ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos ARMA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelos ARMA"

Transcripción

1 ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelos ARMA

2 Definición: Ruido blanco. Se dice que el proceso {ɛ t } es ruido blanco ( white noise ) si: E(ɛ t ) = 0 Var(ɛ t ) = E(ɛ 2 t ) = σ 2 Para todo i j : Cov(ɛ i ɛ j ) = E(ɛ i ɛ j ) = 0 Notación: ɛ t WN Ruido blanco Gaussiano: Para todo t, ɛ t N(0, σ 2 ). Notación: ɛ t WN(0, σ 2 )

3 Definición: Modelo ARMA. Un modelo autoregresivo-media móvil ( autoregressive moving average ARMA) tiene la forma: y t = φ 0 + p φ i y t i + i=1 donde el proceso {ɛ t } es ruido blanco. q θ j ɛ t j, Este modelo se denota como ARMA(p, q), y normalmente se normaliza θ 0 a 1. Nota: Suponemos que todas las raíces características están dentro del círculo de unidad. Si una o varias raíces características estan encima o fuera del circulo de unidad, el modelo se llama autoregresivo-integrado-media móvil ( autoregressive integrated moving average ARIMA(p, d, q), donde d es el orden de integración) j=0

4 Ejemplos de modelos ARMA: ARMA(0,0): ARMA(0,1): ARMA(1,0): y t = φ 0 + ɛ t y t = φ 0 + ɛ t + θ 1 ɛ t 1 y t = φ 0 + φ 1 y t 1 + ɛ t ARMA(1,0) (paseo aleatorio) : y t = y t 1 + ɛ t ARMA(1,1): y t = φ 0 + φ 1 y t 1 + ɛ t + θ 1 ɛ t 1

5 Ejemplos de modelos ARMA (cont.): Modelos ARMA(p,0) con θ 0 = 1: p y t = φ 0 + φ i y t i + ɛ t i=1 también se denotan modelos AR(p). Modelos ARMA(0,q): q y t = φ 0 + θ j ɛ t j j=0 también se denotan modelos MA(q)

6 Modelos MA(q): MA(1): y t = φ 0 + ɛ t + θ 1 ɛ t 1, donde {ɛ t } es ruido blanco µ = E(y t ) = φ 0 γ 0 = Var(y t ) = (1 + θ 2 1 )σ2 γ k = Cov(y t, y t k ) = Es el modelo MA(1) estacionario? Si Qué es Corr(y t, y t k )? ρ k = Corr(y t, y t k ) = γ k γ 0 { θ1 σ 2 para k = 1 0 para k > 1

7 Modelos MA(q) (cont.): MA(q): y t = φ 0 + q j=0 θ qɛ t q, donde {ɛ t } es ruido blanco y donde θ 0 = 1 µ = φ 0 γ 0 = (1 + θ θ2 q)σ 2 { (θk + θ γ k = k+1 θ θ q θ q 1 )σ 2 para k = 1,..., q 0 para k > q Es el modelo MA(q) estacionario? Si Qué es Corr(y t, y t k )? ρ k = γ k γ 0

8 Modelos MA(q) (cont.): MA( ): y t = φ 0 + j=0 ψ jɛ t j, donde {ɛ t } es ruido blanco y donde ψ 0 = 1 Notación: MA( ) Como podemos saber si MA( ) es un proceso estacionario y bien definido? Una de las condiciones siguientes es suficiente: a) j=0 ψ2 j < b) j=0 ψ j <

9 Modelos MA(q) (cont.): Entonces, por el MA( ) tenemos que: µ = φ 0 γ 0 = lim T (ψ ψ ψ2 T )σ2 γ k = σ 2 (ψ k ψ 0 + ψ k+1 ψ 1 + ψ k+2 ψ 2 + )

10 Modelos AR(p): AR(1): y t = φ 0 + φ 1 y t 1 + ɛ t, donde {ɛ t } es ruido blanco Es el modelo AR(1) estacionario ( estable )? Si φ 1 < 1 si Si φ 1 1 no Por qué φ 1 < 1 AR(1) estacionario?

11 Modelos AR(p) (cont.): Porque eso implica que el modelo AR(1) se puede escribir como un modelo MA( ): y t = φ 0 + φ 1 y t 1 + ɛ t = φ 0 + φ 1 (φ 0 + φ 1 y t 2 + ɛ t 1 ) + ɛ t = φ 0 + φ 1 [φ 0 + φ 1 (φ 0 + φ 1 y t 3 + ɛ t 2 ) +ɛ t 1 ] + ɛ t. = (φ 0 + ɛ t ) + φ 1 (φ 0 + ɛ t 1 ) + φ 2 1 (φ 0 + ɛ t 2 ) + = φ 0 i=0 φi 1 + ɛ t + φ 1 ɛ t 1 + φ 2 1 ɛ t 2 + φ 3 1 ɛ t 3 + = φ 0 1 φ 1 + ɛ t + φ 1 ɛ t 1 + φ 2 1 ɛ t 2 + φ 3 1 ɛ t 3 + = MA( )

12 Modelos AR(p) (cont.): Recuerda: j=0 ψ j < MA(q) estacionario, y en nuestro caso (dado que φ 1 < 1) tenemos j=0 ψ j = j=0 φj 1 < De todo esto se deduce (cuando φ 1 < 1): µ = φ 0 1 φ 1 γ 0 = σ2 (1 φ 2 1 ) γ k = φk 1 σ 2 1 φ 2 1 ρ k = γ k γ 0 = φ k 1

13 Modelos AR(p) (cont.): El modelo AR(2) se define como: y t = φ 0 + φ 1 y t 1 + φ 2 y t 2 + ɛ t (1) Aplicando el operador de retardo el AR(2) se puede escribir como (1 φ 1 L φ 2 L 2 )y t = φ 0 + ɛ t y (1) es estacionario si las p raíces características λ 1 y λ 2 están dentro del círculo de unidad (es decir, λ 1, λ 2 < 1) Cómo calculamos las 2 raíces características λ 1, λ 2 de un AR(2)? (1 φ 1 z φ 2 z 2 ) = 0 (λ 2 φ 1 λ φ 2 ) = 0 donde λ = 1 z

14 Modelos AR(p) (cont.): Nota: A veces se utiliza una terminología diferente que puede confundir: raíces del polinomo 1 φ 1 z φ 2 z 2 está fuera del círculo de unidad Las raíces características están dentro del circulo de unidad Si todas las raíces características están dentro del círculo de unidad, entonces podemos escribir y finalmente ψ(l) = (1 φ 1 L φ 2 L 2 ) 1 = ψ 0 + ψ 1 L + ψ 2 L 2 + (2) y t = ψ(l)φ 0 + ψ(l)ɛ t = MA( ) (3)

15 Modelos AR(p) (cont.): Suponiendo que las 2 raíces características están dentro del círculo de unidad, entonces tenemos que: µ = φ 0 1 φ 1 φ 2 γ 0 = φ 1 γ 1 + φ 2 γ 2 + σ 2 γ k = φ 1 γ k 1 + φ 2 γ k 2 ρ k = γ k γ 0

16 Modelos AR(p) (cont.): El modelo AR(p) se define como: y t = φ 0 + p φ 1 y t i + ɛ t i=1 Suponiendo que todas las raíces características están dentro del círculo de unidad, entonces tenemos que: µ = φ 0 1 φ 1 φ p γ 0 = φ 1 γ φ p γ p + σ 2 γ k = φ k γ k φ p γ k p ρ k = γ k γ 0 Nota: Las p + 1 ecuaciones definidas por ρ 0,..., ρ p se llaman las ecuaciones de Yule-Walker

17 ARMA(p, q), representación de media móvil MA( ): Un modelo ARMA(p, q) estacionario/estable siempre tiene una representación de media móvil MA( ): se puede escribir y t = φ 0 + p i=1 φ iy t i + q j=0 θ jɛ t j (1 φ 1 L φ p L p )y t = φ 0 + (1 + θ 1 L + + θ q L q )ɛ t, y si el ARMA(p, q) es estable entonces y t = donde ψ(l) = 1+θ 1L+ +θ ql q 1 φ 1 L φ pl p φ 0 1 φ 1 φ p + ψ(l)ɛ t = MA( )

18 Teorema de Wold (1938): Hemos visto que procesos ARMA(p, q) estacionarios se pueden escribir como un modelo MA( ), es decir, como y t = φ 0 + j=0 ψ jɛ t j donde ψ 0 = 1, si j=0 ψ j < El teorema de Wold establece que esto es cierto para todo proceso estacionario

19 Teorema de Wold (1938) (cont.): Teorema (Wold): Cualquier proceso estacionario {y t } con media cero se puede representar de la forma y t = ψ j ɛ t j + κ t (4) j=0 donde ψ 0 = 1 y j=0 ψ2 j <. El proceso {ɛ t } es ruido blanco y representa el error resultante de predecir y t con una función lineal de los retardos de y t : ɛ t = y t E(y t y t 1, y t 2,... ) El valor de κ t es incorrelado con ɛ t j para cualquier j, pero se puede predecir κ t arbitrariamente bien con una función lineal de los valores pasados de y t : κ t = E(κ t y t 1, y t 2,... )

20 Teorema de Wold (1938) (cont.): Nota 1: La parte j=0 ψ jɛ t j se llama el componente linealmente indeterminístico Nota 2: La parte κ t se llama el componente linealmente determinístico Problema: Estimar la representación de Wold de una serie requiere la estimación de un número infinito de parámetros Tenemos solamente un número finito de observaciones Solución: Hacer supuestos adicionales sobre la naturaleza de ψ 1, ψ 2,...

21 Teorema de Wold (1938) (cont.): Estrategia 1: Aproximar la suma infinita con una suma finita: 1 + θ 1 L + θ 2 L θ q L q 1 φ 1 L φ 2 L 2 φ p L p = ψ j L j j=0 r ψ j L j j=0 Entonces se obtiene (en general) una buena aproximación con pocos parámetros Estrategia 2: Hamilton (1994, capítulo 6)

22 Invertibilidad de MA(q): Recordamos: Si un modelo AR(p) es estable, entonces podemos escribirlo como un MA( ) Si un modelo MA(q) es invertible, entonces podemos escribirlo como un AR( ) Definición: Invertibilidad de MA(q). Un modelo MA(q) se puede escribir como y t φ 0 = (1 + θ 1 L + θ 2 L θ q L q )ɛ t. Si el MA(q) se puede escribir como un modelo AR( ) utilizando la inversa del (1 + θ 1 L + θ 2 L θ q L q ), entonces se dice que MA(q) es invertible. Condición suficiente para la invertibilidad: Que todas las raíces del polinomo (1 + θ 1 z + θ 2 z θ q z q ) = 0 están fuera del círculo de unidad

23 Invertibilidad de MA(q) (cont.): MA(q): y t = φ 0 + q j=0 ɛ t j y t φ 0 = (1 + θ 1 L + θ 2 L θ q L q )ɛ t Si todas las raíces están fuera del circulo de unidad tenemos que (1 + η 1 L + η 2 L 2 + ) = (1 + θ 1 L + θ 2 L θ q L q ) 1 y entonces (1 + η 1 L + η 2 L 2 + )(y t φ 0 ) = ɛ t es un AR( ) representación del modelo MA(q).

24 Causalidad: Definición: Causalidad. Un proceso {y t } es causal, o una función causal de {ɛ t }, si existen constantes ψ j así que i) ii) j=0 ψ j < y t = j=0 ψ jɛ t j para todo t Ejemplos: Modelos AR(1) con φ 1 < 1: y t = φ 1 y t 1 + ɛ t y t = φ 0 + φ 1 y t 1 + ɛ t

25 q-correlación: Definición: q-correlación. Un proceso {y t } estacionario es q-correlacionado si Cov(y t, y t k ) = 0 para todo k > q, y si Cov(y t, y t k ) 0 para todo k q. Recuerda: Cov(y t, y t k ) = 0 Corr(y t, y t k ) = 0 y Cov(y t, y t k ) 0 Corr(y t, y t k ) 0 Ejemplo: Modelos MA(q)

26 Referencias: Hamilton, J. D. (1994). Time Series Analysis. Princeton, New Jersey: Princeton University Press. Wold, H. (1938). A Study in the Analysis of Stationary Time Series. Uppsala, Sweden: Almqvist and Wiksell.

Procesos de Media Móvil y ARMA

Procesos de Media Móvil y ARMA Capítulo 4 Procesos de Media Móvil y ARMA Los procesos AR no pueden representar series de memoria muy corta, donde el valor actual de la serie sólo está correlado con un número pequeño de valores anteriores

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo no Estacionarias Carlos Capistrán Carmona ITAM Tendencias Una tendencia es un movimiento persistente de largo plazo

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelación con ARMA

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Modelación con ARMA ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Modelación con ARMA Método Box-Jenkins: Un libro que ha tenido una gran influencia es el de Box y Jenkins (1976): Time Series Analysis: Forecasting and

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Conjunto R 3 y operaciones lineales en R 3

Conjunto R 3 y operaciones lineales en R 3 Conjunto R 3 y operaciones lineales en R 3 Objetivos. Definir el conjunto R 3 y operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las operaciones aritméticas en

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Análisis de los datos del robo de vehículos asegurados: una aplicación de las series de tiempo. Alejandro Román Vásquez

Análisis de los datos del robo de vehículos asegurados: una aplicación de las series de tiempo. Alejandro Román Vásquez Análisis de los datos del robo de vehículos asegurados: una aplicación de las series de tiempo Alejandro Román Vásquez 2 de mayo del 2012 Índice general 1. Introducción 5 1.1. Contexto, motivación y propósito

Más detalles

VARIABLES ALEATORIAS DISCRETAS

VARIABLES ALEATORIAS DISCRETAS VARIABLES ALEATORIAS DISCRETAS M. en C. Juan Carlos Gutiérrez Matus Instituto Politécnico Nacional Primavera 2004 IPN UPIICSA c 2004 Juan C. Gutiérrez Matus Variables Aleatorias Variables Aleatorias Definición:

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x

Más detalles

CAPÍTULO 6. Modelos ARMA para la Componente Aleatoria Introducción

CAPÍTULO 6. Modelos ARMA para la Componente Aleatoria Introducción CAPÍTULO 6 Modelos ARMA para la Componente Aleatoria 6.1. Introducción En los modelos de descomposición Y t = T t + S t + ε t, t = 1, 2,... se estima ˆε t y se determina si es o nó ruido blanco mediante

Más detalles

Sistem as de ecuaciones lineales

Sistem as de ecuaciones lineales Sistem as de ecuaciones lineales. Concepto, clasificación y notación Un sistema de m ecuaciones lineales con n incógnitas se puede escribir del siguiente modo: a x + a 2 x 2 + a 3 x 3 + + a n x n = b a

Más detalles

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA

CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones

Más detalles

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO

RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO RESUMEN DE ALGUNOS CONCEPTOS ESTADÍSTICOS ELEMENTALES Y NOTACIÓN EMPLEADA EN EL CURSO 1 rojo 1 2 3 4 5 6 Supongamos que tenemos dos dados, uno rojo y otro verde, cada uno de los cuales toma valores entre

Más detalles

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21

Algebra Lineal. Gustavo Rodríguez Gómez. Verano 2011 INAOE. Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano / 21 Algebra Lineal Gustavo Rodríguez Gómez INAOE Verano 2011 Gustavo Rodríguez Gómez (INAOE) Algebra Lineal Verano 2011 1 / 21 Espacios Vectoriales Espacios Vectoriales INAOE Gustavo Rodríguez Gómez (INAOE)

Más detalles

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Regresión con autocorrelación

ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES. Regresión con autocorrelación ECONOMETRÍA II: ECONOMETRÍA DE SERIES TEMPORALES Regresión con autocorrelación Introducción: Consideramos la regresión y t = β 0 + β 1 x 1t + + β k x kt + + β K x Kt + u t = β x t + u t con las hipótesis

Más detalles

Procesos ARIMA estacionales

Procesos ARIMA estacionales Capítulo 6 Procesos ARIMA estacionales 6.1. INTRODUCCIÓN Otra causa de no estacionaridad es la estacionalidad: En una serie mensual con estacionalidad anual, cada mes tiene una media distinta, con lo cual

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Análisis de procesos estocásticos en el dominio del tiempo

Análisis de procesos estocásticos en el dominio del tiempo Análisis de procesos estocásticos en el dominio del tiempo F. Javier Cara ETSII-UPM Curso 2012-2013 1 Contenido Introducción Procesos estocásticos Variables aleatorias Una variable aleatoria Dos variables

Más detalles

Métodos directos para resolver sistemas de ecuaciones lineales

Métodos directos para resolver sistemas de ecuaciones lineales Métodos directos para resolver sistemas de ecuaciones lineales Problemas para examen Si en algún problema se pide calcular el número de flops (operaciones aritméticas con punto flotante), entonces en el

Más detalles

Tema 5: Elementos de geometría diferencial

Tema 5: Elementos de geometría diferencial Tema 5: Elementos de geometría diferencial José D. Edelstein Universidade de Santiago de Compostela FÍSICA MATEMÁTICA Santiago de Compostela, abril de 2011 Coordenadas locales y atlas. Funciones y curvas.

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Variables aleatorias

Variables aleatorias Distribuciones continuas Se dice que una variable aleatoria X tiene una distribución continua, o que X es una variable continua, si existe una función no negativa f, definida sobre los números reales,

Más detalles

Estadística Industrial. Universidad Carlos III de Madrid Series temporales Práctica 5

Estadística Industrial. Universidad Carlos III de Madrid Series temporales Práctica 5 Estadística Industrial Universidad Carlos III de Madrid Series temporales Práctica 5 Objetivo: Análisis descriptivo, estudio de funciones de autocorrelación simple y parcial de series temporales estacionales.

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

Algebra lineal y conjuntos convexos

Algebra lineal y conjuntos convexos Apéndice A Algebra lineal y conjuntos convexos El método simplex que se describirá en el Tema 2 es de naturaleza algebraica y consiste en calcular soluciones de sistemas de ecuaciones lineales y determinar

Más detalles

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy (MAT01) 1 er Semestre de 010 1 Números Complejos Se define el conjunto de los números complejos como: C = {a + bi / a, b R, i = 1} Definición 1.1. Sea z, w C tal que z = x + iy en donde x, y R. Se define:

Más detalles

Métodos y Modelos Cuantitativos para la toma de Decisiones

Métodos y Modelos Cuantitativos para la toma de Decisiones Métodos y Modelos Cuantitativos para la toma de Decisiones David Giuliodori Universidad Empresarial Siglo 21 David Giuliodori (UE-Siglo 21) MMC 1 / 98 Índice: 1 Conceptos Generales 2 Enfoque Clásico Tendencia

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Aplicaciones de Ec. en Diferencias a la Economía

Aplicaciones de Ec. en Diferencias a la Economía Aplicaciones de Ec. en Diferencias a la Economía Economía Matemática. (FCEA, UdelaR) Aplicaciones 1 / 21 Nota previa sobre raices complejas Antes de ver algunos ejemplos aplicados a la economía, una nota

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

Econometría de series de tiempo aplicada a macroeconomía y finanzas

Econometría de series de tiempo aplicada a macroeconomía y finanzas Econometría de series de tiempo aplicada a macroeconomía y finanzas Series de Tiempo Estacionarias (Univariadas) Carlos Capistrán Carmona ITAM Serie de tiempo Una serie de tiempo es una sequencia de valores

Más detalles

Introducción a la Teoría Analítica de Números

Introducción a la Teoría Analítica de Números Introducción a la Teoría Analítica de Números Pablo De Nápoli clase 3. Ejemplos de funciones generatrices El teorema que vimos la clase anterior sobre el producto de series de Dirichlet permite determinar

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Distribuciones de probabilidad multivariadas

Distribuciones de probabilidad multivariadas Capítulo 3 Distribuciones de probabilidad multivariadas Sobre un dado espacio muestral podemos definir diferentes variables aleatorias. Por ejemplo, en un experimento binomial, X 1 podría ser la variable

Más detalles

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios.

Tema 1. El Modelo de Regresión Lineal con Regresores Aleatorios. ema El Modelo de Regresión Lineal con Regresores Aleatorios Introducción En este tema vamos a analizar las propiedades del modelo de regresión lineal con regresores aleatorios Suponer que los regresores

Más detalles

!MATRICES INVERTIBLES

!MATRICES INVERTIBLES Tema 4.- MATRICES INVERTIBLES!MATRICES INVERTIBLES!TÉCNICAS PARA CALCULAR LA INVERSA DE UNA MATRIZ REGULAR 1 Hemos hablado anteriormente de la matriz cuadrada unidad de orden n (I n ).. Es posible encontrar

Más detalles

ESTADÍSTICA. Tema 4 Regresión lineal simple

ESTADÍSTICA. Tema 4 Regresión lineal simple ESTADÍSTICA Grado en CC. de la Alimentación Tema 4 Regresión lineal simple Estadística (Alimentación). Profesora: Amparo Baíllo Tema 4: Regresión lineal simple 1 Estructura de este tema Planteamiento del

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales Introducción Las matrices aparecen por primera vez hacia el año 1850, introducidas por J.J. Sylvester. El desarrollo inicial de la teoría se debe al matemático W.R. Hamilton en 1853. En 1858, A. Cayley

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo

Más detalles

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona

Kolmogorov y la teoría de la la probabilidad. David Nualart. Academia de Ciencias y Universidad de Barcelona Kolmogorov y la teoría de la la probabilidad David Nualart Academia de Ciencias y Universidad de Barcelona 1 La axiomatización del cálculo de probabilidades A. N. Kolmogorov: Grundbegriffe des Wahrscheinlichkeitsrechnung

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B

Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Métodos Estadísticos de la Ingeniería Tema 7: Momentos de Variables Aleatorias Grupo B Área de Estadística e Investigación Operativa Licesio J. Rodríguez-Aragón Marzo 2010 Contenidos...............................................................

Más detalles

Sucesiones y Suma Finita

Sucesiones y Suma Finita Sucesiones y Suma Finita Hermes Pantoja Carhuavilca Centro Pre-Universitario CEPRE-UNI Universidad Nacional de Ingeniería Algebra Hermes Pantoja Carhuavilca 1 de 21 CONTENIDO Convergencia de una sucesión

Más detalles

PROCESOS ESTOCÁSTICOS

PROCESOS ESTOCÁSTICOS Capítulo 10 Cadenas de Markov PROCESOS ESTOCÁSTICOS Una sucesión de observaciones X 1,X 2,... se denomina proceso estocástico Si los valores de estas observaciones no se pueden predecir exactamente Pero

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL.

Universidad Alonso de Ojeda. Facultad de Ingeniería GUIA DE ESTUDIO ALGEBRA LINEAL. UNIDAD V: ESPACIOS VECTORIALES Estamos acostumbrados a representar un punto en la recta como un número real; un punto en el plano como un par ordenado y un punto en el espacio tridimensional como una terna

Más detalles

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE

CONCEPTOS BASICOS DE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE LA TRANSFORMADA DE LAPLACE Por cálculo integral sabemos que cuando vamos a determinar una integral impropia de la forma,su desarrollo se obtiene realizando un cambio de variable en el límite superior de

Más detalles

Campo de velocidades se puede representar mediante una función potencial φ, escalar

Campo de velocidades se puede representar mediante una función potencial φ, escalar Flujo Potencial Campo de velocidades se puede representar mediante una función potencial φ, escalar Condición necesaria flujo irrotacional, V=0. Hipótesis: Flujo irrotacional, incompresible y permanente

Más detalles

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados.

MA3002. Matemáticas Avanzadas para Ingeniería: Sucesiones, Series y Series de Potencias. Departamento de Matemáticas. Convergencia. Resultados. y y MA3002 y Una sucesión, representada matemáticamente como {z n }, es una función cuyo dominio son los enteros positivos (1, 2, 3, 4,...); en otras palabras, a cada entero n = 1, 2, 3... se le asigna

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

Breve Introducción a las Series Temporales

Breve Introducción a las Series Temporales Breve Introducción a las Series Temporales 1 Series Temporales Colección de observaciones tomadas de forma secuencial en el tiempo {X t } t T. La hipótesis de independencia entre las observaciones puede

Más detalles

TEMA 8.- NORMAS DE MATRICES Y

TEMA 8.- NORMAS DE MATRICES Y Álgebra II: Tema 8. TEMA 8.- NORMAS DE MATRICES Y NúMERO DE CONDICIóN Índice. Introducción 2. Norma vectorial y norma matricial. 2 2.. Norma matricial inducida por normas vectoriales......... 4 2.2. Algunos

Más detalles

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1)

Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : v = x 2 yē x + x 2 tē y (3.1) Ejercicio 3.1. Sea el campo de velocidades de un escurrimiento definido por : Se pide: v = x yē x + x tē y (3.1) a. A qué tipo de formalismo corresponde este análisis del escurrimiento, lagrangeano o eulereano?

Más detalles

6. VARIABLES ALEATORIAS

6. VARIABLES ALEATORIAS 6. VARIABLES ALEATORIAS Objetivo Introducir la idea de una variable aleatoria y su distribución y características como media, varianza etc. Bibliografía recomendada Peña y Romo (1997), Capítulo 15. Hasta

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos Lección 2: Funciones vectoriales: límite y continuidad. Diferenciabilidad de campos vectoriales 1.1 Introducción En economía, frecuentemente, nos interesa explicar la variación de unas magnitudes respecto

Más detalles

Tema 2 TRANSICIONES DE FASE Y FENÓMENOS CRÍTICOS Transiciones de fase de primer orden. Transiciones de fase de orden superior y fenómenos críticos.

Tema 2 TRANSICIONES DE FASE Y FENÓMENOS CRÍTICOS Transiciones de fase de primer orden. Transiciones de fase de orden superior y fenómenos críticos. ema RANSICIONES DE FASE Y FENÓMENOS CRÍICOS ransiciones de fase de primer orden. ransiciones de fase de orden superior y fenómenos críticos. eoría de Landau y parámetro de orden. Exponentes críticos y

Más detalles

Series de Tiempo. Una Introducción

Series de Tiempo. Una Introducción Series de Tiempo. Una Introducción Series de Tiempo Muchas veces, sobretodo para realizar pronósticos, resulta conveniente no suponer un modelo explícito para que explique la variables de interés, sino

Más detalles

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos

GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos GUÍAS DE ESTUDIO Código PGA-02-R02 1 INSTITUCIÓN EDUCATIVA CASD Programa de alfabetización, educación básica y media para jóvenes y adultos UNIDAD DE TRABAJO Nº 1 PERIODO 1 1. ÁREA INTEGRADA: MATEMÁTICAS

Más detalles

Métodos, Algoritmos y Herramientas

Métodos, Algoritmos y Herramientas Modelado y Simulación de Sistemas Dinámicos: Métodos, Algoritmos y Herramientas Ernesto Kofman Laboratorio de Sistemas Dinámicos y Procesamiento de la Información FCEIA - Universidad Nacional de Rosario.

Más detalles

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas.

Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Anejo 1. Teoría de Airy. Solución lineal de la ecuación de ondas. Introducción y ecuaciones que rigen la propagación del oleaje. La propagación de oleaje en un fluido es un proceso no lineal. Podemos tratar

Más detalles

Análisis de datos Categóricos

Análisis de datos Categóricos Introducción a los Modelos Lineales Generalizados Universidad Nacional Agraria La Molina 2016-1 Introducción Modelos Lineales Generalizados Introducción Componentes Estimación En los capítulos anteriores

Más detalles

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD CONTENIDOS 1. Procesos Estocásticos y de Markov 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD 4. Comportamiento Estacionario de las CMTD 1. Procesos Estocásticos

Más detalles

CAPÍTULO 7. Raíces Unitarias y Tendencias Estocásticas (ARIMA) 7.1. Introducción MOdelos ARIMA

CAPÍTULO 7. Raíces Unitarias y Tendencias Estocásticas (ARIMA) 7.1. Introducción MOdelos ARIMA CAPÍTULO 7 Raíces Unitarias y Tendencias Estocásticas (ARIMA) 7.1. Introducción En este capítulo se presenta en modelo alterno al de Descomposición con errores ARMA, conocido como modelo ARIMA SARIMA ó

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso

Fundamentos Matemáticos de la Ingeniería. Tema 4: Diagonalización de matrices. Curso Fundamentos Matemáticos de la Ingeniería Tema 4 Hoja Escuela Técnica Superior de Ingeniería Civil e Industrial Esp en Hidrología Fundamentos Matemáticos de la Ingeniería Tema 4: Diagonaliación de matrices

Más detalles

Clasificación de sistemas

Clasificación de sistemas Capítulo 2 Clasificación de sistemas 2.1 Clasificación de sistemas La comprensión de la definición de sistema y la clasificación de los diversos sistemas, nos dan indicaciones sobre cual es la herramienta

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Problemas de Espacios Vectoriales

Problemas de Espacios Vectoriales Problemas de Espacios Vectoriales 1. Qué condiciones tiene que cumplir un súbconjunto no vacío de un espacio vectorial para que sea un subespacio vectorial de este? Pon un ejemplo. Sean E un espacio vectorial

Más detalles

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos

Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Examen de Matemáticas Aplicadas a las CC. Sociales II (Septiembre 2009) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos) Una carpintería vende paneles de contrachapado de dos tipos A y B.

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental

Más detalles

Análisis en Forma Estratégica: Juegos Estáticos I

Análisis en Forma Estratégica: Juegos Estáticos I Análisis en Forma Estratégica: Juegos Estáticos I Empezaremos nuestro análisis con juegos estáticos: Aquellos en los cuales los jugadores decide sus acciones de forma simultánea e independiente. Nuestro

Más detalles

El Autómata con Pila: Transiciones

El Autómata con Pila: Transiciones El Autómata con Pila: Transiciones El Espacio de Configuraciones Universidad de Cantabria Esquema Introducción 1 Introducción 2 3 Transiciones Necesitamos ahora definir, paso por paso, como se comporta

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

3.1 El espacio afín R n

3.1 El espacio afín R n 3. Geometría analítica 3.1 El espacio afín R n Consideremos el conjunto R n, formado por las listas ordenadas (x 1,...,x n ) de números reales. Convengamos en llamar puntos a los elementos de R n. Pero

Más detalles

Marzo 2012

Marzo 2012 Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos

Más detalles

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.

Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida

Más detalles

Álgebra Lineal VII: Independencia Lineal.

Álgebra Lineal VII: Independencia Lineal. Álgebra Lineal VII: Independencia Lineal José María Rico Martínez Departamento de Ingeniería Mecánica División de Ingenierías, Campus Irapuato-Salamanca Universidad de Guanajuato email: jrico@salamancaugtomx

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

NÚCLEOS DEFINIDOS POSITIVOS, REGULARIDAD, PERTURBACIONES Y APLICACIONES.

NÚCLEOS DEFINIDOS POSITIVOS, REGULARIDAD, PERTURBACIONES Y APLICACIONES. UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS POSTGRADO EN MATEMÁTICA NÚCLEOS DEFINIDOS POSITIVOS, REGULARIDAD, PERTURBACIONES Y APLICACIONES. Autor: MSc. Arnaldo De La Barrera. Tutor: Dra. Marisela

Más detalles

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS

Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1 Tema I 1. EL CUERPO DE LOS REALES, EL CUERPO DE LOS COMPLEJOS 1.1 Los Números Naturales. Los números naturales aparecen por la necesidad que tiene el hombre (primitivo) tanto de contar como de ordenar

Más detalles

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP).

PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP). PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP. Optimización con restricciones La presencia de restricciones reduce la región en la cual buscamos el óptimo. Los criterios

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Teoría de la Probabilidad Tema 2: Teorema de Extensión

Teoría de la Probabilidad Tema 2: Teorema de Extensión Teoría de la Probabilidad Tema 2: Teorema de Extensión Alberto Rodríguez Casal 25 de septiembre de 2015 Definición Una clase (no vacía) A de subconjuntos de Ω se dice que es un álgebra si A es cerrada

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G

Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G Capítulo 1 Grupos y Subgrupos 001. El concepto de grupo Sea G un conjunto no vacío y sea G G G una operación interna en G para la cual denotaremos a la imagen de un par (x, y) mediante xy. Supongamos que

Más detalles

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS. ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles