(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy

Tamaño: px
Comenzar la demostración a partir de la página:

Download "(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy"

Transcripción

1 (MAT01) 1 er Semestre de Números Complejos Se define el conjunto de los números complejos como: C = {a + bi / a, b R, i = 1} Definición 1.1. Sea z, w C tal que z = x + iy en donde x, y R. Se define: 1. La parte real de z, denotado por Re{z}, al número real x. Esto es Re{z} = x.. La parte imaginaria de z, denotado por Im{z}, al número real y. Esto es Im{z} = y. 3. z = w si Re{z} = Re{w} e Im{z} = Im{w}. 1.1 Operatoria Sean z 1, z C de modo que z 1 = x 1 + iy 1 y z = x + iy con x 1, x, y 1, y R. Se define: 1. La suma de z 1 y z como: z 1 + z = (x 1 + x ) + i(y 1 + y ).. La multiplicación de z 1 y z como: z 1 z = (x 1 x y 1 y ) + i(x 1 y + x y 1 ) Elemento Neutro para la Suma Sea z C de modo que z = x + iy con x, y R. Sea e C de modo que e = e 1 + ie con e 1, e R, y que z + e = z, es decir, que e es el elemento neutro para la suma. z + e = (x + iy) + (e 1 + ie ) = (x + e 1 ) + i(y + e ) = x + iy Esto quiere decir que x + e 1 = x y que y + e = y. De esta manera se concluye que el elemento neutro para la suma viene dado por e = 0 + i0 = 0. Elemento Neutro para la Multiplicación Sea z C de modo que z = x + iy con x, y R. Sea e C de modo que e = e 1 + ie con e 1, e R, y que z e = z, es decir, que e es el elemento neutro para la multiplicación. z e = (x + iy) (e 1 + ie ) = (xe 1 ye ) + i(xe + e 1 y) = x + iy Esto quiere decir que xe 1 ye = x y que xe + e 1 y = y. De esta manera se concluye que el elemento neutro para la multiplicación viene dado por e = 1 + i0 = 1. MAT01 (Complemento) - Paralelo 1 1

2 Elemento Inverso para la Suma Sea z C de modo que z = x + iy con x, y R. Sea w C de modo que w 1 + iw con w 1, w R, y que z + 0, es decir, que w es el elemento inverso para la suma. z + (x + iy) + (w 1 + yw ) = (z + w 1 ) + i(y + w ) = 0 + i0 Esto quiere decir que x + w 1 = 0 y que y + w = 0. De esta manera se concluye que el elemento inverso para la suma viene dado por ( x) + i( y). Este elemento será denotado por z. Elemento Inverso para la Multiplicación Sea z C de modo que z = x + iy con x, y R. Sea w C de modo que w 1 + iw con w 1, w R, y que z 1, es decir, que w es el elemento inverso para la multiplicación. z (x + iy) (w 1 + iw ) = (xw 1 yw ) + i(xw + w 1 y) = 1 + i0 Esto quiere decir que xw 1 yw = 1 y que xw + w 1 y = 0. De esta manera se concluye que el elemento inverso para la multiplicación viene dado por x x + y + i y x + y Este elemento será denotado por z 1 = 1 z. Se puede demostrar que (C, +, ) cumple con los axiomas de cuerpo. Ejercicio 1.1. Encontrar las partes real e imaginaria de z 3 si z = x + iy con x, y R Ejercicio 1.. Calcular i i 45 + i 00 + i 1. Conjugado y Módulo Definición 1.. Sea z C de modo que z = x + iy con x, y R. Se define el conjugado de z como z = x iy. y Notar que siempre se cumplirá que z + z = Re (z) y que z z = Im (z) i. Así Re (z) = z + z Im (z) = z z i A partir de esta definición se tendrán las siguientes propiedades. Propiedades 1.1. Sean z, w C. Entonces se cumple que: MAT01 (Complemento) - Paralelo 1

3 1. z = z.. z + z + w. 3. z z w. 4. Si w 0 entonces ( ) z z w. 5. (z n ) = (z) n. 6. Si z 0 entonces z 1 = z z z. 7. z = z z R. Definición 1.3. Sea z C. Se define el módulo de z (la norma de z) como z = z z. Notar que si z = x + iy con x, y R entonces se tendrá que z = x + y. Con esta observación se puede concluir que Re (z) z y que Im (z) z. A continuación se presentan algunas propiedades de la norma de un número complejo. Propiedades 1.. Sean z, w C. Entonces se cumple que: 1. z 0 y z = 0 z = 0.. z w = z w. 3. z = z z 4. z = z 5. Si w 0, z z w 6. z w z + w z + w. 1.3 Forma Polar de un Número Complejo Sea z C de modo que z = x + iy con x, y R. De aquí se observa que x = R cos θ, y = R sin θ y R = z = x + y. Además se tendrá que tan θ = y/x. A partir de esto: MAT01 (Complemento) - Paralelo 1 3

4 arctan y x, si x 0 z está en el primer o cuarto cuadrante θ = arctan y x + π π π, si x 0 z está en el segundo o tercer cuadrante, si x = 0 y > 0, si x = 0 y < 0 Notar que z = x + iy = z (cos θ + i sin θ). Si se define cis θ = cos θ + i sin θ, entonces todo número complejo podrá ser expresado de la forma z = z cis θ. Propiedades 1.3. Sean z 1, z C de modo que z 1 = z 1 cis θ 1 y z = z cis θ. Entonces se tiene que: 1. z 1 z = z 1 z cis (θ 1 + θ ).. z 1 z = z1 z cis(θ 1 θ ). 3. z 1 = z 1 cis( θ 1 ). 4. z 1 1 = 1 z 1 cis ( θ 1), si z 0. Ejemplo 1.1. Como ejemplo de una aplicación de esta forma de representar a los números complejos, considere la función φ : C C definida por φ(z) = iz. Esta función representa una rotación en el plano complejo. En efecto, se tiene que z = z cis θ e i = cis π, luego φ(z) = z cis ( θ + π ). 1.4 Teorema de Moivre Sean z 1, z C de modo que z 1 = z 1 cis θ 1 y z = z cis θ. Si z 1 = z entonces se tendrá que z 1 = z y que cis θ 1 = cis θ. Por la igualdad de números complejos se concluye que θ 1 = θ + kπ con k Z. Teorema 1.1. Sea z C de modo que z = z cis θ, y n N. Entonces se cumple que z n = z n cis(nθ). La demostración de este teorema es por inducción sobre n. Una aplicación de este teorema es la obtención de las raíces n-ésimas de un número complejo (en particular, un número real). Para ilustrar esto primero se considerará un ejemplo y luego se dará una formulación general. Ejemplo 1.. Obtener las raíces n-ésimas de la unidad. Resolver este problema es encontrar n números w, de modo que w n = 1. Por notación se tendrá que n 1. Se tiene que w cis θ y que 1 = cis 0. Por el teorema de Moivre, w n = w n cis(nθ). Por hipótesis tenemos que w n = 1 cis 0, luego se concluye que w n = 1 y cis(nθ) = cis 0. De aquí: w = 1 y nθ = kπ con k Z. k = 0, θ 0 = 0, w 0 = 1 k = 1, θ 1 = π/n, w 1 = cis(π/n) k =, θ = 4π/n, w = cis(4π/n).,.,. k = n 1, θ n 1 = (n 1)π/n, w n 1 = cis((n 1)π/n) k = n, θ n = π, w n = 1 MAT01 (Complemento) - Paralelo 1 4

5 Notar que para k = n se empieza a repetir la solución. Luego las raíces de la unidad vienen dadas por: w n = cis( kπ n ) con k = 0, 1,..., n 1. Sea z C y n N. Se calculará la raíz n-ésima de z, esto es, encontrar n números w de modo que w n = z. Se tiene que z = z cis θ z y w cis θ w. Por el teorema de Moivre, w n = w n cis(nθ w ). Luego w n = z y nθ θ z + kπ con k = 0, 1,..., n 1. Las raíces n-ésima de z, n z, vienen dadas por: ( n z cis θz+kπ ) con k = 0, 1,..., n 1. n Ejercicios Propuestos 1. Exprese los siguientes números complejos en su forma polar, y luego ubíquelos en el plano complejo. a) i b) 1 + 3i c) + i d) i e) 3 i f) 3 3i g) 7 h) 1 + i i) 3 + 3i. Resuelva las siguientes ecuaciones en el campo de los números complejos. a) z 4 + 8iz = 0 b) z 4 + z + = 0 c) z 3 + 3z + z 5 = 0 d) 9z + 6(4 3i)z (1 + 9i) = 0 e) z i = 0 f) z 4 + z z + 1 = 0 (raíz cúbica de la unidad es una raíz) 3. Calcule: a) ( 3 i) 1 b) ( 4 + 4i) 1 5 c) ( + 3i) 1 3 d) ( 16i) 1 4 e) 3 8 f) 4 16 g) ( 8 8 3i) 1 4 h) i 4. Encuentre z C que cumpla con θ [π, 3π/], Re(z) = 3 Im(z) y que z + 3 z z 4 = Pruebe las siguientes identidades trigonométricas utilizando la forma compleja del seno y del coseno. (a) sin 3 θ = 3 4 sin θ 1 sin 3θ. 4 (b) cos 4 θ = 1 8 cos θ + 1 cos θ MAT01 (Complemento) - Paralelo 1 5

Coordinación de Matemática I (MAT021) 1 er Semestre de 2011 Semana 13: Lunes 30 de Mayo Viernes 3 de Junio. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2011 Semana 13: Lunes 30 de Mayo Viernes 3 de Junio. Contenidos Complemeto Coordiació de Matemática I (MAT01) 1 er Semestre de 011 Semaa 13: Lues 30 de Mayo Vieres 3 de Juio Coteidos Clase 1: Forma Polar de u Número Complejo. Teorema de Moivre. Clase : Raíces de la

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 5 ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 5 DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Números Complejos Se define el conjunto de los

Más detalles

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que

Más detalles

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán 1. Comprobar que: a) ( i) i(1 i) = i b) 1+i 3 4i + i 5i = 5 c) 5 (1 i)( i)(3 i) = i d) (1 i) 4 = 4. Resuelve las siguientes ecuaciones: a) (1 + i)z

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice.

Un ángulo es una porción de plano limitada por dos semirrectas, los lados, que parten de un mismo punto llamado vértice. Índice general II. UNIDAD 2 3 1. Trigonometría.................................. 3 1.1. Razones trigonométricas de un ángulo................. 3 2. Números complejos................................ 5 2.1.

Más detalles

Definición 1 Se definen los siguientes conceptos: (3) El conjunto de los números complejos. (a) la parte real de z es Re(z) = a.

Definición 1 Se definen los siguientes conceptos: (3) El conjunto de los números complejos. (a) la parte real de z es Re(z) = a. UNIVERSIDAD ARTURO PRAT FACULTAD DE INGENIERIA Y ARQUITECTURA 1 Conceptos Básicos Sabemos que las soluciones de la ecuación x 2 1 = 0 son x 1 = 1 y x 2 = 1. Una forma de determinar dichas soluciones es

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 Tema: Números Complejos (C). 1. Clasifica los siguientes números complejos en reales e imaginarios. Mencionar, para cada uno,

Más detalles

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos Matemáticas I Ejercicios resueltos. Tema : Números Complejos 1. Calcula: ( + i)( i) (1 i)( i) c) i ( i)5i + i( 1 + i) (5 i) d) ( i)( + i) ( i) (+i)( i) (1 i)( i) i+i ( i i ) +i ( 1 5i) +1+i+5i 5 + i +

Más detalles

Análisis Complejo Segundo Cuatrimestre 2011

Análisis Complejo Segundo Cuatrimestre 2011 Análisis Complejo Segundo Cuatrimestre 011 Práctica 1: Números complejos Números complejos 11 Expresar los siguientes números en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i), (c) 1 1+3i,

Más detalles

Práctico Expresar los siguientes números complejos de la forma x + iy, con x, y R: i 1 + i

Práctico Expresar los siguientes números complejos de la forma x + iy, con x, y R: i 1 + i Centro de Matemática Facultad de Ciencias Universidad de la República Práctico Análisis complejo - Curso 009. Expresar los siguientes números complejos de la forma x + iy, con x, y R: a)( + 3i) b)( + i)(i

Más detalles

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i.

1. DEFINICIÓN. ax = b, x 2 = b, 2 + 5i, 0 + ( 2)i, 2 + 3i, 5 + 0i, 1 + 1i. 0 + ( 2)i = 2i, 5 + 0i = 5, 1 + 1i = 1 + i. NÚMEROS COMPLEJOS PATRICIA KISBYE 1. DEFINICIÓN En los números reales es posible resolver cualquier ecuación lineal en una variable: ax = b, siempre que a sea distinto de 0. Pero las ecuaciones cuadráticas,

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

MA3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces MA3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

1. Álgebra de Números Complejos.

1. Álgebra de Números Complejos. 1. Álgebra de Números Complejos. Los números complejos se pueden introducir en el proceso de búsqueda de soluciones para ecuaciones polinomiales como x 2 + 1 = 0 ó x 2 + 4x + 13 = 0. En general un valor

Más detalles

Números complejos en la forma polar (lista de problemas para examen)

Números complejos en la forma polar (lista de problemas para examen) Números complejos en la forma polar lista de problemas para examen) En esta lista de problemas trabajamos con números complejos en la forma polar llamada también la forma trigonométrica) El sentido geométrico

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

Apellidos y Nombre: Hoja 1

Apellidos y Nombre: Hoja 1 Hoja 1 1 Hallar dos números complejos tales que su suma sea 1+6i y su cociente imaginario puro. Suponer, además que la parte real del que se tome como divisor al calcular el cociente es 1. Hallar los números

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos

Números complejos. Sesión teórica 2 (págs ) 21 de septiembre de Potencias de complejos Números complejos Sesión teórica 2 (págs. 10-15) 21 de septiembre de 2010 Llamaremos números complejos a los elementos del conjunto: C = {a + bi a, b R}. La expresión a + bi se denomina forma binómica

Más detalles

Tema 3. El cuerpo de los números complejos Introducción

Tema 3. El cuerpo de los números complejos Introducción Tema 3 El cuerpo de los números complejos 3.0.6 Introducción Aunque parezca que los complejos se introducen a partir de la resolución de la ecuación x +1 0, da más lejos de la realidad, esta era rechazada

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA300 Propiedas Propiedas Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n

Más detalles

Números complejos. por. Ramón Espinosa Armenta

Números complejos. por. Ramón Espinosa Armenta Números complejos por Ramón Espinosa Armenta En el siglo XVI, el matemático italiano Gerolamo Cardano se preguntó si tenía sentido considerar raíces cuadradas de números negativos. Tal raíz cuadrada debería

Más detalles

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la

El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la El primer asomo de la raíz cuadrada de un número negativo se presentó en la stereometría de Herón de Alejandría (año 50), y más tarde en la aritmética de Diofanto (año 275). 56 8i 14 + 10i 1. Trata la

Más detalles

Análisis Complejo Primer Cuatrimestre 2009

Análisis Complejo Primer Cuatrimestre 2009 Análisis Complejo Primer Cuatrimestre 009 Práctica 1: Números complejos Números complejos 11 Exprese los siguientes números complejos en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i),

Más detalles

Familiarizar al alumno con las distintas maneras de expresar números complejos.

Familiarizar al alumno con las distintas maneras de expresar números complejos. Capítulo 2 Aritmética compleja Objetivos Familiarizar al alumno con las distintas maneras de expresar números complejos. Manejar con soltura las operaciones aritméticas con números complejos. 2.1. Representaciones

Más detalles

TEMA 7 NÚMEROS COMPLEJOS

TEMA 7 NÚMEROS COMPLEJOS TEMA 7 NÚMEROS COMPLEJOS La unidad imaginaria i. Hay ecuaciones que no se pueden resolver en. Por ejemplo: x + 1 = 0 x = - 1 x = ± -1 En el siglo XVI se inventaron un número para resolver esta i = -1 ecuación.

Más detalles

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción.

Ma3002. Matemáticas Avanzadas para Ingeniería: Potencias y Raíces de Números Complejos. Departamento de Matemáticas. Introducción. Raíces Raíces Ma3002 Raíces Raíces Las potencias y las enteras números complejos son muy fáciles calcular cuando el número complejo está en la forma polar. Primeramente, veremos la forma polar un número

Más detalles

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i Problemas resueltos 1. Expresa en forma binómica los siguientes números complejos: a) z = ( + i)(1 i) +i b) w = 1+i (1 i) c) u = 1 1+i + 1 1 i a) z = ( + i)(1 i) +i = 5 5i +i (5 5i)( i) = ( + i)( i) =

Más detalles

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática. Análisis Complejo. Práctica N 1.

Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática. Análisis Complejo. Práctica N 1. Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto de Matemática Análisis Complejo Práctica N Expresar los siguientes números complejos en la forma a + ib, con a, b R: (a) (i

Más detalles

Números Complejos. Contenido. Definición

Números Complejos. Contenido. Definición U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Números Complejos William La Cruz Números Complejos...3

Más detalles

Tema 1. Números Complejos

Tema 1. Números Complejos Tema 1. Números Complejos Prof. William La Cruz Bastidas 27 de septiembre de 2002 Capítulo 1 Números Complejos Definición 1.1 Un número complejo, z, es un número que se expresa como z = x + iy o, de manera

Más detalles

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz: NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

+ + = f) + + = l) x + = ( ) =. = ( 1). i = i

+ + = f) + + = l) x + = ( ) =. = ( 1). i = i República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Escuela Técnica Robinsoniana P.S. S. S. Venezuela Barinas Edo Barinas Guía didáctica Nro 0- Objetivo -009-00 ) Dadas las

Más detalles

Señales y Sistemas. Grado en Ingeniería de Computadores. Revisión matemáticas

Señales y Sistemas. Grado en Ingeniería de Computadores. Revisión matemáticas Señales y Sistemas Grado en Ingeniería de Computadores Revisión matemáticas José Sáez Landete Departamento de Teoría de la Señal y Comunicaciones Universidad de Alcalá Curso 2015-16 Contenidos 1 Numeros

Más detalles

NÚMEROS COMPLEJOS: C

NÚMEROS COMPLEJOS: C NÚMEROS COMPLEJOS: C Alejandro Lugon 21 de mayo de 2010 Resumen Este es un pequeño estudio de los números complejos con el objetivo de poder usar las técnicas de solución de ecuaciones y sistemas diferenciales

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z Problemas de VC para EDVC elaborados por C. Mora, Tema 1 Ejercicio 1 Escribir en forma binómica los siguientes números complejos: i n, n Z; ( 1 + i ) n, n N; ( ) ( ) 4 5 1 + i 3 i ; (1+i 3) 0 ; e 1/z 1

Más detalles

Módulo 4-Diapositiva 25 Trigonometría en Complejos. Universidad de Antioquia

Módulo 4-Diapositiva 25 Trigonometría en Complejos. Universidad de Antioquia Módulo 4-Diapositiva 25 Trigonometría en Complejos Facultad de Ciencias Exactas y Naturales Temas Números complejos Módulo de un número complejo Forma polar de un número complejo Producto y cociente de

Más detalles

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z UNIDAD NÚMEROS COMPLEJOS Página 0 El paso de N a Z 0 Imagina que solo se conocieran los números naturales, N. Sin utilizar otro tipo de números, intenta resolver las siguientes ecuaciones: a) x + b) x

Más detalles

(a,b)+(c,d) = (a+c,b+d) (a,b) (c,d) = (ac bd,ad+cb) (a,b) = a+bi. (0,1) (0,1) = ( 1,0) i i = 1 i 2 = 1

(a,b)+(c,d) = (a+c,b+d) (a,b) (c,d) = (ac bd,ad+cb) (a,b) = a+bi. (0,1) (0,1) = ( 1,0) i i = 1 i 2 = 1 Capítulo 4 Números Complejos Sean (a,b),(c,d) R R, se define la suma y multiplicación como sigue (a,b)+(c,d) = (a+c,b+d) (a,b) (c,d) = (ac bd,ad+cb) por ejemplo tenemos (0,1) (0,1) = (0 0 1 1,0 1+1 0)

Más detalles

Análisis Complejo - Primer Cuatrimestre de 2018

Análisis Complejo - Primer Cuatrimestre de 2018 Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Análisis Complejo - Primer Cuatrimestre de 018 Práctica N 1: Números Complejos, Esfera de Riemann y Homografías

Más detalles

Números Complejos Matemáticas Básicas 2004

Números Complejos Matemáticas Básicas 2004 Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.

Más detalles

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4

NÚMEROS COMPLEJOS (C) Si calculamos los valores de las potencias de i, encontramos que: con n N + y 0 p < 4 NÚMEROS COMPLEJOS (C) DEFINICIÓN DE LA UNIDAD IMAGINARIA El cuadrado de un número real siempre es no negativo. Por ejemplo, no existe ningún número real x para el cual x 2 = -1. Para remediar esta situación,

Más detalles

El cuerpo de los números complejos

El cuerpo de los números complejos Capítulo 1 El cuerpo de los números complejos En este primer capítulo se revisan los conceptos elementales relativos a los números complejos. El capítulo comienza con una breve nota histórica y después

Más detalles

Semana 12 [1/8] Números complejos. 15 de mayo de Números complejos

Semana 12 [1/8] Números complejos. 15 de mayo de Números complejos Semana 12 [1/8] 15 de mayo de 2007 Aviso Semana 12 [2/8] Importante Los contenidos asociados a números complejos en la tutoría de la semana 11, se consideran como parte de esta semana. Esto se reflejará

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja Matemática D y D MATEMÁTICA D y D Módulo I: Análisis de Variable Compleja Unidad 0 Números Complejos Mag. María Inés Baragatti Números complejos. Generalidades Un número complejo es un par ordenado de

Más detalles

Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos

Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos Matemáticas Avanzadas para Ingeniería Números Complejos: Problemas Resueltos. Si z 3 + i y z 4 + 7 i, calcule: a) z + z b) z z c) z z d) z /z e indique la opción con su resultado dentro de la siguiente

Más detalles

Los números complejos

Los números complejos Universidad Autónoma de Madrid Actualización en Análisis Matemático, abril de 2012 Cardano (1501 1576) Dividir un segmento de longitud 10 en dos trozos tales que el rectángulo cuyos lados tienen la longitud

Más detalles

Variable Compleja I Tema 5: Funciones elementales

Variable Compleja I Tema 5: Funciones elementales Variable Compleja I Tema 5: Funciones elementales 1 La exponencial 2 Logaritmos El conjunto de los logaritmos El problema del logaritmo holomorfo Ejemplos de logaritmos holomorfos Desarrollos en serie

Más detalles

N Ú M E R O S C O M P L E J O S

N Ú M E R O S C O M P L E J O S N Ú M E R O S C O M P L E J O S. N Ú M E R O S C O M P L E J O S E N F O R M A B I N Ó M I C A Al intentar resolver la ecuación x 6x 0, obtenemos como soluciones + y que carecen de sentido porque no es

Más detalles

5. Efectúa las siguientes operaciones con números complejos:

5. Efectúa las siguientes operaciones con números complejos: 17. Expresa en forma binómica el complejo 4 4π 1. Calcular i. Efectúa la siguiente operación con números complejos: 5 + i 5 i. Efectúa el siguiente cociente de complejos en forma polar, expresando el resultado

Más detalles

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS ÁLGEBRA I NUMEROS COMPLEJOS. Imaginario: guardia que no efectúa rondas, pero se encuentra en un lugar fijo dispuesto a intervenir si fuera necesario.

Más detalles

Sistemas Aleatorios: Números Complejos

Sistemas Aleatorios: Números Complejos MA2006 Números Complejos Los números complejos simbolizados por C son una generalización de los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos:

Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: 1 CONOCIMIENTOS PREVIOS. 1 Números complejos. 1. Conocimientos previos. Antes de iniciar el tema se deben de tener los siguientes conocimientos básicos: Trigonometría. Sería conveniente realizar un ejercicio

Más detalles

El conjunto de los números complejos 1

El conjunto de los números complejos 1 El conjunto de los números complejos Introducción Los números complejos son objetos de la forma a+b 1, donde a y b son números reales, pero qué es 1? Los matemáticos se preocuparon por esta cuestión durante

Más detalles

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa.

Este conjunto posee elementos que se obtienen a partir de raíces cuadradas con cantidad subradical negativa. DEFINICIÓN:Los Números Imaginarios surgen de la necesidad de resolver ecuaciones cuadráticas sin solución en el campo real. Este conjunto se representa por I Este conjunto posee elementos que se obtienen

Más detalles

Números complejos y Polinomios

Números complejos y Polinomios Semana 13 [1/14] 23 de mayo de 2007 Forma polar de los complejos Semana 13 [2/14] Raíces de la unidad Raíz n-ésima de la unidad Sean z C y n 2. Diremos que z es una raíz n-ésima de la unidad si z n = 1

Más detalles

Los números complejos

Los números complejos Los números complejos Algo de historia La fórmula para resolver ecuaciones de segundo grado ax 2 +bx+c = 0 es conocida desde tiempos de los griegos. Se sabía que algunas de estas ecuaciones tienen 2 soluciones,

Más detalles

Repartido Números Complejos 5 H2 Liceo 7-Rivera Prof Fernando Díaz. Ecuación Resolución N Z Q I R x 3 = 1

Repartido Números Complejos 5 H2 Liceo 7-Rivera Prof Fernando Díaz. Ecuación Resolución N Z Q I R x 3 = 1 Ejercicio 1: Marquen con una cru todos los conjuntos numéricos a los cuales pertenecen las soluciones de las ecuaciones: Ecuación Resolución N Z Q I R x 3 1 x + 1 x. 1 x² 0 x² + 1 0 Como sabemos, en R

Más detalles

Vectores y números complejos

Vectores y números complejos Vectores y números complejos Desde cursos anteriores nos hemos tropezado con las llamadas raíces imaginarias o complejas de polinomios. De este modo la solución a un polinomio cúbico x = 2i x 3 3x 2 +

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 11[1/22] 4 de mayo de 2007 Anillos y cuerpos Semana 11[2/22] Anillos Comenzamos ahora el estudio de estructuras algebraicas que tengan definidas dos operaciones, y las clasificaremos en anillos

Más detalles

4.1. Qué es un número complejo. Representación geométrica.

4.1. Qué es un número complejo. Representación geométrica. Tema Números complejos.. Qué es un número complejo. Representación geométrica. Un número complejo z C C es el conjunto de los números complejos es una expresión de la forma z a + b i en la que a, b R a

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada

Tema 1. Números reales y funciones reales de variable real. Números complejos. Departamento de Análisis Matemático Universidad de Granada Tema 1. Números reales y funciones reales de variable real. Números complejos Departamento de Análisis Matemático Universidad de Granada Números reales Números reales Universidad de Granada Septiembre,

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles

1 Los números complejos, operaciones y propiedades

1 Los números complejos, operaciones y propiedades TEMA 1 LOS NÚMEROS COMPLEJOS, ESTRUCTURA ALGEBRAICA TOPOLOGÍA 1 Los números complejos, operaciones y propiedades 11 El cuerpo C de los números complejos 1 El espacio vectorial normado de los números complejos

Más detalles

Índice general. Introducción Cuestionario del módulo cero Soluciones del cuestionario

Índice general. Introducción Cuestionario del módulo cero Soluciones del cuestionario Colección de problemas. Curso cero del grado en matemáticas Castellano. Curso 2017-2018 Índice general Introducción... 3 0.1. Cuestionario del módulo cero... 4 0.2. Soluciones del cuestionario 0... 6

Más detalles

Matemáticas I Tema 6. Números Complejos

Matemáticas I Tema 6. Números Complejos Matemáticas I Tema 6. Números Complejos Índice 1. Introducción 2 2. Números 2 2.1. Unidad imaginaria............................... 3 2.2. Soluciones de ecuaciones de segundo grado.................. 3

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

aw + bw bw + aw = a ab + b

aw + bw bw + aw = a ab + b 1. Demostrar que si w 1 3 i +, entonces ( )( ) Desarrollando y factorizando la ecuación: aw + bw bw + aw abw + w( a + b ) + abw ( )( ) 4 3 aw + bw bw + aw a ab + b. Llevando w a su forma eponencial tenemos

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

El álgebra de los números complejos

El álgebra de los números complejos Apuntes de Álgebra Lineal Capítulo 1 El álgebra de los números complejos 1.1. Los números complejos 1.1.1. La unidad imaginaria Los números complejos aparecieron históricamente cuando los matemáticos aceptaron

Más detalles

Laboratorio de Simulación

Laboratorio de Simulación Trimestre 05-I Grupo CC-0A Andrés Cedillo (AT-50) Objetivos Plantear y resolver algunos problemas de ciencia e ingeniería utilizando capacidades numéricas, gráficas, simbólicas y de programación Integrar

Más detalles

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre.

1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 1. Teoría: a) Forma polar; b) Producto de números complejos; c) Ley de Moivre. 2. Si el senx=0,6 y ð/2

Más detalles

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1.

NUMEROS COMPLEJOS. Se llama unidad imaginaria a un ente abstracto i, al que se le atribuye la propiedad de que su cuadrado es -1: i ² = -1. Contenido Apunte de Números complejos o imaginarios: Suma y producto de números complejos. División. Raíz cuadrada. Conjugado. Módulo y argumento. Fórmula De Moivre. Raíces. Primera parte NUMEROS COMPLEJOS

Más detalles

ETS Minas: Métodos matemáticos Tema 1 Preliminares

ETS Minas: Métodos matemáticos Tema 1 Preliminares ETS Minas: Métodos matemáticos Tema 1 Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre 2008, versión 1.7 Contenido 1.

Más detalles

Números complejos. Números complejos 28/02/2016 CURSO

Números complejos. Números complejos 28/02/2016 CURSO Números complejos CURSO 2015-2016 Números complejos 1) Definición números complejos 2) Representación gráfica de un número complejo ( Afijo, módulo, argumento). Conjugado 3) Operaciones con números complejos.

Más detalles

Números complejos (lista de problemas para examen)

Números complejos (lista de problemas para examen) Números complejos (lista de problemas para examen) En esta lista de problemas trabajamos con la construcción de números complejos (como pares ordenados de los reales) y con su representación en la forma

Más detalles

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados.

Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados. Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el método de Factorización. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes

Más detalles

Laboratorio 1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el MÉTODO COMPLETANDO CUADRADOS.

Laboratorio 1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el MÉTODO COMPLETANDO CUADRADOS. Laboratorio 1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el MÉTODO DE FACTORIZACIÓN. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes

Más detalles

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta.

MA3002. Matemáticas Avanzadas para Ingeniería: Números Complejos. Departamento de Matemáticas. Introducción. Igualdad. Suma y resta. MA3002 Los números complejos simbolizados por C son una generalización los números reales. Una generalización algebraica muy interesante: Toda ecuación polinomial c n z n + c n 1 z n 1 + + c 1 z + c 0

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

z 2 4z + 5 = 0, z = x + iy, i 1,

z 2 4z + 5 = 0, z = x + iy, i 1, Àlgebra i Geometria I Tema I NOMBRES COMPLEXOS 1- Necessitat dels nombres complexos i definició (a) Les solucions de les equacions polinòmiques El nombre imaginari i 1 Els enters Z, els racionals Q i els

Más detalles

Funciones de variable compleja

Funciones de variable compleja Capítulo 3 Funciones de variable compleja Vamos a trabajar con los ya conocidos números complejos C. Mucho del material de esta primera parte se verá muy rápido y sin mucho cuidado, por ser solo un repaso

Más detalles

d) (2 + 3i)(3 4i) e) (1 + i)(1 2i) f ) i 5 + i (1 + i)(1 i 8 ) k) 1 c)

d) (2 + 3i)(3 4i) e) (1 + i)(1 2i) f ) i 5 + i (1 + i)(1 i 8 ) k) 1 c) Universidad de la República Cálculo Facultad de Ingeniería - IMERL Primer Semestre 07. Aritmética y representaciones. Determinar los valores de i k para todo k Z. Práctico 3 - Número Complejo. Expresar

Más detalles

Unidad 7 Números Complejos! 1 PROBLEMAS PROPUESTOS (! "#$) Matemáticas 1. " Completa estas operaciones entre números complejos:

Unidad 7 Números Complejos! 1 PROBLEMAS PROPUESTOS (! #$) Matemáticas 1.  Completa estas operaciones entre números complejos: Unidad 7 Números Complejos! PROBLEMAS PROPUESTOS (! "#$) " Completa estas operaciones entre números complejos: (5-i)- z -+i (b) ( + i) ( - + 0i) z (c) -7i-i (-+5)z a) ( 5 i ) z - + i z 5 i + i 8 i. b)

Más detalles

Números Complejos. Prof. Johnny Rengifo

Números Complejos. Prof. Johnny Rengifo Números Complejos Prof. Johnny Rengifo 22 de octubre de 2010 Capítulo 1 Números Complejos Existen muchas ecuaciones cuadráticas que no tienen solución en los números reales (R). Por ejemplo x 2 + 1 = 0

Más detalles

1.1. El cuerpo de los números complejos

1.1. El cuerpo de los números complejos Lección 1 Números complejos Como primer paso para el estudio de las funciones de variable compleja, debemos presentar el cuerpo de los números complejos. De entre los muchos métodos que permiten introducirlo,

Más detalles

Práctico N o 1. Números Complejos

Práctico N o 1. Números Complejos Práctico N o. Números Comlejos ) Clasi car los siguientes números comlejos en reales o imaginarios. Eseci car en cada caso cuál es la arte real y cuál es la imaginaria: a) 5 + 7i b) c) 5 d) i e) f) + g)

Más detalles

Definición 47 Definimos el conjunto de los números complejos como

Definición 47 Definimos el conjunto de los números complejos como Capítulo 5 Números Complejos. En este capítulo, definiremos un nuevo conjunto que entrega solución a la ecuación x = 1 y que contiene a los reales, de igual manera suponemos que i es una solución de esta

Más detalles

Problemas para la materia de Cálculo IV

Problemas para la materia de Cálculo IV Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Problemas para la materia de álculo IV Febrero de 5 ompilación de problemas propuestos como parte de exámenes parciales

Más detalles

Números complejos ( 1)(25) =

Números complejos ( 1)(25) = Números complejos 1. Introducción Podemos pensar en las progresivas ampliaciones de los conjuntos numéricos como el método necesario para resolver ecuaciones algebraicas progresivamente complicadas. Así,

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

Tema 1: El cuerpo de los números complejos. Nota histórica. El cuerpo de los números complejos. Marisa Serrano José Ángel Huidobro

Tema 1: El cuerpo de los números complejos. Nota histórica. El cuerpo de los números complejos. Marisa Serrano José Ángel Huidobro Índice Tema 1: El cuerpo de los números complejos Marisa Serrano José Ángel Huidobro Universidad de Oviedo 6 de octubre de 2008 email: mlserrano@uniovi.es jahuidobro@uniovi.es Nota histórica El cuerpo

Más detalles

1.- Álgebra de números complejos.

1.- Álgebra de números complejos. .- Álgebra de números complejos. a) Definición y representación geométrica. b) Sumas y productos de números complejos. c) Vectores y módulos en el plano complejo. d) Representación en forma exponencial.

Más detalles