Estadística Espacial
|
|
|
- Blanca Quiroga Aguirre
- hace 7 años
- Vistas:
Transcripción
1 Kenneth Roy Cabrera Torres 16 de febrero de / 25
2 Definición Datos de elevación Campos aleatorios Terminología y notación Funciones 2 / 25
3 Definición Datos de elevación Campos aleatorios Terminología y notación 3 / 25
4 Definición Definición Datos de elevación Campos aleatorios Terminología y notación El término estadística espacial se usa para describir una amplia gama de modelos estadísticos que procuran analizar datos espacialmente referenciados o georreferenciados. La geostadística se refiere a modelos y métodos de datos que siguen las siguientes características: Primero, los valores de Y i : i = 1,...,n son observados en una conjunto discreto de lugares x i al interior de una región espacial A. Segundo, cada valor observado de Y i es: ya sea una medida directa, o una estadística relacionada con, el valor de un fenómeno espacial subyacente, S(x) en los correspondientes sitios de muestreo x i. 4 / 25
5 Datos de elevación Definición Datos de elevación Campos aleatorios Terminología y notación Y Coord X Coord 5 / 25
6 Distribución univariada Definición Datos de elevación Campos aleatorios Terminología y notación X N(0,1) 6 / 25
7 Distribución bivariada Definición Datos de elevación Campos aleatorios Terminología y notación [ X1 X 2 ] N ([ 0 0 ], [ 1 0,3 0,3 1 ]) 7 / 25
8 Un campo aleatorio Definición Datos de elevación Campos aleatorios Terminología y notación {S(x) : x A R 2 } Una sola realización 8 / 25
9 Campos aleatorios Definición Datos de elevación Campos aleatorios Terminología y notación Un conjunto de datos espaciales se consideran una realización de un experimento aleatorio. Sólo se obtiene una realización de S(x) en el punto x. Esta es una realización de un campo aleatorio, es decir un proceso estocástico. S(x 0 ) es una variable aleatoria si se considera la distribución de todas las realizaciones posibles en el punto x 0. Cuando se muestrea un campo aleatorio, estas muestras se toman de una realización particular de un experimento aleatorio. 9 / 25
10 Realizaciones de un campo aleatorio Introduccio n a la Estadı stica Espacial Definicio n Datos de elevacio n Campos aleatorios Terminologı a y notacio n Cuatro realizaciones de un campo aleatorio. 10 / 25
11 Terminología y notación Definición Datos de elevación Campos aleatorios Terminología y notación Para efectos prácticos los datos geoestadísticos univariados se puede tomar las siguiente notación: (x i,y i ) : i = 1,...,n. Donde x i denota la localización espacial (generalmente un espacio bidimensional) y y i es un valor escalar asociado a la localización en x i. Generalmente a y se le conoce como una variable de respuesta o variable medida. Cada y i es una realización de la variable aleatorio Y i cuya distribución depende de la localización de x i de un proceso estocástico continuo espacial subyacente S(x) que no es directamente observable. En muchos casos se puede asumir que Y i = S(x i ), pero en general no son iguales. 11 / 25
12 Funciones 12 / 25
13 Funciones El Geostadístico incorpora al menos dos elementos: 1. Un proceso estocástico real {S(x) : x A} que se considera una realización parcial del proceso estocástico {S(x) : x R 2 } en todo el plano. 2. Una distribución multivariada de la variable aleatoria Y = (Y 1,...,Y n ) condicionado en S( ). Se suele denominar a S(x) la señal y a Y i la respuesta. A menudo Y i se puede pensar como una versión ruidosa de S(x i ) y la Y i se puede asumir condicionalmente independiente dado S( ). 13 / 25
14 Funciones Los básico del modelo clásico son: 1. {S(x) : x R 2 } es un proceso gaussiano con media µ, y varianza σ 2 = Var{S(x)} y función de correlación ρ(u) = Corr{S(x),S(x )}, donde u = x x y denota la distancia; 2. Condicionado en {S(x) : x R 2 }, las y i son realizaciones de variables mutuamente independientes Y i, distribuidas normalmente con media E[Y i S( )] = S(x i ) y varianza condicional τ 2. Una forma equivalente es: Y i = S(x i )+ε i : i = 1,...,n donde {S(x) : x R 2 } se define como el supuesto 1 y ε i son variables aleatorias mutuamente independientes N(0,τ 2 ). 14 / 25
15 Funciones Una función muy común de correlacion definida en geoestadística es la definida como: ρ(u;φ,κ) = {2 κ 1 Γ(k)} 1 (u/φ) κ K κ (u/φ) Donde K κ ( ) es una función de Bessel modificada de segunda clase, de orden κ. El parámetro φ > 0 determina la tasa a la cual decae a cero la correlación en la medida que decrece u. El parámetro κ > 0 es el orden del modelo Matérn y está asociado a la forma del descenso de la función. 15 / 25
16 Funciones Siguiendo se tienen dos situaciones muy comunes de funciones de correlación correlación : Si κ = 1 2 entonces se tiene que la función queda reducida a: ρ(u;φ) = e u φ correlación gausiana: Si κ entonces tiene como ĺımite: ρ(u;φ) = e ( u φ ) 2 16 / 25
17 Funciones El rango práctico se define como el valor de u en donde la función ρ(u) tiene un valor de O en otras palabras es el valor de u a partir del cual se puede considerar que ρ(u) 0. Para la función se tiene el rango práctico es: 3φ. Para la función gausiana se tiene que el rango práctico es: 3φ. 17 / 25
18 Funciones Para a un rango práctico de ρ 0 = 0,05, se debe hallar la raiz de la siguiente ecuación: ρ(u;φ,κ) ρ 0 = 0 ρ(u;φ,κ) 0,05 = 0 Ya que φ es un parámetro de escala, la solución será de la forma rφ donde r es el factor multiplicador que se halla de la solución de la ecuación: ρ(u;φ,1) 0,05 = 0 18 / 25
19 Funciones Funciones Otra manera de expresar las funciones de correlación y gausiana es: Exponencial: Gausiana: En donde α es el rango práctico. ρ(u;α) = e 3u α ρ(u;α) = e 3 ( u α) 2 19 / 25
20 Funciones Se define como: ρ(u;φ,κ) = e ( u φ Donde el parámetro de escala φ > 0 y el de forma κ está limitado por 0 < κ 2. Note que si κ = 2 es la misma gausiana. ) κ 20 / 25
21 Funciones Esta función se define como: { ( 3 1 ρ(u;φ) = 3 2 (u φ )+ 1 u 2 φ) : 0 u φ 0 : u 0 En este caso el rango absoluto es φ dado que si u φ se tiene que ρ(u) = 0, por eso no tendría rango práctico. 21 / 25
22 Funciones Para un conjunto de datos (x i,y i ) : i = 1,...,n, el las ordenadas del variograma es el valor v ij = 1 2 (y i y j ) 2. Algunos autores lo prefieren denominar ordenadas del. Si y i es estacionario en media y varianza. El valor esperado de v ij es σ 2 {1 ρ(x i,x j )} donde σ 2 es la varianza y ρ(x i,x j ) es la correlación entre y i y y j. Si y i es un proceso estacionario, entonces ρ( ) depende sólo de la distancia entre x i y x j, y además tiende a cero a grandes distancias, entonces v ij tiende a σ 2 cuando la distancia entre u ij = x i x j tiende a infinito. 22 / 25
23 Funciones El de un espacio estocástico S(x) es la función: V(x,x ) = 1 2 Var{S(x) S(x )} Note que V(x,x ) = 1 2 [Var{S(x)}+Var{S(x )} 2Cov{S(x),S(x )}]. En el caso estacionario, simplifica a V(u) = σ 2 {1 ρ(u)}. Recordemos que: ρ(x,x ) = Cov(S(x)S(x )) Var{S(x)} Var{S(x )} 23 / 25
24 σ 2 = 10 y φ = 15 Funciones γ(u) u 24 / 25
25 Funciones 25 / 25
Unidad Temática 3: Probabilidad y Variables Aleatorias
Unidad Temática 3: Probabilidad y Variables Aleatorias 1) Qué entiende por probabilidad? Cómo lo relaciona con los Sistemas de Comunicaciones? Probabilidad - Definiciones Experimento aleatorio: Un experimento
Departamento de Matemática Aplicada a las T.I.C. SOLUCIONES
Departamento de Matemática Aplicada a las T.I.C. ASIGNATURA: ESTADÍSTICA Y PROCESOS ESTOCÁSTICOS EAMEN FINAL Otoño 25-6 FECHA: 5 de Enero de 26 Fecha publicación notas: 22 de Enero de 26 Fecha revisión
Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 2
Análisis Estadístico de Datos Climáticos SERIES TEMPORALES 2 2015 Contenido Procesos estacionarios y débilmente estacionarios Algunos procesos estocásticos útiles: Procesos puramente aleatorios (ruido
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES. Variable aleatoria (Real)
TEORÍA DE LA COMUNICACIÓN TEMA 2 RUIDO EN LOS SISTEMA DE COMUNICACIONES Grado Ing Telemática (UC3M) Teoría de la Comunicación Variable Aleatoria / 26 Variable aleatoria (Real) Función que asigna un valor
Procesos estocásticos
Teoría de la comunicación Comunicaciones - U.A.H. Indice Probabilidad. Variables Aleatorias. Procesos Estocásticos. Comunicaciones - U.A.H. Probabilidad Probabilidad. Dado un experimento ε del tipo que
ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos ARMA
ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelos ARMA Definición: Ruido blanco. Se dice que el proceso {ɛ t } es ruido blanco ( white noise ) si: E(ɛ t ) = 0 Var(ɛ t ) = E(ɛ 2 t ) = σ 2 Para todo
Distribuciones Probabilísticas. Curso de Estadística TAE,2005 J.J. Gómez Cadenas
Distribuciones Probabilísticas Curso de Estadística TAE,005 J.J. Gómez Cadenas Distribución Binomial Considerar N observaciones independientes tales que: El resultado de cada experimento es acierto o fallo
Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos
Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,
Procesos estocásticos. Definición
Procesos estocásticos Definición http://humberto-r-alvarez-a.webs.com Definición de proceso estocástico Estudio del comportamiento de una variable aleatoria a lo largo del tiempo El ajuste de cualquier
LECTURA 01: LA DISTRIBUCIÓN NORMAL GENERAL. LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I). TEMA 1: LA DISTRIBUCION NORMAL GENERAL.
LECTURA 1: LA DISTRIBUCIÓN NORMAL GENERAL LA DISTRIBUCIÓN NORMAL ESTÁNDAR (PARTE I) TEMA 1: LA DISTRIBUCION NORMAL GENERAL PROPIEDADES 1 INTRODUCCION La distribución de probabilidad continua más importante
Ms. C. Marco Vinicio Rodríguez
Ms. C. Marco Vinicio Rodríguez [email protected] http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:
1. Conceptos de Regresión y Correlación. 2. Variables aleatorias bidimensionales. 3. Ajuste de una recta a una nube de puntos
TEMA 10 (curso anterior): REGRESIÓN Y CORRELACIÓN 1 Conceptos de Regresión y Correlación 2 Variables aleatorias bidimensionales 3 Ajuste de una recta a una nube de puntos 4 El modelo de la correlación
Econometría II Grado en finanzas y contabilidad
Econometría II Grado en finanzas y contabilidad Variables aleatorias y procesos estocásticos. La FAC y el correlograma Profesora: Dolores García Martos E-mail:[email protected] Este documento es
PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA
UNIDAD 1 PROBABILIDAD E INFERENCIA ESTADÍSTICA TEMA 3: DISTRUBUCIONES DE PROBABILIDAD CONTINUA Variables aleatorias continuas = función de densidad de probabilidad 1 Variables aleatorias continuas = función
Estadística. Tema 3. Esperanzas Esperanza. Propiedades Varianza y covarianza. Correlación
Estadística Tema 3 Esperanzas 31 Esperanza Propiedades 32 Varianza y covarianza Correlación 33 Esperanza y varianza condicional Predicción Objetivos 1 Medidas características distribución de VA 2 Media
Repaso de conceptos de álgebra lineal
MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso
Hoja 4 Variables aleatorias multidimensionales
Hoja 4 Variables aleatorias multidimensionales 1.- Estudiar si F (x, y) = 1, si x + 2y 1, 0, si x + 2y < 1, es una función de distribución en IR 2. 2.- Dada la variable aleatoria 2-dimensional (X, Y )
Ejercicio 1. Ejercicio 2
Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función
Econometria con Series Temporales
May 24, 2009 Porque series temporales? Inhabilidad de la economia de producir experimentos controlados para estudiar relaciones causales entre variables. Una alternativa consiste en estudiar estas relaciones
Repaso de Teoría de la Probabilidad
Repaso de Teoría de la Probabilidad Luis Mendo Tomás Escuela Politécnica Superior Universidad Autónoma de Madrid Febrero de 2008 1. Introducción Este documento contiene, de forma esquemática, los conceptos
Tema1. Modelo Lineal General.
Tema1. Modelo Lineal General. 1. Si X = (X 1, X 2, X 3, X 4 ) t tiene distribución normal con vector de medias µ = (2, 1, 1, 3) t y matriz de covarianzas 1 0 1 1 V = 0 2 1 1 1 1 3 0 1 1 0 2 Halla: a) La
Momentos de Funciones de Vectores Aleatorios
Capítulo 1 Momentos de Funciones de Vectores Aleatorios 1.1 Esperanza de Funciones de Vectores Aleatorios Definición 1.1 Sea X = (X 1,..., X n ) un vector aleatorio (absolutamente continuo o discreto)
TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18
TEMA 5. PROCESOS ESTOCÁSTICOS.-CURSO 2017/18 5.1. Concepto de proceso estocástico. Tipos de procesos. Realización de un proceso. 5.2. Características de un proceso estocástico. 5.3. Ejemplos de procesos
Cálculo de Probabilidades II Preguntas Tema 1
Cálculo de Probabilidades II Preguntas Tema 1 1. Suponga que un experimento consiste en lanzar un par de dados, Sea X El número máximo de los puntos obtenidos y Y Suma de los puntos obtenidos. Obtenga
Cálculo de Probabilidades II Preguntas Tema 2
Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución
Curso de Probabilidad y Estadística
Curso de Probabilidad y Estadística Distribuciones de Probabilidad Dr. José Antonio Camarena Ibarrola [email protected] Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica
MODELOS DE SERIES DE TIEMPO 1. Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros.
MODELOS DE SERIES DE TIEMPO 1 Introducción Modelos capaces de predecir, interpretar y evaluar hipótesis con datos económicos y financieros. Originalmente tuvieron como objetivo hacer predicciones. Descomposición
Vectores Aleatorios. Vectores Aleatorios. Vectores Discretos. Vectores Aleatorios Continuos
Definición Dado un espacio muestral S, diremos que X =(X 1, X 2,, X k ) es un vector aleatorio de dimension k si cada una de sus componentes es una variable aleatoria X i : S R, para i = 1, k. Notemos
Ruido en los sistemas de comunicaciones
Capítulo 2 Ruido en los sistemas de comunicaciones Cuando una señal se transmite a través de un canal de comunicaciones hay dos tipos de imperfecciones que hacen que la señal recibida sea diferente de
Distribuciones multivariadas
Distribuciones multivariadas Si X 1,X 2,...,X p son variables aleatorias discretas, definiremos la función de probabilidad conjunta de X como p(x) =p(x 1,x 2,...,x k )=P (X 1 = x 1,X 2 = x 2,...,X p =
Procesos autorregresivos
Capítulo 3 Procesos autorregresivos Los procesos autorregresivos deben su nombre a la regresión y son los primeros procesos estacionarios que se estudiaron. Proceso autorregresivo: Un proceso autorregresivo
Tema 10: Introducción a los problemas de Asociación y Correlación
Tema 10: Introducción a los problemas de Asociación y Correlación Estadística 4 o Curso Licenciatura en Ciencias Ambientales Licenciatura en Ciencias Ambientales (4 o Curso) Tema 10: Asociación y Correlación
Unidad 1: Espacio de Probabilidad
Unidad 1: Espacio de Probabilidad 1.1 Espacios de Probabilidad. (1) Breve introducción histórica de las probabilidades (2) Diferencial entre modelos matemáticos deterministicos y probabilísticos (3) Identificar
ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.
ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos
Probabilidad y Procesos Aleatorios
y Dr. Héctor E. Poveda P. [email protected] www.hpoveda7.com.pa @hpoveda7 Plan del curso Probabilidad Múltiples 1. Probabilidad Espacios probabilísticos Probabilidad condicional 2. 3. Múltiples 4.
Estadistica II Tema 0. Repaso de conceptos básicos. Curso 2009/10
Estadistica II Tema 0. Repaso de conceptos básicos Curso 2009/10 Tema 0. Repaso de conceptos básicos Contenidos Variables aleatorias y distribuciones de probabilidad La distribución normal Muestras aleatorias,
EXPERIMENTO ALEATORIO
EXPERIMENTO ALEATORIO En concepto de la probabilidad, un experimento aleatorio es aquel que bajo el mismo conjunto aparente de condiciones iniciales, puede presentar resultados diferentes, en otras palabras,
LECTURA 03: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT. MANEJO DE TABLAS ESTADISTICAS.
LECTURA 3: DISTRIBUCIÓN T STUDENT Y DISTRIBUCIÓN CHICUADRADO TEMA 6: DISTRIBUCION T STUDENT MANEJO DE TABLAS ESTADISTICAS 1 INTRODUCCION Se dice que una variable aleatoria T tiene una distribución t de
12.Teoría de colas y fenómenos de espera
.Teoría de colas y fenómenos de espera Notación y terminología Modelado del proceso de llegada Modelado del proceso de servicio Notación de Kendall-Lee Procesos de nacimiento y muerte Modelo M/M/. Análisis
Estimación de variables no observables para la economía peruana
Estimación de variables no observables para la economía peruana XXX Encuentro de Investigación del BCRP Ismael Ignacio Mendoza Mogollón [email protected] Octubre 2012 XXX Encuentro de Economistas (Institute)
Tema 4: VARIABLE ALEATORIA N-DIMENSIONAL
Tema 4: VARIABLE ALEATORIA N-DIMENSIONAL Carlos Alberola López Lab. Procesado de Imagen, ETSI Telecomunicación Despacho D04 [email protected], [email protected], http://www.lpi.tel.uva.es/sar Concepto
Estadística y Probabilidad
La universidad Católica de Loja Estadística y Probabilidad ESCUELA DE ELECTRÓNICA Y TELECOMUNICACIONES Paralelo C Nombre: Milner Estalin Cumbicus Jiménez. Docente a Cargo: Ing. Patricio Puchaicela. Ensayo
Sesión 2: Teoría de Probabilidad
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad Considero que la probabilidad representa el estado de la mente con respecto a una afirmación, evento u otra cosa para
Formulario. Estadística Administrativa. Módulo 1. Introducción al análisis estadístico
Formulario. Estadística Administrativa Módulo 1. Introducción al análisis estadístico Histogramas El número de intervalos de clase, k, se elige de tal forma que el valor 2 k sea menor (pero el valor más
PROCESOS ALEATORIOS. Capítulo AXIOMAS DE PROBABILIDAD
Capítulo 2 PROCESOS ALEATORIOS Los procesos aleatorios son importantes porque en casi todos los aspectos de la vida se presentan este tipo de situaciones en donde el comportamiento de un fenómeno o evento
GEOESTADÍSTICA APLICADA
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO GEOESTADÍSTICA APLICADA Tema: Análisis Exploratorio de Datos Instructores: Dr. Martín A. Díaz Viera ([email protected]) Dr. Ricardo Casar González ([email protected]) 2009
Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales
Capítulo 2 Medidas Estadísticas Básicas 2.1. Medidas estadísticas poblacionales Sea X una variable aleatoria con función de probabilidad p(x) si es discreta, o función de densidad f(x) si es continua.
Cuáles son las características aleatorias de la nueva variable?
Apuntes de Estadística II. Ingeniería Industrial. UCAB. Marzo 203 CLASES DE ESTADÍSTICA II CLASE 5) UNA TRANSFORMACIÓN DE DOS VARIABLES. Sea Z = g(, ) una función de las variables aleatorias e, tales que
Eigenvalores y eigenvectores
Eigenvalores y eigenvectores Los dos problemas principales del álgebra lineal son: resolver sistemas lineales de la forma Ax = b y resolver el problema de eigenvalores. En general, una matriz actúa sobre
Distribuciones Fundamentales de Muestreo. UCR ECCI CI-0115 Probabilidad y Estadística Prof. Kryscia Daviana Ramírez Benavides
Distribuciones Fundamentales de Muestreo UCR ECCI CI-0115 Probabilidad y Estadística Prof. Kryscia Daviana Ramírez Benavides Distribuciones Muestrales La distribución de probabilidad de un estadístico
Estadística Inferencial. Sesión 2. Distribuciones muestrales
Estadística Inferencial. Sesión 2. Distribuciones muestrales Contextualización. Toda cantidad que se obtiene de una muestra con el propósito de estimar un parámetro poblacional se llama estadístico muestral
Nombre y Apellidos:... EXAMEN ECONOMETRÍA II (Enero 2010)
Nombre y Apellidos:... NIU:... Grupo:... EXAMEN ECONOMETRÍA II (Enero 2010) Lea cuidadosamente cada pregunta. Marque muy claramente la respuesta de cada pregunta en la hoja de respuestas. Observe que los
Sesión 2: Teoría de Probabilidad
Modelos Gráficos Probabilistas L. Enrique Sucar INAOE Sesión 2: Teoría de Probabilidad las reglas mátemáticas de la probabilidad no son simplemente reglas para calcular frecuencias de variables aleatorias;
13.Teoría de colas y fenómenos de espera
3.Teoría de colas y fenómenos de espera Notación y terminología Modelado del proceso de llegada Modelado del proceso de servicio Notación de Kendall-Lee Procesos de nacimiento y muerte Modelo M/M/. Análisis
Tema 4: Variable Aleatoria Bidimensional
Curso 2016-2017 Contenido 1 Definición de Variable Aleatoria Bidimensional 2 Distribución y fdp Conjunta 3 Clasificación de Variables Aleatorias Bidimensionales 4 Distribuciones Condicionales 5 Funciones
1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES
1º BACHILLERATO HUMANIDADES Y CIENCIAS SOCIALES MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I PENDIENTES 1.- INTRODUCCIÓN AL NÚMERO REAL Realización de operaciones con números reales. Ordenación de los
Tema 6. Estimación puntual
1 Tema 6. Estimación puntual En este tema: Planteamiento del problema. Criterios de comparación de estimadores: Insesgadez. Estimadores de mínima varianza. Error cuadrático medio. Consistencia. Métodos
Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas
Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones
Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria continua. Varianza. 2
Curso de nivelación Estadística y Matemática Cuarta clase: Distribuciones de probablidad continuas Programa Técnico en Riesgo, 2016 Agenda 1 Variable aleatoria Continua Valor esperado de una variable aleatoria
Econometría II Grado en finanzas y contabilidad
Econometría II Grado en finanzas y contabilidad Procesos autorregresivos Profesora: Dolores García Martos E-mail:[email protected] Este documento es un resumen/modificación de la documentación
VARIABLES ALEATORIAS CONTINUAS
VARIABLES ALEATORIAS CONTINUAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Definición de una V.A.C. Definición de una V.A.C.
Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º ( )
1 Bachillerato Internacional. Matemáticas Nivel Medio. Programa para el curso 1º (2015-2016) Tema 1: NÚMEROS REALES Conjuntos numéricos. Números naturales. Números enteros. Números racionales. Números
Cálculo de Probabilidades y Estadística. Segunda prueba. 1
08231. Cálculo de Probabilidades y Estadística. Segunda prueba. 1 Problema 1. Se eligen tres puntos A, B y C, al azar e independientemente, sobre una circunferencia. Determinar la distribución del valor
Algunas Distribuciones Continuas de Probabilidad. UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides
Algunas Distribuciones Continuas de Probabilidad UCR ECCI CI-1352 Probabilidad y Estadística Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción El comportamiento de una variable aleatoria queda
ANALISIS DE FRECUENCIA EN HIDROLOGIA
ANALISIS DE FRECUENCIA EN HIDROLOGIA Luis F. Carvajal Julián D. Rojo Universidad Nacional de Colombia Facultad de Minas Escuela de Geociencias y Medio Ambiente Introducción 1. Los eventos hidrológicos
ESTADISTICA GENERAL. PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales
ESTADISTICA GENERAL PRINCIPALES DISTRIBUCIONES CONTINUAS Profesor: Celso Celso Gonzales OBJETIVOS Describir las características de las distribuciones de probabilidad : Normal, Ji-cuadrado, t de student
Técnicas de Muestreo Métodos
Muestreo aleatorio: Técnicas de Muestreo Métodos a) unidad muestral elemental: a.1) muestreo aleatorio simple a.2) muestreo (seudo)aleatorio sistemático a.3) muestreo aleatorio estratificado b) unidad
Part VII. Estadística I. Mario Francisco. Introducción a la inferencia. Estimación puntual. Propiedades deseables de los estimadores
Part VII La inferencia puede definirse como el conjunto de métodos mediante cuales podemos extraer información sobre distintas características de interés de cierta distribución de probabilidad de la cual
Universidad Nacional Autónoma de México Laboratorio de Cómputo Científico, F. C.
: Un Universidad Nacional Autónoma de México Laboratorio de Cómputo Científico, F. C. : Un presenta México D.F., a 23 de Septiembre de 2010. Historia : Un La estimación de mineral recobrable es muy importante
Econometría de series de tiempo aplicada a macroeconomía y finanzas
Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo no Estacionarias Carlos Capistrán Carmona ITAM Tendencias Una tendencia es un movimiento persistente de largo plazo
UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO CÁTEDRA DE ESTADÍSTICA CLASE ESPECIAL. Tema:
UNIVERSIDAD NACIONAL DE LA PLATA FACULTAD DE CIENCIAS NATURALES Y MUSEO CÁTEDRA DE ESTADÍSTICA CLASE ESPECIAL Tema: Correlación múltiple y parcial. Ecuaciones y planos de regresión La Plata, septiembre
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA LA CONVOCATORIA DE SEPTIEMBRE º BACHILLERATO DE CIENCIAS SOCIALES.
DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA LA CONVOCATORIA DE SEPTIEMBRE 2017 UNIDAD 1.-Matrices. Conceptos: 2º BACHILLERATO DE CIENCIAS SOCIALES. Tipos de matrices. Tipos de matrices cuadradas.
Capítulo. Distribución de probabilidad normal. Pearson Prentice Hall. All rights reserved
Capítulo 37 Distribución de probabilidad normal 2010 Pearson Prentice Hall. All rights 2010 reserved Pearson Prentice Hall. All rights reserved La distribución de probabilidad uniforme Hasta ahora hemos
MANTENIMIENTO INDUSTRIAL.
REPÚBLICA BOLIVARIANA DE VENEZUELA UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE INDUSTRIAL MANTENIMIENTO INDUSTRIAL. Realizado por: Ing. Danmelys Perozo UNIDAD II: ESTADÍSTICAS DE FALLAS
Prof. Eliana Guzmán U. Semestre A-2015
Unidad III. Variables aleatorias Prof. Eliana Guzmán U. Semestre A-2015 Variable Aleatoria Concepto: es una función que asigna un número real, a cada elemento del espacio muestral. Solo los experimentos
NIVELACIÓN DE ESTADISTICA. Carlos Darío Restrepo
NIVELACIÓN DE ESTADISTICA Qué es la probabilidad? La probabilidad mide la frecuencia con la que aparece un resultado determinado cuando se realiza un experimento. Por ejemplo: tiramos un dado al aire y
Distribución Exponencial
Distribución Exponencial Hay dos casos especiales importantes de la distribución gamma, que resultan de restricciones particulares sobre los parámetros α y β. El primero es cuando se tiene α = 1, entonces
TEMA 3.- VECTORES ALEATORIOS.- CURSO
TEMA 3.- VECTORES ALEATORIOS.- CURSO 017-018 3.1. VARIABLES ALEATORIAS BIDIMENSIONALES. FUNCIÓN DE DISTRIBUCIÓN CONJUNTA. 3.. VARIABLES BIDIMENSIONALES DISCRETAS. 3.3. VARIABLES BIDIMENSIONALES CONTINUAS.
Probabilidad y Estadística
Probabilidad y Estadística Grado en Ingeniería Informática Tema 4 Vectores aleatorios Javier Cárcamo Departamento de Matemáticas Universidad Autónoma de Madrid [email protected] Javier Cárcamo PREST.
Tema 2: Modelos probabilísticos de series
Tema 2: Modelos probabilísticos de Tema 2: Modelos probabilísticos de 1 2 3 4 5 6 Definición Un proceso estocástico con conjunto de índices T es una colección de variables aleatorias {X t } t T sobre (Ω,
BLOQUE III: INFERENCIA ESTADISTICA. X, variable aleatoria de interés sobre una determinada población
BLOQUE III: INFERENCIA ESTADISTICA TEMA 8. MUESTREO Y DISTRIBUCIONES DE MUESTREO 1. Introducción a la Inferencia Estadística X, variable aleatoria de interés sobre una determinada población Observar el
Tema 2: Análisis de datos bivariantes
1 Tema 2: Análisis de datos bivariantes En este tema: Tabla de contingencia, tabla de doble entrada, distribución conjunta. Frecuencias relativas, marginales, condicionadas. Diagrama de dispersión. Tipos
