aw + bw bw + aw = a ab + b

Tamaño: px
Comenzar la demostración a partir de la página:

Download "aw + bw bw + aw = a ab + b"

Transcripción

1 1. Demostrar que si w 1 3 i +, entonces ( )( ) Desarrollando y factorizando la ecuación: aw + bw bw + aw abw + w( a + b ) + abw ( )( ) 4 3 aw + bw bw + aw a ab + b. Llevando w a su forma eponencial tenemos y reemplazando en la ecuación anterior: r 1 π π π π i i i i w + i i π w e, ab e e ( a b ) ab e ϕ π π i i 3 πi 4π 4π 3 π π abe e ( a + b ) + abe ab(cos isin ) ( a + b )( cosπ isinπ ) + ab cos isin ab( + i ) ( a + b )( 1) + ab i a b ab + ( )( ) aw + bw bw + aw a ab + b. Si z 4, hallar + 3 i 3 1 z ; ( + + i ) ( + + i ) i 3 z + 3 i i i 3 4 z i 3 r π i 1 π π Llevando a su forma eponencial z i 3 π z e cos + isin ϕ Aplicando el teorema de M ovre: π π 1 π π 1 z cos + isin cos1 + isin1 ( 1) z 3. Que corresponde en el plano z la red polar w R,arg( w) α, en la transformación z ( ) + iy y + yi y yi w e e e e e Llevando w, a su forma eponencial w Re. αi e igualando a la anterior epresión: y yi i w e e Re. α ln Igualando los radios y los argumentos, tenemos: ; y R y yi α e Re e i y α + kπ z w e, además mostrar la gráfica. Graficando la ecuación y lnr, en el plano y para R e y 1: jny_hc@hotmail.com 1

2 1 Graficando la ecuación y α + kπ para α 1, k 0 y : 4. Mostrar que si u(, y ), es una función que tiene derivadas parciales de orden entonces: según las siguientes funciones tenemos que: z + z z z u u(, y),, y,,, i z z i z z i u u u u1 u z z z i u 1 u 1 u 1 u u 1 u u z z z i z z z i z y z u u u + 4 z z u 1 u1 u 1 1 u 1 u 1 1 u 1 u 1 u 1 u z z i i y i 4 4i 4i 4 y u 1 u u u u u z z 4 y y z z jny_hc@hotmail.com

3 ( 3 i) z + ( 4 + i) w + 6i 1. Resolver el siguiente sistema de ecuaciones ( 4 + i) z ( + 3i ) w 5 + 4i lo más recomendable para resolver este tipo de ecuaciones es aplicar determinantes: + 6i 4 + i ( ) ( i) ( )( ) ( )( ) ( )( ) ( ) z 5 + 4i + 3i + 6i + 3i 4 + i 5 + 4i z 1+ i z 1+ i z 3 i 4 + i 3 i + 3i 4 + i 4 + i + 3 Reemplazando z en la primera ecuación: ( )( ) ( ) ( + 6i) ( 3 i)( 1+ i) ( 4 + i) 3 i 1+ i i w + 6i w w i. Dada la parte real u y ( + y ) empleando una de las ecuaciones de CAUCHY-RIEMAN u y y + y ( + y ) ( + y ), hallar v, de modo que f( z) u + iv sea analítica y además que u, derivando u respecto a y e igualando: 1 f(1) + i : Integrando respecto a, nota como la integral es respecto a se debe añadir una constante que dependa de y: y y v + k( y) v k( y) ( + y ) + y Ahora empleando la da ecuación de CAUCHY-RIEMAN ( ) u y ( + y ) ( + y ) ( + y ) y dk + dy, derivando v respecto a y: y ( + y ) u y u v y y dk ( ) y y + dk ydy + c k y y + c dy y y Entonces: v + y + c f( z) u + iv y + i y + c ( + y ) ( + y ) ( + y ) Evaluando la función en 1 tenemos: f (1) ( 1 ) 1 (1 0 ) i ( 1 0 ) c i + i + c + i c + + y f( z) u + iv y + i y 1 ( + y ) ( + y ) jny_hc@hotmail.com 3

4 3. Encontrar la imagen del cuadrado unitario de vértices ABCD en el plano w bajo la transformación w f( z) 1+ i z, A(0,0), B(1,0), C(1,1), D (0,1) ( ) w f( z) 1+ i z 1+ i + iy y + i + y u + iv ( ) ( )( ) ( ) ( ) u + v Igualando las partes imaginarias y las partes reales: u yv, + y v u y Graficando el cuadrado unitario: Según la grafica obtenemos las siguientes funciones, u + v 0 u v u + v 1 u v v u y 0 v u v u y 1 v + u u v u v Graficando en el plano w según las anteriores transformaciones: v u v + u 4. Hallar sinz como sinz es una función analítica, entonces recordamos que para cualquier z C se da z zz, etendiendo la anterior relación para la función trigonométrica: iz iz iz iz i( z+ z) i( z z) i( z z) i( z+ z) e e e e e e e + e z + z sinz ( sinz)( sinz) ( sinz)( sin z). i i 4 z z iy sinz i y y i i i y y i i y y e e e + e + e + e e + e e e e e + + sin + sinh 4 4i 4 i sinz sin + sinh y y jny_hc@hotmail.com 4

5 1. Hallar la solución de la ecuación z iz (1 + i) 0; z + iy C Operando algebraicamente y separando partes reales e imaginarias tenemos: + y + y 0 z iz (1 + i) ( + y ) ( i + iy) (1 + i) ( + y + y ) + i( ) 0 + i Reemplazando en la primera ecuación: ( ) 1 + y + y 0 y + y 1 0 y 1±. Dada la función ( ) ( ) z 1+ i 1± w z 1, hallar la imagen de la recta y en el plano w. Primero debemos hallar u, v en función de, y, esto comparando partes reales e imaginarias y + 1 u w ( z 1) z z + 1 ( + iy) ( + iy) + 1 ( y + 1) + i(y y) u + iv y y v ( ) y + 1 u 1 u + y... α Factorizando la primera y la segunda ecuación: v y y v ( 1)... β y y y ϕ La ecuación de la recta se la puede epresar de la siguiente manera: ( ) ( ) ( ) y + 1 u + y y + 1 u y u 1...* Ecuación ϕ en α y en β ; v ( y + 1)...** y v v Ecuación * en **;( y + 1) y 1...*** u 1 u 1 v Ecuación *** en * tenemos; 1 u 1 u v + 1 u 1 Entonces la ecuación de una recta se transforma en la ecuación de una parábola: jny_hc@hotmail.com 5

6 y 3. Demostrar que u(, y) e cos( y) es una función armónica: Solución si u es una función armónica debe cumplir con la ecuación de LA PLACE. u u + 0 Para ello debemos hallar la derivada de orden respecto a y respecto a y: u y y e cos( y) ye sin( y) u y y y y y e cos( y) + ( e cos( y) ye sin( y) ) y e sin( y) + ye cos( y) u y y y y y e cos( y) + 4 e cos( y) 4ye sin( y) 4ye sin( y) 4y e cos( y) u y y y y e cos( y) + 4 e cos( y) 8ye sin( y) 4y e cos( y) u y y ye cos( y) e sin( y) ( ) ( ) u y y y y y ( e cos( y) + y ( ye cos( y) e sin( y) )) ( ye sin( y) + e cos( y) ) y u y y y y y e cos( y) + 4y e cos( y) + 4ye sin( y) + 4ye sin( y) 4 e cos( y) u e cos( y) 4 e cos( y) + 8ye sin( y) + 4y e y y y y Sumando las derivadas de orden vemos que se cancelan todas las epresiones: armónica. cos( y) u u + 0 entonces la función es 4. Dada la función u(, y) e cosy + y hallar la función conjugada v(, y) tal que f( z) u + iv sea analítica si f (0) 1 u empleando una de las ecuaciones de CAUCHY-RIEMAN, derivando u respecto a y e igualando: u e siny + 1 v ( e siny 1) Integrando respecto a, en consecuencia debemos sumar una constante que dependa de y: ( ) v e siny 1 + k( y) v e sin y + k( y) u Empleando la segunda de CAUCHY-RIEMAN y dk u e cosy + e cosy k c v e sin y + c f( z) u + iv e cosy + y + i e siny + c dy, derivando v respecto a y e igualando: ( ) ( ) 0 0 Evaluando la función en 0: f(0) ( e cos0 + 0) + i ( e sin0 0 + c) 1 c 0 ( ) ( f z u + iv e cosy + y) + i( e siny ) jny_hc@hotmail.com 6

7 NÚMEROS COMPLEJOS z + z Re( z) Sea z + iy entonces la parte real e imaginaria son: z z Im( z) i ρ + y Forma polar de los números complejos z ρ(cosϕ + isin ϕ) donde: y ϕ arctan n n Formula D movre: z ρ (cosnϕ + isin nϕ) Otras propiedades de los números complejos, si: z1. z ρ1. ρ(cos( ϕ1 + ϕ ) + isin ( ϕ1 + ϕ )) z1 ρ1(cosϕ1 + isin ϕ1) z1 ρ1 z ρ(cosϕ + isin ϕ) (cos( ϕ1 ϕ ) + isin ( ϕ1 ϕ )) z ρ Radicación de los números complejos: n 1/ n 1/ n ϕ πk ϕ πk Si: z ω ω z ωk ρ cos + + isin + ; k 0,1,,3,..., n 1 n n iϕ Forma eponencial de los números complejos: ρ. e ρ(cosϕ + isin ϕ) z FUNCIONES u u Ecuaciones de CAUCHY-RIEMAN ; siempre y cuando ( ) f z u + iv sea analítica. Representación de las Ecuaciones de CAUCHY-RIEMAN en coordenadas conjugadas: f( z) f( z) 0, en consecuencia tenemos que: f ( z) (derivada ordinaria). z z f f Fuciones armónicas: si f(, y ) es armonica entonces se debe cumplir con: + 0 FUNCIONES ELEMENTALES i) Función eponencial z e e ( cosy isiny) + ii) Funciones trigonométricas iz iz iz iz iz iz iz iz e e e + e e e ie ( + e ) i sin z,cos z,tan z,cot z,sec z,cscz i ie ( + e ) e e e + e e e iz iz iz iz iz iz iz iz iii) Funciones hiperbólicas z z z z z z z z e e e + e e e ( e + e ) sinh z,cosh z,tanh z,coth z,sec hz,cschz ( e + e ) e e e + e e e z z z z z z z z jny_hc@hotmail.com 7

8 iv) Función logaritmo r + y ln( z) ln( + iy) ln r + ( θ + kπ) i y θ arctan v) Funciones trigonométricas inversas iz 1 i + z 1 arcsinz ln( iz + 1 z ), arccosz ln( z + z 1), arctanz ln, arc cscz ln i i i 1 iz i z z 1 z + i arcsecz ln, arccotz ln i z i z i vi) Funciones hiperbólicas inversas 1 1+ z 1+ z + 1 arcsinhz ln( z + z + 1), arccoshz ln( z + z 1), arctanhz ln, arc cschz ln 1 z z 1+ 1 z 1 z + 1 arcsechz ln, arccothz ln z z 1 jny_hc@hotmail.com 8

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013.

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 13 de junio de 2013. Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 3 de junio de 23..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su tipo:

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes

MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1. Transformaciones conformes MATEMATICAS ESPECIALES I PRACTICA 7 CLASE 1 Transformaciones conformes 1 Determinar donde son conformes las siguientes transformaciones: (a) w() = 2 + 2 (b) w() = 1 + i (c) w() = + 1 (d) w() = En cada

Más detalles

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos

Matemáticas I Ejercicios resueltos. Tema 6: Números Complejos Matemáticas I Ejercicios resueltos. Tema : Números Complejos 1. Calcula: ( + i)( i) (1 i)( i) c) i ( i)5i + i( 1 + i) (5 i) d) ( i)( + i) ( i) (+i)( i) (1 i)( i) i+i ( i i ) +i ( 1 5i) +1+i+5i 5 + i +

Más detalles

Tema 3. El cuerpo de los números complejos Introducción

Tema 3. El cuerpo de los números complejos Introducción Tema 3 El cuerpo de los números complejos 3.0.6 Introducción Aunque parezca que los complejos se introducen a partir de la resolución de la ecuación x +1 0, da más lejos de la realidad, esta era rechazada

Más detalles

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z

Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática. Examen de problemas, 5 de septiembre de f (z) = sen z Matemáticas II Grado Ingeniería Eléctrica/Electrónica Industrial y Automática Examen de problemas, 5 de septiembre de 22..5 ptos. Encuentre en C las singularidades de la siguiente función e indique su

Más detalles

i j k xy yz xz = = Div Rot F = x y z

i j k xy yz xz = = Div Rot F = x y z Div Rot F, si F = ( xy, yz, xz) 1. Hallar: primero, debemos hallar rotor de la función vectorial. i j k Rot ( F ) = ( xy, yz, xz) =,, ( xy, yz, xz) = x y z xy yz xz ( xz) ( yz) ( xy) ( xz) ( yz) ( xy)

Más detalles

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013

Matemáticas II. Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica. 24 de febrero de 2013 Matemáticas II Segundo Curso, Grado en Ingeniería Electrónica Industrial y Automática Grado en Ingeniería Eléctrica 4 de febrero de 0. Conteste las siguientes cuestiones: (a) (0. ptos.) Escriba en forma

Más detalles

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy

(MAT021) 1 er Semestre de z + e = (x + iy) + (e 1 + ie 2 ) = (x + e 1 ) + i(y + e 2 ) = x + iy (MAT01) 1 er Semestre de 010 1 Números Complejos Se define el conjunto de los números complejos como: C = {a + bi / a, b R, i = 1} Definición 1.1. Sea z, w C tal que z = x + iy en donde x, y R. Se define:

Más detalles

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán

Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán Tarea 3 de Álgebra Superior II Araceli Guzmán Tristán 1. Comprobar que: a) ( i) i(1 i) = i b) 1+i 3 4i + i 5i = 5 c) 5 (1 i)( i)(3 i) = i d) (1 i) 4 = 4. Resuelve las siguientes ecuaciones: a) (1 + i)z

Más detalles

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0),

(a, 0) + (b, 0) = (a + b, 0), (a, 0) (b, 0) = (ab, 0), NÚMEROS COMPLEJOS 1. Preliminares Definición. Se llama número complejo a todo par ordenado de números reales. Si z = (a, b) es un número complejo, se dice que a es la parte real de z y b es la parte imaginaria

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z

NÚMEROS COMPLEJOS UNIDAD 5. Página 130. El paso de N a Z UNIDAD NÚMEROS COMPLEJOS Página 0 El paso de N a Z 0 Imagina que solo se conocieran los números naturales, N. Sin utilizar otro tipo de números, intenta resolver las siguientes ecuaciones: a) x + b) x

Más detalles

Simplificando los cuadrados con las raíces y sumando términos semejantes y elevando al cuadrado nuevamente:

Simplificando los cuadrados con las raíces y sumando términos semejantes y elevando al cuadrado nuevamente: . Resolver la siguiente ecuación irracional 6 7 0 Solución: llevando el término con signo negativo al segundo miemro de la ecuación y elevando al cuadrado: 6 7 6 6 7 7 Simplificando los cuadrados con las

Más detalles

Solución: sumando y restando en el numerador y repartiendo el denominador, se tiene. 2e cos 2t e sin 2t. 1 s

Solución: sumando y restando en el numerador y repartiendo el denominador, se tiene. 2e cos 2t e sin 2t. 1 s . Halle la transformada inversa de L s s5 Solución: completando cuadrados la función de forma conveniente, de manera que se asemeje a una transformada conocida de Laplace. L s s 5 L s s 4 L s Empleando

Más detalles

Matemáticas 1 o BH. Curso

Matemáticas 1 o BH. Curso Matemáticas 1 o BH. Curso 017-018. Exámenes 1 1 RADICALES. LOGARITMOS 1. Radicales. Logaritmos Ejercicio 1. Simplificar: (a) 6 79a 7 b 1 c 6 (b) 4 + 16x + 8x 3 + x 4 (a) (b) 6 79a 7 b 1 c 6 = 6 3 6 a 6

Más detalles

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3

Métodos Matemáticos I ( ) Hoja 1 NúmerosComplejos. 8 (1 i) 5. (3 + 5i) (2 i) (1 + i 3 ) (1 + i) 3 Hoja NúmerosComplejos.- Calcular todos los números z IC tales que: a) z = z 2 b) z = Rez + 2.- Obtener en forma binómica. a) b) c) 8 ( i) 5 (3 + 5i) (2 i) ( + i 3 ) ( + i) 3 3.- Obtener en forma binómica

Más detalles

Funciones de Variable Compleja

Funciones de Variable Compleja U Contenido Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Funciones de Variable Compleja (Continuidad,

Más detalles

Familiarizar al alumno con las distintas maneras de expresar números complejos.

Familiarizar al alumno con las distintas maneras de expresar números complejos. Capítulo 2 Aritmética compleja Objetivos Familiarizar al alumno con las distintas maneras de expresar números complejos. Manejar con soltura las operaciones aritméticas con números complejos. 2.1. Representaciones

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z

Problemas de VC para EDVC elaborados por C. Mora, Tema 1. Escribir en forma binómica los siguientes números complejos:, n N; 3 i ; (1+i 3) 20 ; e 1/z Problemas de VC para EDVC elaborados por C. Mora, Tema 1 Ejercicio 1 Escribir en forma binómica los siguientes números complejos: i n, n Z; ( 1 + i ) n, n N; ( ) ( ) 4 5 1 + i 3 i ; (1+i 3) 0 ; e 1/z 1

Más detalles

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas.

MATEMATICAS ESPECIALES I PRACTICA 10 Aplicaciones de la Teoría de funciones analíticas. MATEMATICAS ESPECIALES I - 17 PRACTICA 1 Aplicaciones de la Teoría de funciones analíticas. Aplicaciones del Teorema de los residuos para calcular integrales reales. 1. Integrales del tipo π R(cos t, sin

Más detalles

Nombre/Código: Septiembre Parcial II

Nombre/Código: Septiembre Parcial II 1 Cálculo II Sección 1 Guillermo Mantilla Nombre/Código: Septiembre 11 1 Parcial II Instrucciones: Duración 7mins. Durante el examen no son permitidos libros, notas, calculadoras, celulares o en general

Más detalles

Cálculo Integral Agosto 2016

Cálculo Integral Agosto 2016 Cálculo Integral Agosto 6 Laboratorio # Antiderivadas I.- Realice la antidiferenciación indicada ) ( + 7/ ) ) w ( w + ) dw ) (z / + z /5 + )dz ) + ) (w + w)(w + ) dw ) k (k +) / dk ) (y / + y 5/ )(y +

Más detalles

Departamento de Matemática Aplicada II. Universidad de Sevilla. Solución de la Primera Prueba Alternativa ( )

Departamento de Matemática Aplicada II. Universidad de Sevilla. Solución de la Primera Prueba Alternativa ( ) MATEMÁTICAS I ( o de GIE y GIERM (Curso - Departamento de Matemática Aplicada II. Universidad de Sevilla Solución de la Primera Prueba Alternativa (-- Ejercicio.. Calcule las raíces cúbicas del número

Más detalles

Números complejos en la forma polar (lista de problemas para examen)

Números complejos en la forma polar (lista de problemas para examen) Números complejos en la forma polar lista de problemas para examen) En esta lista de problemas trabajamos con números complejos en la forma polar llamada también la forma trigonométrica) El sentido geométrico

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD:

Solución: pasando a restar el término de la derecha de la inecuación y sacando MCD: . Resolver la inecuación: Solución: empleando la siguiente propiedad de valor absoluto a a a, tenemos lo siguiente: Resolviendo por el método de puntos críticos, para cada caso tenemos: 0 0 0 Entonces

Más detalles

CERTAMEN N o 1 MAT

CERTAMEN N o 1 MAT CERTAMEN N o 1 MAT-021 2011-1 P R E G U N T A S 1. Considere el siguiente razonamiento: Si estudio entonces apruebo los cursos. Además, si no termino mi carrera entonces no apruebo los cursos. A partir,

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 17- III- 15 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 17- III- 15 CURSO EXAMEN DE MATEMÁTICAS ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: C Día: 7- III- 5 CURSO 0-5 Instrucciones para realizar el eamen: Si recuperas una parte has de hacer todos los ejercicios de dicha

Más detalles

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos.

EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. EL NÚMERO COMPLEJO. Los números complejos. Distintas expresiones del número complejo. Operaciones con números complejos. 1. Introducción Los números complejos o imaginarios nacen de la necesidad de resolver

Más detalles

Análisis Matemático 2006 Trabajo Práctico N 1 Representación de funciones Funciones lineales

Análisis Matemático 2006 Trabajo Práctico N 1 Representación de funciones Funciones lineales Análisis Matemático 006 Trabajo Práctico N Representación de funciones Funciones lineales ) Escriba la ecuación de la recta con pendiente m 0 que pase por el punto Q (,). Realice la representación gráfica

Más detalles

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z

(a) z 1 + i = 1, (b) z + i 3, (c) Re(z i) = 2, (d) 2z i = 4. i 2 2i, z k = 1 zn+1 1 z Demostrar que Re z + Im z z para todo z C. Encontrar las soluciones de z = z. 3 Representar cada uno de los siguientes conjuntos: (a) z + i =, (b) z + i 3, (c) Re(z i) =, (d) z i = 4. 4 Demostrar que si

Más detalles

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i

Problemas resueltos. 1. Expresa en forma binómica los siguientes números complejos: b) w = 1+i3 (1 i) 3 c) u = 1. = 5 5i. 1 3i 3i 2 i 3 = 1 i Problemas resueltos 1. Expresa en forma binómica los siguientes números complejos: a) z = ( + i)(1 i) +i b) w = 1+i (1 i) c) u = 1 1+i + 1 1 i a) z = ( + i)(1 i) +i = 5 5i +i (5 5i)( i) = ( + i)( i) =

Más detalles

Variable Compleja I Tema 5: Funciones elementales

Variable Compleja I Tema 5: Funciones elementales Variable Compleja I Tema 5: Funciones elementales 1 La exponencial 2 Logaritmos El conjunto de los logaritmos El problema del logaritmo holomorfo Ejemplos de logaritmos holomorfos Desarrollos en serie

Más detalles

DEPARTAMENTO DE ECONOMÍA APLICADA I UNIVERSIDAD DE SEVILLA BOLETINES DE PROBLEMAS DE MATEMÁTICAS I. (b) f(x) = x2 1 x 2 + 3x + 2 (e) f(x) =

DEPARTAMENTO DE ECONOMÍA APLICADA I UNIVERSIDAD DE SEVILLA BOLETINES DE PROBLEMAS DE MATEMÁTICAS I. (b) f(x) = x2 1 x 2 + 3x + 2 (e) f(x) = BLOQUE I: CÁLCULO IFERENCIAL. Tema 1: Funciones de una variable EPARTAMENTO E ECONOMÍA APLICAA I UNIVERSIA E SEVILLA BOLETINES E PROBLEMAS E MATEMÁTICAS I 1. Estudiar la continuidad de las siguientes funciones:

Más detalles

1. Conjuntos de números

1. Conjuntos de números 1.2. Números complejos 1.2.1. FORMA BINÓMICA Números complejos en forma binómica Se llama número complejo a cualquier expresión de la forma z = x + yi donde x e y son números reales cualesquiera e i =

Más detalles

Práctico Expresar los siguientes números complejos de la forma x + iy, con x, y R: i 1 + i

Práctico Expresar los siguientes números complejos de la forma x + iy, con x, y R: i 1 + i Centro de Matemática Facultad de Ciencias Universidad de la República Práctico Análisis complejo - Curso 009. Expresar los siguientes números complejos de la forma x + iy, con x, y R: a)( + 3i) b)( + i)(i

Más detalles

Mapeos Conformes. November 20, Pontificia Universidad Católica de Chile Conformal Mappings. Diego García.

Mapeos Conformes. November 20, Pontificia Universidad Católica de Chile Conformal Mappings. Diego García. Mapeos Conformes Pontificia Universidad Católica de Chile ddgarcia@uc.cl November 20, 2015 Panorama general 1 2 Cimentar las bases de las funciones armónicas en el plano complejo, para la resolución de

Más detalles

Apellidos y Nombre: Hoja 1

Apellidos y Nombre: Hoja 1 Hoja 1 1 Hallar dos números complejos tales que su suma sea 1+6i y su cociente imaginario puro. Suponer, además que la parte real del que se tome como divisor al calcular el cociente es 1. Hallar los números

Más detalles

Funciones de variable compleja

Funciones de variable compleja Capítulo 3 Funciones de variable compleja Vamos a trabajar con los ya conocidos números complejos C. Mucho del material de esta primera parte se verá muy rápido y sin mucho cuidado, por ser solo un repaso

Más detalles

Resumen del contenidos 5.(*3.2) sobre el Teorema del coseno y el Teorema del seno

Resumen del contenidos 5.(*3.2) sobre el Teorema del coseno y el Teorema del seno epública Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Escuela Técnica obinsoniana P.S. S. S. Venezuela Barinas Edo Barinas esumen del contenidos 5.(*3. sobre el Teorema del coseno

Más detalles

Números complejos. por. Ramón Espinosa Armenta

Números complejos. por. Ramón Espinosa Armenta Números complejos por Ramón Espinosa Armenta En el siglo XVI, el matemático italiano Gerolamo Cardano se preguntó si tenía sentido considerar raíces cuadradas de números negativos. Tal raíz cuadrada debería

Más detalles

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS

Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Ejercicios de ECUACIONES DIFERENCIALES ORDINARIAS Grado en Matemáticas Curso 203-204 . Ecuaciones lineales con coeficientes constantes Ecuaciones de primer orden. Encontrar la solución de los siguientes

Más detalles

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014

ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 ESCUELA MILITAR DE INGENIERIA VARIABLE COMPLEJA Misceláneas de problemas 2014 Tema: Números Complejos (C). 1. Clasifica los siguientes números complejos en reales e imaginarios. Mencionar, para cada uno,

Más detalles

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz:

NÚMEROS COMPLEJOS. Página 147 REFLEXIONA Y RESUELVE. Extraer fuera de la raíz. Potencias de. Cómo se maneja k 1? Saca fuera de la raíz: NÚMEROS COMPLEJOS Página 7 REFLEXIONA Y RESUELVE Extraer fuera de la raíz Saca fuera de la raíz: a) b) 00 a) b) 00 0 Potencias de Calcula las sucesivas potencias de : a) ( ) ( ) ( ) b) ( ) c) ( ) 5 a)

Más detalles

1. Con ayuda de las fórmulas que relacionan la suma o diferencia entre dos ángulos, calcula las siguientes razones trigonométricas: cos. sen.

1. Con ayuda de las fórmulas que relacionan la suma o diferencia entre dos ángulos, calcula las siguientes razones trigonométricas: cos. sen. Soluciones de la Hoja de problemas de Números complejos y trigonometría. 1. Con ayuda de las fórmulas que relacionan la suma o diferencia entre dos ángulos, calcula las siguientes razones trigonométricas:

Más detalles

+ + = f) + + = l) x + = ( ) =. = ( 1). i = i

+ + = f) + + = l) x + = ( ) =. = ( 1). i = i República Bolivariana de Venezuela Ministerio del Poder Popular para la Educación Escuela Técnica Robinsoniana P.S. S. S. Venezuela Barinas Edo Barinas Guía didáctica Nro 0- Objetivo -009-00 ) Dadas las

Más detalles

2. El conjunto de los números complejos

2. El conjunto de los números complejos Números complejos 1 Introducción El nacimiento de los números complejos se debió a la necesidad de dar solución a un problema: no todas las ecuaciones polinómicas poseen una solución real El ejemplo más

Más detalles

Módulo de Revisión Anual. Matemática 6 año A y C

Módulo de Revisión Anual. Matemática 6 año A y C Módulo de Revisión Anual Matemática 6 año A y C Función Homográfica ) Hallar las ecuaciones de las asíntotas verticales y horizontales de las siguientes funciones homográficas. a) f() +6 b) f() + c) f()

Más detalles

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I

ESCUELA MILITAR DE INGENIERÍA ÁLGEBRA I ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS ÁLGEBRA I NUMEROS COMPLEJOS. Imaginario: guardia que no efectúa rondas, pero se encuentra en un lugar fijo dispuesto a intervenir si fuera necesario.

Más detalles

Tema 1. Números Complejos

Tema 1. Números Complejos Tema 1. Números Complejos Prof. William La Cruz Bastidas 27 de septiembre de 2002 Capítulo 1 Números Complejos Definición 1.1 Un número complejo, z, es un número que se expresa como z = x + iy o, de manera

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y' y

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y' y Elaborado por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales de Primer orden Aplicaciones. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: ' 0 Solución:

Más detalles

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln. 1

( ) x y dxdy. x y dxdy y. sin 2θ 2 = = = x y dxdy. 3 4y y ln.   1 Cálculo II Exámenes esueltos Tercer Parcial. Evaluar la integral, pasando a coordenadas polares: Solución: haciendo los siguientes cambios, ( ) 4y 4y 4y x y y 4y 4y 4 4 4y x y sin θ x y = r ( sinθcosθ

Más detalles

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja

MATEMÁTICA D y D 1 Módulo I: Análisis de Variable Compleja MATEMÁTICA D D Módulo I: Análisis de Variable Compleja Unidad Funciones de variable compleja Mag. María Inés Baragatti - Funciones de variable compleja Si a todo número z de un conjunto D de números complejos

Más detalles

Banco de Preguntas. I Unidad

Banco de Preguntas. I Unidad Banco de Preguntas I Unidad. En toda sumatoria la variable i, recorrerá los valores enteros hasta alcanzar el límite superior.. El sumatorio o la sumatoria es un operando matemático que permite representar

Más detalles

Contenido. Números Complejos 3

Contenido. Números Complejos 3 Números Complejos Universidad Central de Venezuela Facultad de Ingeniería Escuela de Ingeniería Eléctrica Departamento de Electrónica, Computación y Control Variable Compleja y Cálculo Operacional Marzo,

Más detalles

Tema 13. El número complejo Introducción Un poco de historia

Tema 13. El número complejo Introducción Un poco de historia Tema 13 El número complejo. 13.1. Introducción. 13.1.1. Un poco de historia La primera referencia conocida a raíces cuadradas de números negativos proviene del trabajo de matemáticos griegos, como Herón

Más detalles

1 Los números complejos, operaciones y propiedades

1 Los números complejos, operaciones y propiedades TEMA 1 LOS NÚMEROS COMPLEJOS, ESTRUCTURA ALGEBRAICA TOPOLOGÍA 1 Los números complejos, operaciones y propiedades 11 El cuerpo C de los números complejos 1 El espacio vectorial normado de los números complejos

Más detalles

Problemas Resueltos sobre Límites y Continuidad

Problemas Resueltos sobre Límites y Continuidad Problemas Resueltos sobre Límites y Continuidad Repaso de Problemas típicos 3 3+ + 4 0 + + 3 + 5 6 ( ) 7 sen sen 8 0 0 3 3 sen sen + + + + 3 + 5 + + + 0 6 ( ) + sen 9 0 0 + sen + sen + sen 3 e π + tg Repaso

Más detalles

Tema 3: Funciones elementales. Ejemplos. Marisa Serrano, José Ángel Huidobro. 15 de octubre de Ejemplo 3.1

Tema 3: Funciones elementales. Ejemplos. Marisa Serrano, José Ángel Huidobro. 15 de octubre de Ejemplo 3.1 Índice Marisa Serrano, José Ángel Huidobro 1 2 Universidad de Oviedo 15 de octubre de 2009 3 4 email: mlserrano@uniovi.es email: jahuidobro@uniovi.es 5 Ejemplo 3.1 Definición 3.1 Dado z = x + iy C se define

Más detalles

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos

Integrales Dobles. Hermes Pantoja Carhuavilca. Matematica II. Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Integrales Dobles Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 76 CONTENIDO Integrales Dobles Introducción

Más detalles

Trabajo Práctico Nro. 2. Funciones Complejas. Funciones Holomorfas. Funciones Multiformes. Transformaciones Conformes.

Trabajo Práctico Nro. 2. Funciones Complejas. Funciones Holomorfas. Funciones Multiformes. Transformaciones Conformes. Análisis III B - Turno mañana - Trabajo Práctico Nro. 1 Trabajo Práctico Nro. Funciones Complejas. Funciones Holomorfas. Funciones Multiformes. Transformaciones Conformes. 1. Expresar cada una de las siguientes

Más detalles

Problemas para la materia de Cálculo IV

Problemas para la materia de Cálculo IV Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Problemas para la materia de álculo IV Febrero de 5 ompilación de problemas propuestos como parte de exámenes parciales

Más detalles

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS

NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN 1.2. OPERACIONES CON COMPLEJOS NÚMEROS COMPLEJOS 1.1. INTRODUCCIÓN La ecuación x + 1 0 no tiene solución en el cuerpo de los números reales R ya que no existe un número real x tal que x 1. Necesitamos un conjunto que contenga a R, que

Más detalles

1.6 Ejercicios resueltos

1.6 Ejercicios resueltos Apuntes de Ampliación de Matemáticas 1.6 Ejercicios resueltos Ejercicio 1.1 En cada uno de los siguientes casos a A {(x,y R : 1 < x < 1, 1 < y < 1}. b A {(x,y R : 1 < x + y < 4}. c A {(x,y R : y > 0}.

Más detalles

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C.

GUÍA DE CÁLCULO VECTORIAL Academia de Matemáticas y Física I.C. 1. Considere los siguientes vectores a = (2,3,1), b = (4, 1,3). Calcule: a) a + b b) 2a + 3b c) 3a b d) a + b e) 3a 2b f) 2 a + b 2. Halle las longitudes de los lados del triángulo ABC y determine si son

Más detalles

REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS. Resuelve cada una de las preguntas siguiente y elige la respuesta correcta

REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS. Resuelve cada una de las preguntas siguiente y elige la respuesta correcta REACTIVOS DE LA UNIDAD 4 FUNCIONES EXPONENCIALES Y LOGARITMICAS Resuelve cada una de las preguntas siguiente y elige la respuesta correcta 1.-El punto común a todas las funciones eponenciales de la forma

Más detalles

Números Complejos Matemáticas Básicas 2004

Números Complejos Matemáticas Básicas 2004 Números Complejos Matemáticas Básicas 2004 21 de Octubre de 2004 Los números complejos de la forma (a, 0) Si hacemos corresponder a cada número real a, el número complejo (a, 0), tenemos una relación biunívoca.

Más detalles

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS. NOMBRE Apellido paterno Apellido materno Nombre (s) Grupo

SEMESTRE TIPO 1 DURACIÓN MÁXIMA 2.0 HORAS. NOMBRE Apellido paterno Apellido materno Nombre (s) Grupo UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE CIENCIAS APLICADAS DEPARTAMENTO DE ECUACIONES DIFERENCIALES PRIMER EXAMEN FINAL RESOLUCIÓN SEMESTRE

Más detalles

Capítulo 3 Integración en el Campo Complejo.

Capítulo 3 Integración en el Campo Complejo. Capítulo 3 Integración en el Campo Complejo. La teoría de la integración en el campo complejo es una de las más bellas y profundas de la matemática pura. Pero sus aplicaciones también son importantes e

Más detalles

CÁLCULO VECTORIAL SEMESTRE

CÁLCULO VECTORIAL SEMESTRE SERIE # 3 ÁLULO VETORIAL SEMESTRE 009- ÁLULO VETORIAL SEMESTRE: 009-1 Página 1) Sea el campo vectorial F (x, y,z)= ( 3x+ yz)i+( x+ y ) j + ( xz) k F d r. alcular x = + y lo largo de la curva :, del punto

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

S3: Números complejos, números reales

S3: Números complejos, números reales S3: Números complejos, números reales Cada número complejo se corresponde con un punto en el plano. Este punto puede estar definido en coordenadas cartesianas (figura 1) o en coordenadas polares (figura

Más detalles

cursos matemáticos Calle Madrid, Edificio La Trinidad, Piso 2, Las Mercedes frente a la Embajada de Francia Telfs.: (0212)

cursos matemáticos Calle Madrid, Edificio La Trinidad, Piso 2, Las Mercedes frente a la Embajada de Francia Telfs.: (0212) cursos matemáticos www. cursosmatematicos. com Calle Madrid, Edificio La Trinidad, Piso, Las Mercedes frente a la Embajada de Francia Telfs.: (0) 993 7 7 993 3 05. La gráfica sería: X B(-, -) Y Al aplicar

Más detalles

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7

.En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 .En nuestro aprendizaje de aritmética tratamos con números reales, tales como 3, -5, 7 4,Π, etc., los cuales pueden usarse para medir distancias en una u otra dirección desde un punto fijo. Un número tal

Más detalles

Examenes de Ecuaciones en Derivadas Parciales

Examenes de Ecuaciones en Derivadas Parciales Examenes de Ecuaciones en Derivadas Parciales Ingeniería de Caminos, Canales y Puertos Antonio Cañada Villar Departamento de Análisis Matemático Universidad de Granada Ingeniería de Caminos, Canales y

Más detalles

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1 UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA II Ciclo del 2017 Lista de ejercicios # 1 Ecuaciones diferenciales ordinarias de orden 1 Soluciones

Más detalles

Trabajo Práctico Nro. 2. Funciones Complejas. Funciones Holomorfas.

Trabajo Práctico Nro. 2. Funciones Complejas. Funciones Holomorfas. Análisis III - Trabajo Práctico Nro. 1 Trabajo Práctico Nro. Funciones Complejas. Funciones Holomorfas. 1. Expresar cada una de las siguientes funciones en la forma u(x, y)+iv(x, y) donde u y v son funciones

Más detalles

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6

LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE. Capítulo 7 Sec. 7.5 y 7.6 LA FORMA TRIGONOMETRICA DE LOS NUMEROS COMPLEJOS Y EL TEOREMA DE MOIVRE Capítulo 7 Sec. 7.5 y 7.6 El Plano Complejo Se puede utilizar un plano de coordenadas para representar números complejos. Si cada

Más detalles

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2012, Andalucía

Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de 2012, Andalucía Problemas resueltos correspondientes a la selectividad de Matemáticas II de septiembre de, Andalucía Pedro González Ruiz 3 de septiembre de. Opción A Problema. Sea la función continua f : R R definida

Más detalles

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b

MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas. g(z) e u(z) 1. u(z) a log z + b PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS MAT2715 VARIABLE COMPLEJA II Ayudantia 5 Rodrigo Vargas 1. Sea u : C R una función armónica positiva. Pruebe que u es constante. Solución:

Más detalles

Pauta Examen Final - Ecuaciones Diferenciales

Pauta Examen Final - Ecuaciones Diferenciales UNIVERSIDAD DIEGO PORTALES FACULTAD DE INGENIERIA Y CIENCIAS INSTITUTO DE CIENCIAS BÁSICAS ECUACIONES DIFERENCIALES Pauta Examen Final - Ecuaciones Diferenciales P1.- Indicar el tipo de EDO de las siguientes

Más detalles

( ). ( ) 2,!!! 1< x 0. ( ) = ex 2 1,!!!x 2. ln x +1. &%!!!!!!!!x 2,!!!!!!!!x > 2. &%!!!!!!!!x 2,!!!!!!!!!!!!!!!!x > 0 ln( x 1) + 2,!!!x 2.

( ). ( ) 2,!!! 1< x 0. ( ) = ex 2 1,!!!x 2. ln x +1. &%!!!!!!!!x 2,!!!!!!!!x > 2. &%!!!!!!!!x 2,!!!!!!!!!!!!!!!!x > 0 ln( x 1) + 2,!!!x 2. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 2014 1S SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA CIENCIAS, INGENIERÍAS

Más detalles

( ). d) f es estrictamente creciente en el intervalo 3,+ e) f es par.

( ). d) f es estrictamente creciente en el intervalo 3,+ e) f es par. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS CURSO DE NIVELACIÓN 2014 1S SEGUNDA EVALUACIÓN DE MATEMÁTICAS PARA CIENCIAS, INGENIERÍAS

Más detalles

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto

Comenzamos recordando algunos conceptos de la topología de l - R 2. Dado a lc y ɛ > 0 se llama bola abierta de centro a y radio ɛ al conjunto Capítulo 2 Funciones analíticas. Funciones armónicas. En este capítulo iniciamos el estudio de las funciones de variable compleja. Comenzamos con los conceptos de límite y continuidad en lc, conceptos

Más detalles

Definición 47 Definimos el conjunto de los números complejos como

Definición 47 Definimos el conjunto de los números complejos como Capítulo 5 Números Complejos. En este capítulo, definiremos un nuevo conjunto que entrega solución a la ecuación x = 1 y que contiene a los reales, de igual manera suponemos que i es una solución de esta

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de variable real. Domingo Pestana Galván José Manuel Rodríguez García

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de variable real. Domingo Pestana Galván José Manuel Rodríguez García EJERCICIOS DE CÁLCULO I Para Grados en Ingeniería Capítulo : Funciones de variable real Domingo Pestana Galván José Manuel Rodríguez García Índice. Funciones de variable real... La recta real.........................................

Más detalles

ECUACIÓN GENERAL DE LA PARÁBOLA

ECUACIÓN GENERAL DE LA PARÁBOLA ECUACIÓN GENERAL DE LA PARÁBOLA Una ecuación de segundo grado en las variables que carezca del término en puede escribirse en la forma: Si A 0, C 0 D 0, la ecuación representa una parábola cuo eje es paralelo

Más detalles

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real

GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES. número real GEOMETRÍA ANALÍTICA EN EL ESPACIO (PRODUCTOS ESCALAR, VECTORIAL Y MIXTO) PRODUCTO ESCALAR DE DOS VECTORES El producto escalar de dos vectores v y u es un número real, que se obtiene multiplicando los módulos

Más detalles

9. Clase 9. Números Complejos

9. Clase 9. Números Complejos 9. Clase 9. Números Complejos En el enfoque del estudio de los números complejos consideramos el conjunto de todos los pares ordenados de números reales. Un par ordenado de números reales se denota por

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Análisis Complejo Segundo Cuatrimestre 2011

Análisis Complejo Segundo Cuatrimestre 2011 Análisis Complejo Segundo Cuatrimestre 011 Práctica 1: Números complejos Números complejos 11 Expresar los siguientes números en la forma a + bi, con a, b R: (a) (i + 1)(i 1)(i + 3), (b) (3 i), (c) 1 1+3i,

Más detalles

Universidad Nacional José María Arguedas Carrera Profesional de Administración de Empresas CONICAS LA RECTA. Lic. JOSÉ L. ESTRADA P.

Universidad Nacional José María Arguedas Carrera Profesional de Administración de Empresas CONICAS LA RECTA. Lic. JOSÉ L. ESTRADA P. Universidad Nacional José María Arguedas Carrera Profesional de Administración de Empresas Lic. JOSÉ L. ESTRADA P. CONICAS LA RECTA ANDAHUAYLAS PERÚ Cónicas A. Introducción La introducción de la geometría

Más detalles

Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Ejercicios

Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1. Ejercicios Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM Ejercicios Tema 9: Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal. Comprobar que todas las funciones de

Más detalles

PROBLEMARIO DE CÁLCULO 20. Semestre A Prof. Cosme Duque

PROBLEMARIO DE CÁLCULO 20. Semestre A Prof. Cosme Duque PROBLEMARIO DE CÁLCULO 0 Semestre A-010 Prof. Cosme Duque TEMA 1 DERIVADAS 1. Derivada en un punto. Derivabilidad. Derivadas laterales. (a) Encuentre las pendientes de las recta tangente a la curva y =

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

Capítulo 8 Transformada de Laplace.

Capítulo 8 Transformada de Laplace. Capítulo 8 Transformada de Laplace. La transformada de Laplace es informalmente una rotación en 90 de la transformada de Fourier y este capítulo está dedicado a ella. Su principal aplicación es a la resolución

Más detalles

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y), Problema. Calcula las derivadas parciales de las siguientes funciones: (a) f(x, y) = x + y cos(xy), (b) f(x, y) = x x + y, (c) f(x, y) = log x + y x y, (d) f(x, y) = arctan x + y x y, (e) f(x, y) = cos(3x)

Más detalles

ENGINYERIA TÈCNICA INDUSTRIAL: ELECTRICITAT

ENGINYERIA TÈCNICA INDUSTRIAL: ELECTRICITAT ENGINYERIA TÈCNICA INDUSTRIAL: ELECTRICITAT CÀLCUL CURSO 007/08 Profesor: Juan Alberto Rodríguez Velázquez http://deim.urv.cat/ jarodriguez/ Departament d Enginyeria Informàtica i Matemàtiques PROGRAMA

Más detalles

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS

AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto

Más detalles