1. Introducción Llamaremos número real a cualquier fracción decimal. Ejemplos:, 0;, 3333...;, 5; 0,785; 3, 14159...;,718818...; 1,414136... Las fracciones decimales periódicas

Más detalles

Ecuaciones Diferenciales y Series Taylor y el comienzo

Ecuaciones Diferenciales y Series Taylor y el comienzo 1. Otra vez Algebra de Series Ecuaciones Diferenciales y Series Taylor y el comienzo Las series se suman a n (x x 0 ) n + b n (x x 0 ) n = (a n + b n ) (x x 0 ) n Las series se multiplican [ ] [ ] a n

Más detalles

CÁLCULO III. Apuntes

CÁLCULO III. Apuntes CÁLCULO III. Apuntes Grado en Ingeniería en Tecnologías Industriales Tema 2 Arturo de Pablo Elena Romera Open Course Ware, UC3M http://ocw.uc3m.es/matematicas 2 ECUACIONES LINEALES DE ORDEN SUPERIOR Presentamos

Más detalles

Control 1. P1. a) (3 ptos.) Sean x, y R tales que xy = a 2. Argumentando cada paso, demuestre que:

Control 1. P1. a) (3 ptos.) Sean x, y R tales que xy = a 2. Argumentando cada paso, demuestre que: Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Introducción al cálculo - Control P. a) (3 ptos.) Sean x, y R tales que xy = a. Argumentando cada paso, demuestre que:

Más detalles

Métodos Multipaso lineales

Métodos Multipaso lineales Elementos de Cálculo Numérico - Cálculo Numérico Segundo Cuatrimestre de 2008 (FCEN - UBA) Métodos Multipaso lineales Consideramos el problema de valores iniciales (PVI) y = f(x, y) a x b y(a) = α Dado

Más detalles

El Problema de Cauchy para EDPs de Primer Orden

El Problema de Cauchy para EDPs de Primer Orden Capítulo 2 El Problema de Cauchy para EDPs de Primer Orden Este capítulo está dedicado al estudio de EDPs de primer orden, esto es, ecuaciones en las que sólo aparecen derivadas parciales de a lo sumo

Más detalles

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0).

(x x 0 ) y 0. O bien z z 0 = x 0. y notamos a este límite ᾱ (t 0 ) = dᾱ dt (t 0). O bien z z 0 = x 0 z 0 (x x 0 ) y 0 z 0 (y y 0 ). Para obtener la ecuación cartesiana de este plano hacemos x 0 (x x 0 )+y 0 (y y 0 )+z 0 (z z 0 ) = 0, como x 0 + y0 + z0 = x 0 + y0 + r (x 0 + y0) = r

Más detalles

Solución Primer Parcial Matemática

Solución Primer Parcial Matemática Solución Primer Parcial Matemática 1-01 1 Dados los puntos P 1 (5, 4) y P (, 4) hallar: (a) Ecuación, elementos y gráfico de la parábola con vértice en P 1 y foco en P. El eje de la parábola es paralelo

Más detalles

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM Integrales indefinidas. Teoremas º Bachillerato Editorial SM Esquema Primitiva de una función La función G(x) es una primitiva de la función f(x) en un intervalo I si G'(x) = f(x) para todo x del intervalo

Más detalles

Capitulo IV - Inecuaciones

Capitulo IV - Inecuaciones Capitulo IV - Inecuaciones Definición: Una inecuación es una desigualdad en las que hay una o más cantidades desconocidas (incógnita) y que sólo se verifica para determinados valores de la incógnita o

Más detalles

MATEMATICA. Facultad Regional Trenque Lauquen

MATEMATICA. Facultad Regional Trenque Lauquen Qué es el álgebra? Es el manejo de relaciones numéricas en los que una o más cantidades son desconocidas, incógnitas, a las que se las representa por letras, por la cual el lenguaje simbólico da lugar

Más detalles

Clase 4 Funciones polinomiales y racionales

Clase 4 Funciones polinomiales y racionales Clase 4 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo de 2014 Polinomios Definición Se llama polinomio en x a toda expresión de la forma p(x) = a 0 + a 1x+ +a n

Más detalles

LA CLASE VIRTUAL POLINOMIOS

LA CLASE VIRTUAL POLINOMIOS LA CLASE VIRTUAL POLINOMIOS Dados el número natural n y los n+1 números reales o complejos a 0,a 1,,a n (los llamados coeficientes) se define el polinomio p en la variable x como la función que hace corresponder

Más detalles

Unidad 2 Polinomios PÁGINA 28 SOLUCIONES. Sacar factor común. a) b) Evaluar un polinomio en un punto.

Unidad 2 Polinomios PÁGINA 28 SOLUCIONES. Sacar factor común. a) b) Evaluar un polinomio en un punto. Unidad Polinomios PÁGINA 8 SOLUCIONES Sacar factor común. a) b) 3x 6 3 ( x ) 3 5x 10x 5x 5 x( x x1) Evaluar un polinomio en un punto. Dado el polinomio P(x) = x 4 x 3 x + 1, podemos asegurar que: a) P(1)

Más detalles

Resolución de la EDO del oscilador armónico simple y amortiguado

Resolución de la EDO del oscilador armónico simple y amortiguado Álvaro García Corral Resolución de la EDO del oscilador armónico simple y amortiguado Un oscilador armónico es un sistema en el que siempre actúa una fuerza, que es recuperadora, es decir, del tipo, también

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Matemáticas Empresariales I. Cálculo de Primitivas

Matemáticas Empresariales I. Cálculo de Primitivas Matemáticas Empresariales I Lección 7 Cálculo de Primitivas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 45 Concepto de Integral Indefinida Definición

Más detalles

Diagonalización de matrices

Diagonalización de matrices 7 Diagonalización de matrices 7.1. Matrices diagonalizables Existen diversos procesos en los que el estado en cada uno de sus pasos se puede representar por un determinado vector y en los que, además,

Más detalles

0.1. SISTEMAS DE ECUACIONES

0.1. SISTEMAS DE ECUACIONES .. SISTEMS DE ECUCIONES.. SISTEMS DE ECUCIONES... Conceptos previos l comienzo del tema de nimos los sistemas de ecuaciones diferenciales en general. En esta sección vamos a ver el caso particular en el

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

Algoritmos en teoría de números

Algoritmos en teoría de números Algoritmos en teoría de números IIC2283 IIC2283 Algoritmos en teoría de números 1 / 92 Para recordar: aritmética modular Dados dos números a, b Z, si b > 0 entonces existen α, β Z tales que 0 β < b y a

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Sistemas de ecuaciones diferenciales y el uso de operadores

Sistemas de ecuaciones diferenciales y el uso de operadores Sistemas de ecuaciones diferenciales y el uso de operadores En la clase anterior resolvimos algunos sistemas de ecuaciones diferenciales sacándole provecho a la notación matricial. Sin embrago, algunos

Más detalles

CAPÍTULO 5 SOLUCIONES POR SERIES

CAPÍTULO 5 SOLUCIONES POR SERIES CAPÍTULO 5 SOLUCIONES POR SERIES 5.1. INTRODUCCION Una serie de potencias en (x a), es una expresión de la forma C n (x a) n. Toda serie de potencias tiene un intervalo de convergencia que consiste de

Más detalles

PROF. JESÚS OLIVAR. Prof. Jesús Olivar Página 1

PROF. JESÚS OLIVAR. Prof. Jesús Olivar Página 1 PROF. JESÚS OLIVAR Prof. Jesús Olivar Página 1 Límite y Continuidad de Funciones Resumen Estudio del límite de funciones en un punto; comenzaremos dicho estudio analizando la gráfica de una función. Trataremos

Más detalles

y (1) = 2 x dy dx +2y = ex +lnx

y (1) = 2 x dy dx +2y = ex +lnx ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA DEPARTAMENTO DE MATEMÁTICA APLICADA II Ingeniería Técnica Industrial. Especialidad en Mecánica Soluciones al examen correspondiente a la CONVOCATORIA DE SEPTIEMBRE.

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos numéricos para EDOs Complementos de Matemáticas, ITT Telemática Tema 4. Solución numérica de problemas de valor inicial para ecuaciones diferenciales ordinarias Departamento de Matemáticas,

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN ARIEL M. SALORT asalort@dm.uba.ar Marzo de 2016 1. Teoría general Una ecuación diferencial ordinaria lineal de segundo orden puede ser escrita

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 8: Ecuaciones Diferenciales Ordinarias Elaborado por los profesores Edgar Cabello y Marcos González Es muy común encontrar que los modelos matemáticos que se necesitan para el estudio de problemas

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

Exámenes de álgebra básica de enero de Grupos 1 y 3.

Exámenes de álgebra básica de enero de Grupos 1 y 3. Exámenes de álgebra básica de enero de 2019. Grupos 1 y 3. GRUPOS 1. Calcular razonadamente todos los subgrupos normales de S 4. Un subgrupo H de un grupo G es normal si y solamente si para cada g G se

Más detalles

Otras ecuaciones relacionadas con la de Bessel

Otras ecuaciones relacionadas con la de Bessel Capítulo 10 Otras ecuaciones relacionadas con la de Bessel 10.1. Funciones de Bessel hiperbólicas La ecuación x d y dx + xdy dx (x + ν )y = 0 (10.1) es parecida a la de Bessel, pero tiene un signo cambiado.

Más detalles

Teoría Tema 5 Integrales con fracciones de polinomios

Teoría Tema 5 Integrales con fracciones de polinomios Asignatura: Matemáticas II ºBachillerato página 1/9 Teoría Tema 5 Integrales con fracciones de polinomios Índice de contenido Grado del numerador P(x) menor que Grado del denominador Q(x)... Raíces reales

Más detalles

Métodos numéricos para Ecuaciones Diferenciales Ordinarias. Laboratori de Càlcul Numèric (LaCàN) www-lacan.upc.es

Métodos numéricos para Ecuaciones Diferenciales Ordinarias. Laboratori de Càlcul Numèric (LaCàN) www-lacan.upc.es Métodos numéricos para Ecuaciones Diferenciales Ordinarias Laboratori de Càlcul Numèric (LaCàN) www-lacan.upc.es Ecuación Diferencial Ordinaria (EDO) n Gran cantidad de problemas de la física y la ingeniería

Más detalles

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice

Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice Tema 3 Algebra. Ecuaciones. Sistemas de ecuaciones: Inecuaciones Índice 1. ECUACIONES... 2 1.1. Ecuaciones de primer grado... 2 1.2. Ecuaciones de segundo grado... 3 1.2.1. Ecuación de segundo grado completa...

Más detalles

S2: Polinomios complejos

S2: Polinomios complejos S: Polinomios complejos Un polinomio complejo de grado n es un polinomio de la forma: p x = a 0 + a 1 x + a x + + a n x n Donde los a i C se llaman coeficientes y a n 0. Observa que como R C los coeficientes

Más detalles

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1 UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA II Ciclo del 2017 Lista de ejercicios # 1 Ecuaciones diferenciales ordinarias de orden 1 Soluciones

Más detalles

Denominadores con factores lineales

Denominadores con factores lineales Denominadores con factores lineales uando al sumar dos fracciones algebraica obtenemos una nueva fracción con denominador que se puede factorizar hasta tener factores lineales, significa que los denominadores

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

6. Ecuaciones Diferenciales

6. Ecuaciones Diferenciales 6. Ecuaciones Diferenciales La mayor parte de los problemas científicos y tecnológicos que se resuelven por computadora están relacionados con ecuaciones diferenciales, de una u otra forma. Estos pueden

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles

Lista sobre Solución por Series.

Lista sobre Solución por Series. UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales para Ingenieía ESCUELA DE MATEMÁTICA Segundo Ciclo del 2015 Lista sobre Solución por Series. Solución de ecuaciones diferenciales

Más detalles

INTEGRACIÓN DE RACIONALES. Siendo p(x) y q(x) dos polinomios. Nos podemos encontrar dos casos:

INTEGRACIÓN DE RACIONALES. Siendo p(x) y q(x) dos polinomios. Nos podemos encontrar dos casos: INTEGRACIÓN DE RACIONALES Nos hallamos ante una racional cuando estamos atacando un problema y nos encontramos con un cociente de polinomios que tenemos que integrar. Hemos de resolver: f(x) = p(x) q(x)

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles