Física 1 Facultad de Ciencias Exactas UNSa Año 2011

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física 1 Facultad de Ciencias Exactas UNSa Año 2011"

Transcripción

1 Física 1 Facultad de Ciencias Exactas UNSa Año 2011 Tutorial 1: Magnitudes físicas. Introducción. Variables continuas y constantes. Número y unidades. Medición de una magnitud física. Edad, peso, altura. Valor promedio. Dispersión. Redondeo de datos. Distancia. Valor absoluto o módulo. Par más próximo. Notación científica. Cifras significativas. Cálculos. Funciones. Coordenadas rectangulares. Abscisas y ordenadas. Bibliografía para consulta: Estadística, de Murray R. Spiegel, McGraw-Hill. Capítulo 1. Introducción Magnitudes físicas Una variable es un símbolo, x, y, a, b, etc. que puede tomar un valor cualquiera de un conjunto, llamado dominio de la variable. Si solo puede tomar un valor, se llama constante. Una variable que puede tomar cualquier valor, se llama variable continua, si no es así, es discreta. Ejemplo 1: El peso de una persona puede ser 70 kg, 70,1 kg, 70,09 kg; lo mismo que su altura que puede ser 1,72 m, 1,723 m, etc. dependiendo de la exactitud de la medida o apreciación del instrumento (regla) que usemos. Son continuas. Obsérvese que además del número, acompaña una unidad (kg o m) escrita en forma abreviada (para indicar kilogramo y metro, respectivamente). Predicción 1: escriba los siguientes datos: edad en años, peso en kg, altura en m. Actividad 1: En la farmacia de la Obra Social de la UNSa hay una balanza que permite también medir la altura de las personas. Visite la misma, mida y anote su peso y altura, usando las unidades correspondientes. Esto se llama medir una magnitud física. En su caso, medir el peso o medir la altura. Actividad 2: describa por escrito, junto con otra persona, qué entiende por medir una magnitud física. Ejemplo 2: El número de hijos de una pareja puede ser 0, 1, 2, 3, 4, pero no puede ser 0,4; 1,3; 2,5; etc. Por lo tanto es una variable discreta. Actividad 3: enuncie más ejemplos de variables continuas y discretas. Busque constantes. Actividad 4: realice una tabla con los datos de las edades, los pesos y las alturas de sus compañeros del aula. Calcule: los promedios de las edades, pesos y alturas. Defina cómo calcula el promedio. En una columna nueva calcule la distancia entre cada dato (edad, peso, altura) y su promedio. Esto se llama dispersión. Calcule el promedio de la dispersión y el promedio de la dispersión absoluta. Use planilla de cálculo. Redondeo de datos El resultado de redondear un número como 72,8 al entero más próximo - o en unidades - es 73, pues 72,8 está más próximo a 73 que 72. Análogamente, 72,8146 redondeado hasta las centésimas (o sea con dos decimales) será 72,81 pues 72,8146 está más cerca de 72,81 que de 72,82. Actividad 5: calcule la distancia de 72,8146 a 72,82 y 72,81. Compare. Diga si distancia es lo mismo que dispersión. Actividad 6: defina cómo opera para calcular distancia entre dos números como los anteriores, explicando si es mejor determinar el valor absoluto o módulo (dispersión absoluta). Actividad 7: redondear 72,815 en centésimas y discutir cuál valor es el que corresponde, habida cuenta que se presenta el dilema que 72,815 es equidistante de 72,81 y 72,82. Tomar una decisión y compararla con determinar el par más próximo.

2 Actividad 8: Aplicando el criterio del par más próximo, redondear 72,465; 183,575 hasta las centésimas. Hacer lo mismo con con una aproximación de millones. otación científica Actividad 9: completar: 10 1 = 10 2 = 10 3 = 10 4 = 10 5 = 10 8 = 10 0 = 10-1 = 10-2 = 10-3 = 10-4 = = Actividad 10: escriba qué sucede cuando multiplica un número por 10 8 o por Use un argumento que diga la coma se corre a la izquierda o derecha. Dé tres ejemplos. Actividad 11: enuncie y escriba las reglas para calcular potencias de igual base, tales como: (10 a )(10 b ) = 10 a 10 b = o (10 a )/(10 b ) = 10 a /10 b = 10 es la base, a y b exponentes. Actividad 12: calcular ; 10 5 /10; ( )(0, ); (0,006)(80.000)/0,04 Cifras significativas Si una altura se registra como 1,72 m, significa que la verdadera altura se encuentra entre 1,715 m y 1,725 m. Las cifras o dígitos empleados, aparte de los ceros necesarios para localizar la coma o lugar decimal, se llaman cifras o dígitos significativos del número. Ejemplo 3: 1,72 m es una magnitud que tiene tres cifras significativas. Actividad 13: diga cuántas cifras significativas tienen los siguientes números: 4,5300; 0,0018; 0,001800; π. Tenga en cuenta que 0,0018=1, y 0,001800=1, Escriba el número con cinco cifras significativas. Cálculos En cálculos que involucran productos, divisiones y raíces de números, el resultado final no puede tener más cifras significativas que el dato con menor número de ellas. Ejemplo 4: 73,24 4,52=3,31; 1,648/0,023=72; (38,7) 1/2 =6,22; (8,416)(50)=420,8 (si 50 es exacto). Ejemplo 5: Probar que el producto de 5.74 y 3.8, supuesto que tienen tres y dos cifras significativas, no puede lograrse con más de dos cifras significativas. Segundo método: con las cifras dudosas en cursiva, el producto es:

3 Ejemplo 6: 3,16+2,7=5,9; 83,42-72=11; 47,816-25=22,816 (si 25 es exacto). Ejemplo 7: Funciones Si a cada valor de una variable t le corresponde uno o más valores de otra variable x, decimos que x es función de t y escribimos: x=f(t) o x=x(t). Esto se lee x igual a f de t o x igual a x de t. Ejemplo 8: La posición x de un cuerpo es función del tiempo t. Se escribe: x=x(t). En una planilla de alumnos, a cada orden n le corresponde el D I d: n=n(d). Actividad 14: arme tres columnas, denominadas, ombre y apellido y D I entre los alumnos de su clase. Ordene según el D I e indique si puede hallar n=n(d). Grafique para ayudarse. Coordenadas rectangulares

4 Figura 1.1 Tutorial 2: Sistemas de unidades. Sistema métrico legal argentino (SIMELA). Teoría elemental de errores. Valor más probable. Error absoluto. Error porcentual. Sistemas de unidades Actividad 1: Busca en los siguientes sitios y estudia, realizando un cuadro sinóptico. Teoría elemental de errores Para estudiar la teoría de errores en física, existen libros y apuntes que, de una manera relativamente extensa, la tratan generalmente al inicio del estudio universitario de la materia, como es nuestro caso. La experiencia pedagógica indica, sin embargo, que el alumno llega a detestar la física por causa de la teoría de errores. Teniendo esto en cuenta, vamos a ir al grano y a aplicar la teoría de errores, sin demorarnos demasiado en las (tediosas) definiciones. Por otro lado, como se puede constatar, los libros modernos de física eluden directamente el estudio de errores, en su gran mayoría. Seguramente, algún colega considerará este párrafo como poco serio pero, sin desear polemizar, es muy serio el desastre que se observa cuando los alumnos pasan por un tratamiento riguroso de la teoría de errores, al principio de su estudio de la física. Al igual que en el aprendizaje de un idioma, a la física se la debe ir aprendiendo paulatinamente, aumentando la precisión del lenguaje a medida que se avanza. Un rigorismo gramatical intolerante hace que alguien que desea hablar en ese nuevo idioma en su caso el de la Física, no se anime a generar idea alguna con sus propias palabras, porque permanentemente se lo está inhibiendo de hablar. Ello no implica que el pensamiento físico no se transmita con rigor.

5 A la fecha, más de treinta años tomando exámenes orales, hacen ver que la gran dificultad de los alumnos está en la (in)capacidad de transmitir sus ideas. Ello, en parte, debido a la intolerancia con que se los escucha cuando empiezan a incursionar en Física. Volviendo al tema de errores, nosotros vamos a estudiar algunos casos de medición en el laboratorio, sencillos al principio, para luego ir abarcando otros de mayor complejidad. Hacia el final de la actividad como científico, verá que la teoría de errores establece clasificaciones diversas, según los casos que se presentan experimentalmente y desde un punto de vista estadístico. Una de las ideas fundamentales que tiene que adquirir el alumno ahora es que toda medición se expresa de la forma: x = x p ± x, donde: x p es el valor más probable y x su error absoluto. Esto quiere decir que x, la expresión de la medición, está entre x p - x y x p + x. Por ejemplo, x = (4,10 ± 0,05) m. Propagación de errores Todo instrumento de medición ofrece limitaciones al proceso de medición que se traduce en el número de cifras significativas que provienen del que efectúa la medición como del objeto que queremos medir. Por lo tanto, no tenemos cómo asegurar que los valores obtenidos cuando medimos magnitudes físicas corresponden a un valor verdadero. Por ello, necesitamos determinar cuál es el grado de incertidumbre o error de la cantidad obtenida. Esta es la indeterminación o incerteza propia del proceso de medición y no lo tomamos como si fuera una equivocación del que mide u operador. Matemáticamente expresaremos el resultado de la medición como dijimos antes: x = x p ± x Esta expresión nos está indicando que el valor de la magnitud medida se encuentra comprendida en el intervalo de números reales comprendido entre x p - x y x p + x. Gráficamente: x p - x x p x p + x x Estudie: Al medir, los limitantes del número de cifras significativas son: el objeto, el instrumento, el sistema de referencia o patrón y el operador. El objeto es lo que se mide e, intrínsecamente, limita el número de cifras significativas que podemos recoger en la medición (no es lo mismo si es la longitud de una mesa o de una hormiga). El instrumento es el aparato que se usa y, de acuerdo con sus características, determinará también el número de cifras significativas (no es lo mismo una regla dividida en mm que otra en cm). El patrón, por el proceso de medición y de definición en la calibración del instrumento, condiciona la exactitud. El operador que interactúa con el instrumento y el objeto, también contribuye con las incertezas del proceso de medición. Error relativo: es el cociente entre el error absoluto y el valor más probable: E r = x / x p Se suele usar la letra griega épsilon en lugar de E: ε r = E r. Error porcentual: ε(%) = 100 ε r. Ejemplo: x = (4,10 ± 0,05) m implica ε(%) =?

LA MEDIDA. Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura...

LA MEDIDA. Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura... LA MEDIDA IES La Magdalena Avilés. Asturias Magnitud es todo aquello que puede ser medido. Por ejemplo una longitud, la masa, el tiempo, la temperatura... etc. Medir una magnitud consiste en compararla

Más detalles

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:

Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores: Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres

Más detalles

Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis. EXPERIMENTOS Selección del/los modelos

Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis. EXPERIMENTOS Selección del/los modelos Planteo del problema, Hipótesis (Construcción y Análisis de modelos) Predicciones: alcance de las hipótesis EXPERIMENTOS Selección del/los modelos Obtención de leyes Validación de/los modelos EXPERIMENTACIÓN

Más detalles

Errores en medidas experimentales

Errores en medidas experimentales Errores en medidas experimentales 1. Introducción Las magnitudes físicas son propiedades de la materia o de los procesos naturales que se pueden medir. Medir una cantidad de una magnitud es compararla

Más detalles

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL

El número real MATEMÁTICAS I 1 APROXIMACIÓN DECIMAL DE UN NÚMERO REAL El número real MATEMÁTICAS I 1 1. APROXIMACIONES APROXIMACIÓN DECIMAL DE UN NÚMERO REAL Al expresar un número real con muchas o infinitas cifras decimales, utilizamos expresiones decimales aproximadas,

Más detalles

Error en las mediciones

Error en las mediciones Error en las mediciones TEORIA DE ERROR-GRAFICOS Y APLICACIÓN Representar en un gráfico los datos obtenidos experimentalmente (encontrar relación funcional) Conocer, comprender y analizar algunos elementos

Más detalles

Acotación de errores en una sola medición: Mediciones indirectas: propagación de errores.

Acotación de errores en una sola medición: Mediciones indirectas: propagación de errores. CALCULO DE ERRORES EN FISICA CONTENIDOS: INTRODUCCIÓN Medición del error. error absoluto y relativo. BIBLIOGRAFIA OBJETIVOS Que el alumno sea capaz de: cifras significativas. El error. Clasificación Exactitud

Más detalles

Operaciones básicas de laboratorio

Operaciones básicas de laboratorio Operaciones básicas de laboratorio Unidad 2 La medida: magnitudes, unidades y errores ÍNDICE 1. Magnitud y medida 2. La unidad 3. El Sistema Internacional de Magnitudes (SI) 4. El sistema de unidades 5.

Más detalles

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor.

o Una aproximación lo es por defecto cuando resulta que es menor que el valor exacto al que sustituye y por exceso cuando es mayor. Números reales 1 Al trabajar con cantidades, en la vida real y en la mayoría de las aplicaciones prácticas, se utilizan estimaciones y aproximaciones. Sería absurdo decir que la capacidad de un pantano

Más detalles

Errores en Las Mediciones

Errores en Las Mediciones 1 Objetivo: Estudiar los conceptos básicos sobre medidas y errores a través del cálculo de porcentajes al efectuar mediciones Teoría El conocimiento que cada uno de nosotros a adquiriendo y acumulando

Más detalles

Estudiar los conceptos básicos sobre medidas y errores. Conocer las unidades de magnitud fundamentales.

Estudiar los conceptos básicos sobre medidas y errores. Conocer las unidades de magnitud fundamentales. REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año Laboratorio # 1 Equipo # Laboratorio

Más detalles

4 ; 3. d) 2 y 5 3. a) 2,2 b) c) 2,24 d) 2,236 e) 2,23607

4 ; 3. d) 2 y 5 3. a) 2,2 b) c) 2,24 d) 2,236 e) 2,23607 EL NÚMERO REAL.- LOS NÚMEROS IRRACIONALES. NÚMEROS REALES - Indicar a qué conjuntos ( Ν, Ζ, Q, R ) pertenecen los siguientes números: -2 ; ; -4/ 5; 6/ 4; 4 ; 25 ; Ν ; 6/ 4 Ζ -2 ; 25 Q -4/ 5 ; 6 ; 4 ; 8

Más detalles

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm.

Longitud (L) = 85,2 cm. No es esta la única manera de expresar el resultado, pues también puede ser: L = 0,852 m. L = 8,52 dm. Cifras significativas. Definición. Las cifras significativas de un número son aquellas que tienen un significado real y, por tanto, aportan alguna información. Toda medición experimental es inexacta y

Más detalles

Unidad 6 Números aproximados. Errores! 1 PROBLEMAS PROPUESTOS (! ""#) Matemáticas 1

Unidad 6 Números aproximados. Errores! 1 PROBLEMAS PROPUESTOS (! #) Matemáticas 1 Unidad 6 Números aproximados. Errores! 1 PROBLEMAS PROPUESTOS (! ""#) " Entre qué limites está el valor exacto de cada una de estas magnitudes? (a) 3.750 ± 100 (b) 2,98 ± 0,02 (c) 0,05618 ± 0,00005 (a)

Más detalles

Cifras significativas

Cifras significativas Cifras significativas No es extraño que cuando un estudiante resuelve ejercicios numéricos haga la pregunta: Y con cuántos decimales dejo el resultado? No es extraño, tampoco, que alguien, sin justificación,

Más detalles

Práctica 1. Medidas y Teoría de Errores

Práctica 1. Medidas y Teoría de Errores Práctica 1. Medidas Teoría de Errores Versión 3 Programa de Física, Facultad de Ciencias, Instituto Tecnológico Metropolitano (Dated: 25 de julio de 2016) I. OBJETIVO Realizar medidas de algunas cantidades

Más detalles

Unidad 3: Incertidumbre de una medida

Unidad 3: Incertidumbre de una medida Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 3: Incertidumbre de una medida Universidad Politécnica de Madrid 12 de abril de 2010

Más detalles

Universidad de San Buenaventura - Facultad de Ingeniería

Universidad de San Buenaventura - Facultad de Ingeniería Aproximaciones Para trabajar con números decimales que tienen muchas cifras decimales, o infinitas, hacemos aproximaciones. Decimos que la aproximación de un número es por defecto cuando es menor que el

Más detalles

N Ú M E R O S R E A L E S

N Ú M E R O S R E A L E S N Ú M E R O S R E A L E S 1. E L C O N J U N T O D E L O S N Ú M E R O S R E A L E S Al conjunto de todos los números que se pueden expresar mediante fracciones se le llama conjunto de los números racionales

Más detalles

ERRORES. Identificar las causas de errores en las medidas. Expresar matemáticamente el error de una medida cm cm cm 4 12.

ERRORES. Identificar las causas de errores en las medidas. Expresar matemáticamente el error de una medida cm cm cm 4 12. ERRORES OBJETIVOS Identificar las causas de errores en las medidas.. lasificar los errores según sus causas. Expresar matemáticamente el error de una medida. Determinar el error del resultado de una operación

Más detalles

0A. LA MEDIDA Índice

0A. LA MEDIDA Índice Índice 1. Magnitudes 2. Unidades 3. Instrumentos de medida 4. Errores en la medida 5. Cifras significativas y redondeo 6. Representaciones gráficas 2 1 Magnitudes La Física y la Química son ciencias experimentales.

Más detalles

E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números.

E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números. NÚMEROS REALES E J E R C I C I O S P R O P U E S T O S. Indica, sin realizar la división, el tipo de expresión decimal de estos números. a) b) 9 6 c) 7 d) 7 7 0 a) Periódico mixto c) 7 Periódico mixto

Más detalles

PRACTICA DE LABORATORIO NO. 1

PRACTICA DE LABORATORIO NO. 1 UIVERSIDAD PEDAGÓGICA ACIOAL FRACISCO MORAZÁ CETRO UIVERSITARIO REGIOAL DE LA CEIBA DEPARTAMETO DE CIECIAS ATURALES PRACTICA DE LABORATORIO O. 1 I PERIODO 2014 ombre de la Practica: MEDICIOES E ICERTIDUMBRES.

Más detalles

Práctica: realización y presentación de resultados

Práctica: realización y presentación de resultados Práctica: realización y presentación de resultados Laboratorio Física I 1 Página web Prácticas Física I http://tesla.us.es/f1_practicas/herramientas/ herramientas.php 2 Índice Material Toma de datos Incertidumbre

Más detalles

Instrumentación Industrial

Instrumentación Industrial Instrumentación Industrial Tema 1 Magnitud es todo aquello que se puede medir, que se puede representar por un número y que puede ser estudiada en las ciencias experimentales (que observan, miden, representan...).

Más detalles

CONJUNTO DE LOS NÚMEROS REALES

CONJUNTO DE LOS NÚMEROS REALES NÚMEROS REALES 1. EL CONJUNTO DE LOS NÚMEROS REALES Al conjunto de todos los números que se pueden expresar mediante fracciones se le llama conjunto de los números racionales y se representa por Q. Tanto

Más detalles

TEMA 1. EL MÉTODO CIENTÍFICO FÍSICA Y QUÍMICA 4º ESO

TEMA 1. EL MÉTODO CIENTÍFICO FÍSICA Y QUÍMICA 4º ESO TEMA 1. EL MÉTODO CIENTÍFICO FÍSICA Y QUÍMICA 4º ESO 1. Etapas del método científico. 2. Sistema Internacional de unidades. 3. Notación científica. 4. El carácter aproximado de la medida. 5. Cómo reducir

Más detalles

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos

Los números decimales ilimitados no periódicos se llaman números irracionales, que designaremos Unidad Didáctica NÚMEROS REALES. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal

Más detalles

No 0.1 LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR. Objetivos

No 0.1 LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR. Objetivos No 0.1 LABORATORIO DE MECÁNICA TOMA DE DATOS E INTRODUCCIÓN AL ANÁLISIS DEL ERROR DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Entender y familiarizarse

Más detalles

Aritmética del Computador

Aritmética del Computador Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Métodos Numéricos Contenido 1 Introducción 2 Teoria de Errores 3 Aritmetica del computador Introducción al estudio de métodos computacionales

Más detalles

Medidas y cifras significativas

Medidas y cifras significativas Física Experimental 1 Medidas y cifras significativas 1. Mediciones En lo que sigue se definirán conceptos referentes a la realización y presentación de medidas conforme a los estándares internacionales

Más detalles

La Medida Científica

La Medida Científica > MAGNITUDES A) CONCEPTO DE MAGNITUD Una magnitud es cualquier propiedad de un cuerpo que puede ser medida, bien sea por métodos directos o indirectos, pudiéndose expresar mediante números. Ejemplos de

Más detalles

Formación básica de Física. Destinado a alumnos matriculados en estudios de ingenierías

Formación básica de Física. Destinado a alumnos matriculados en estudios de ingenierías CURSO PROPEDEÚTICO DE FÍSICAF Formación básica de Física Destinado a alumnos matriculados en estudios de ingenierías PRESENTACIÓN CURSO PROPEDEÚTICO DE FÍSICA Bloque 1: Magnitudes y vectores Bloque 2:

Más detalles

Laboratorio Física I

Laboratorio Física I Laboratorio Física I Sistema de Unidades Utilizamos el sistema internacional (S.I.), antes conocido como mks (metro-kilogramo-segundo). Las unidades más comúnmente usadas en el laboratorio son: -Longitud:

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

MEDICIÓN OBJETIVOS. Fundamentos Teóricos. Medición. Cifras Significativas

MEDICIÓN OBJETIVOS. Fundamentos Teóricos. Medición. Cifras Significativas OBJETIVOS MEDICIÓN Declarar lo que es una medición, error de una medición, diferenciar precisión de exactitud. Reportar correctamente una medición, con las cifras significativas correspondientes utilizando,

Más detalles

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }

Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 } LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden

Más detalles

a = b = 1.A.15

a = b = 1.A.15 MATEMÁTICAS DE COMMON CORE * NY Lección 1: Boleto de salida 5 1 1. Escribe el primer factor por encima de la línea punteada en la tabla de valores posicionales y el producto o cociente por debajo de la

Más detalles

TEMA 1 LOS NÚMEROS REALES

TEMA 1 LOS NÚMEROS REALES TEMA 1 LOS NÚMEROS REALES 1.1 LOS NÚMEROS REALES.-LA RECTA REAL Los NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros:

Más detalles

Tema 4. Los números reales.

Tema 4. Los números reales. Tema 4. Los números reales. Números irracionales. En el tema anterior, has visto que los números racionales pueden escribirse en forma decimal, produciendo siempre un decimal exacto o periódico. También

Más detalles

1. APROXIMACIÓN AL CONOCIMIENTO CIENTÍFICO

1. APROXIMACIÓN AL CONOCIMIENTO CIENTÍFICO 1. APROXIMACIÓN AL CONOCIMIENTO CIENTÍFICO La física y la química son ciencias experimentales cuyo objetivo es conocer el mundo natural que nos rodea descubriendo sus propiedades y relacionándolas entre

Más detalles

MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS APLICADAS. 4º ESO ACTIVIDADES DE REPASO. UNIDADES 1, 2 Y 3

MATEMÁTICAS ORIENTADAS A LAS ENSEÑANZAS APLICADAS. 4º ESO ACTIVIDADES DE REPASO. UNIDADES 1, 2 Y 3 UNIDAD 1. ESTADÍSTICA 1. Clasifica las siguientes variables, marcando con una X donde corresponda: Variable Cuantitativa Variable cualitativa Discreta Número de hijos de una familia Voto político El peso

Más detalles

LAS MAGNITUDES FÍSICAS Y SUS UNIDADES

LAS MAGNITUDES FÍSICAS Y SUS UNIDADES LAS MAGNITUDES FÍSICAS Y SUS UNIDADES Magnitudes físicas son propiedades de los cuerpos que se pueden medir. Por ejemplo, el tiempo, la longitud, la superficie, la temperatura, la masa, etc. Para medir

Más detalles

Tema 1 Magnitudes físicas y actividad científica

Tema 1 Magnitudes físicas y actividad científica Tema 1 Magnitudes físicas y actividad científica Guía de Actividades Cada tema tendrá una serie de actividades que representan los distintos tipos de actividades que podrás encontrar en los exámenes. Estas

Más detalles

Prueba evaluable de programación con Maxima

Prueba evaluable de programación con Maxima Prueba evaluable de programación con Maxima Criterios de evaluación Cada uno de los ejercicios que componen esta prueba evaluable sobre la primera parte de la asignatura Física Computacional 1 se evaluará,

Más detalles

MEDIDA DE MAGNITUDES

MEDIDA DE MAGNITUDES Tema 7-1 Errores - 1 - Tema 7 Tema 7-2 MEDIDA DE MAGNITUDES La Física, ciencia experimental, es un compendio de leyes basadas en la observación de la Naturaleza Todas las leyes de la Física han de ser

Más detalles

Las reglas básicas que se emplean en el redondeo de números son las siguientes:

Las reglas básicas que se emplean en el redondeo de números son las siguientes: CIFRAS SIGNIFICATIVAS Y REDONDEO Se considera que las cifras significativas de un número son aquellas que tienen significado real o aportan alguna información. Las cifras no significativas aparecen como

Más detalles

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES

CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES OBJETIVOS CÁLCULO DE INCERTIDUMBRE EN LAS MEDICIONES Reportar correctamente resultados, a partir del procesamiento de datos obtenidos a través de mediciones directas. INTRODUCCION En el capítulo de medición

Más detalles

PREFIJOS MEDIDAS CIFRAS SIGNIFICATIVAS. Prefijo Símbolo Factor de multiplicación

PREFIJOS MEDIDAS CIFRAS SIGNIFICATIVAS. Prefijo Símbolo Factor de multiplicación PREFIJOS MEDIDS CIFRS SIGNIFICTIVS 1- Prefijo de múltiplos y submúltiplos: Prefijo Símbolo Factor de multiplicación Tera T x10 12 Giga G x10 9 Mega M x10 6 Kilo K x10 3 Hecto h x10 2 Deca da x10 2 deci

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles

Estimar el error absoluto cometido al realizar cualquier medición directa. Expresar cualquier medida que se efectúe, bajo la forma V= Vo Ea (Vo).

Estimar el error absoluto cometido al realizar cualquier medición directa. Expresar cualquier medida que se efectúe, bajo la forma V= Vo Ea (Vo). UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA LABORATORIO DE FÍSICA I Practica No 1 Medidas Directas de Magnitudes Físicas Objetivos: Determinar las apreciaciones e interpretar

Más detalles

Práctica 2. Tratamiento de datos

Práctica 2. Tratamiento de datos Errores Todas las medidas que se realizan en el laboratorio están afectadas de errores experimentales, de manera que si se repiten dos experiencias en las mismas condiciones es probable que los resultados

Más detalles

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Valor de cada cifra en función de la posición que ocupa. Expresión polinómica de un número.

OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Valor de cada cifra en función de la posición que ocupa. Expresión polinómica de un número. 8966 _ 049-008.qxd /6/08 09: Página 49 Números reales INTRODUCCIÓN Los conceptos que se estudian en esta unidad ya han sido tratados en cursos anteriores. A pesar de ello, es importante volverlos a repasar,

Más detalles

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla

Magnitud: cualidad que se puede medir. Ej. Longitud y temperatura de una varilla Curso nivelación I Presentación Magnitudes y Medidas El método científico que se aplica en la Física requiere la observación de un fenómeno natural y después la experimentación es decir, reproducir ese

Más detalles

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (www.uprh.edu/~quimgen) Revisado: 16/agosto/ 2007

UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (www.uprh.edu/~quimgen) Revisado: 16/agosto/ 2007 UNIVERSIDAD DE PUERTO RICO EN HUMACAO DEPARTAMENTO DE QUÍMICA (www.uprh.edu/~quimgen) Revisado: 16/agosto/ 2007 QUIM 3003-3004 MEDIDAS: TRATAMIENTO DE LOS DATOS EXPERIMENTALES I. INTRODUCCIÓN La mayor

Más detalles

Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido.

Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido. Metrología Básica 1.1. Objetivos 1.1.1. General Aplicar los conceptos básicos de metrología a través de la determinación del volumen y la densidad de un sólido. 1.1.2. Específicos Aplicar los procesos

Más detalles

sumando sumando sumando sumandos sumandos = 38.6 Cualquier número que se suma.

sumando sumando sumando sumandos sumandos = 38.6 Cualquier número que se suma. sumando sumando 33 + 4.7 + 0.9 = 38.6 sumandos sumando 33 + 4.7 + 0.9 = 38.6 sumandos Cualquier número que se suma. algoritmo Ejemplo de producto parcial algoritmo 555 x 7 35 Paso 1: Multiplicar las unidades

Más detalles

Introducción al tratamiento de datos

Introducción al tratamiento de datos Introducción al tratamiento de datos MEDICIÓN? MEDICIÓN Conjunto de operaciones cuyo objetivo es determinar el valor de una magnitud o cantidad. Ej. Medir el tamaño de un objeto con una regla. MEDIR? MEDIR

Más detalles

Tarea 1: Ejercicios y problemas.

Tarea 1: Ejercicios y problemas. Tarea 1: Ejercicios y problemas. Sistema Internacional. 1. Aplicar las reglas que establece el Sistema Internacional de Unidades para el uso de los símbolos de sus unidades, para completar la tabla siguiente:

Más detalles

Factores de conversión. Bibliografía: R. H. Petrucci, W. S. Harwood, F. G. Herring, Química General, 8 a edición, (Prentice Hall, Madrid, 2003).

Factores de conversión. Bibliografía: R. H. Petrucci, W. S. Harwood, F. G. Herring, Química General, 8 a edición, (Prentice Hall, Madrid, 2003). Cálculos básicos en química Medidas experimentales: La incertidumbre de la medida. Errores e incertidumbre: exactitud y precisión. Expresión correcta de los datos: cifras significativas. Operaciones. Factores

Más detalles

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación.

La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. La prueba extraordinaria de septiembre está descrita en los criterios y procedimientos de evaluación. Los contenidos mínimos de la materia son los que aparecen con un * UNIDAD 1: LOS NÚMEROS NATURALES

Más detalles

RESUMEN de TEORIA DE ERRORES

RESUMEN de TEORIA DE ERRORES RESUME de TEORIA DE ERRORES La sensibilidad de un instrumento es la variación más pequeña que éste puede medir, y suele corresponder a la división más pequeña de la escala de medida o a una fracción de

Más detalles

I.E.S. CUADERNO Nº 4 NOMBRE:

I.E.S. CUADERNO Nº 4 NOMBRE: Números decimales Contenidos 1. Números decimales Numeración decimal Orden y aproximación Representación 2. Operaciones Suma y resta Multiplicación División 3. Sistema métrico decimal Longitud Capacidad

Más detalles

Actividades iniciales y de recuperación

Actividades iniciales y de recuperación Actividades iniciales y de recuperación.- Ordenar de menor a mayor los siguientes decimales: 6 milésimas; décimas; 60 cienmilésimas; 60 diezmilésimas.- Calcula mentalmente el valor exacto de: a) 0, @ 000

Más detalles

UNIVERSIDAD DE LA COSTA LABORATORIO DE FÍSICA MECÁNICA TEORÍA DE ERRORES

UNIVERSIDAD DE LA COSTA LABORATORIO DE FÍSICA MECÁNICA TEORÍA DE ERRORES UNIVERSIDAD DE LA COSTA LABORATORIO DE FÍSICA MECÁNICA TEORÍA DE ERRORES 1 MEDICIÓN Es una operación o procedimiento mediante el cual se determina el valor de una variable o cantidad física especificando

Más detalles

1.- CONJUNTOS NUMÉRICOS

1.- CONJUNTOS NUMÉRICOS N 1º BACHILLERATO (LOMCE) MATEMÁTICAS CC SS TEMA 1.- NÚMEROS-2 PROFESOR: RAFAEL NÚÑEZ NOGALES Números reales(r) 1.- CONJUNTOS NUMÉRICOS N úm e ros natu :Ejemplo:7 E l n úm e ro 0 rales Números enteros(z)

Más detalles

De vocabulario, cifras significativas, redondeos, mediciones y otras cosas. Elizabeth Hernández Marín Laboratorio de Física

De vocabulario, cifras significativas, redondeos, mediciones y otras cosas. Elizabeth Hernández Marín Laboratorio de Física De vocabulario, cifras significativas, redondeos, mediciones y otras cosas Elizabeth Hernández Marín Laboratorio de Física Cifras significativas El término cifras significativas se conoce también como

Más detalles

1.- FRACCIONES DECIMALES Y NÚMEROS DECIMALES Se llaman fracciones decimales a las que tienen por denominador la unidad seguida de ceros.

1.- FRACCIONES DECIMALES Y NÚMEROS DECIMALES Se llaman fracciones decimales a las que tienen por denominador la unidad seguida de ceros. 23069 5º de E. Primaria 1.- FRACCIONES DECIMALES Y NÚMEROS DECIMALES Se llaman fracciones decimales a las que tienen por denominador la unidad seguida de ceros. Las fracciones decimales se pueden expresar

Más detalles

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción

LABORATORIO No. 0. Cálculo de errores en las mediciones. 0.1 Introducción LABORATORIO No. 0 Cálculo de errores en las mediciones 0.1 Introducción Es bien sabido que la especificación de una magnitud físicamente medible requiere cuando menos de dos elementos: Un número y una

Más detalles

Introducción histórica. Números irracionales

Introducción histórica. Números irracionales Introducción histórica A finales del siglo V a.c., la Escuela de Pitágoras descubrió que no existían dos números naturales m y n, cuyo cociente sea igual a la proporción entre el lado de un cuadrado y

Más detalles

- Magnitudes y unidades - El S.I. de unidades - Medida y error. Física Física y química 1º 1º Bachillerato

- Magnitudes y unidades - El S.I. de unidades - Medida y error. Física Física y química 1º 1º Bachillerato - Magnitudes y unidades - El S.I. de unidades - Medida y error Física Física y química 1º 1º Bachillerato Magnitud Es todo aquello que puede ser medido Medición Medir Conjunto Es comparar de actos una

Más detalles

TEMA 1: DIVISIBILIDAD Y NÚMEROS ENTEROS.

TEMA 1: DIVISIBILIDAD Y NÚMEROS ENTEROS. TEMA : DIVISIBILIDAD Y NÚMEROS ENTEROS.. La relación de divisibilidad Ejemplos de multiplos y divisores: Determina si las siguientes parejas de números son múltiplos o divisores: a) 5 y 25 Lo primero será

Más detalles

FICHA nº MATERIA: Errores en la medida. Cifras significativas FECHA: CURSO: ALUMNO: NOTA:

FICHA nº MATERIA: Errores en la medida. Cifras significativas FECHA: CURSO: ALUMNO: NOTA: FICHA nº MATERIA: Errores en la medida. Cifras significativas FECHA: CURSO: ALUMNO: NOTA: 1. ERRORES EN LAS MEDIDAS Cuando mides una magnitud, aunque lo hagas con extremo cuidado, siempre vas a cometer

Más detalles

Métodos Numéricos. Unidad 1. Teoría de Errores

Métodos Numéricos. Unidad 1. Teoría de Errores Métodos Numéricos Unidad 1. Teoría de Errores Contenido Introducción Error Aproximado y Error Relativo Error Redondeo y de Cifras Significativas Errores de Truncamiento Errores en la Computadora Otros

Más detalles

CANTIDADES. MEDIDAS NÚMEROS

CANTIDADES. MEDIDAS NÚMEROS ( A) = a 1 CuSCN N O 2NO 2 4 2 Cr O 2 3 CANTIDADES. MEDIDAS NÚMEROS CAPÍTULO 1 1.1. CANTIDAD Y MEDIDA Una ciencia experimental como la Química está ligada al proceso de medición. A su vez las medidas que

Más detalles

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar

El medir y las Cantidades Físicas escalares y vectores en física. Prof. R. Nitsche C. Física Medica UDO Bolívar El medir y las Cantidades Físicas escalares y vectores en física Prof. R. Nitsche C. Física Medica UDO Bolívar Medir Medir es el requisito de toda ciencia empírica (experimental); medir significa simplemente

Más detalles

I.E.S ALPAJÉS CURSO

I.E.S ALPAJÉS CURSO DEPARTAMENTO DIDÁCTICO: Matemáticas ASIGNATURA: Recuperación de 1ºESO CURSO: 2015-2016 Soporte legislativo: Decreto 23/2007 de 10 de mayo para la Comunidad de Madrid currículo de la Educación Secundaria

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

TEMA 1: Los números reales. Tema 1: Los números reales 1

TEMA 1: Los números reales. Tema 1: Los números reales 1 TEMA 1: Los números reales Tema 1: Los números reales 1 ESQUEMA DE LA UNIDAD 1.- Números naturales y enteros..- Números racionales. 3.- Números irracionales. 4.- Números reales. 5.- Jerarquía en las operaciones

Más detalles

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada.

MEDICIÓN Y PROPAGACIÓN DE ERRORES. Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. LABORATORIO Nº 1 MEDICIÓN Y PROPAGACIÓN DE ERRORES I. LOGROS Comprender el proceso de medición y expresar correctamente el resultado de una medida realizada. Aprender a calcular el error propagado e incertidumbre

Más detalles

Pon tres ejemplos de números racionales que tengan la parte decimal de distinto tipo. Hazlo en forma de fracción y da la forma decimal también.

Pon tres ejemplos de números racionales que tengan la parte decimal de distinto tipo. Hazlo en forma de fracción y da la forma decimal también. Numeros Reales 1 Decimal Fracciones 1 Pon tres ejemplos de números racionales que tengan la parte decimal de distinto tipo. Hazlo en forma de fracción y da la forma decimal también. Qué es la parte decimal

Más detalles

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica.

NÚMEROS REALES. a de dos números enteros: a, y b Z con b 0. Con un número entero o con una expresión decimal exacta o no exacta y periódica. NÚMEROS REALES NÚMEROS RACIONALES: Se caracterizan porque pueden expresarse: En forma de fracción, es decir, como cociente b a de dos números enteros: a, y b Z con b 0 Con un número entero o con una expresión

Más detalles

CARNET INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA

CARNET INTEGRANTES (Apellidos, nombres) FIRMA SECCION NOTA UNIVERSIDAD TECNOLÓGICA DE EL SALVADOR FACULTAD DE INFORMATICA Y CIENCIAS APLICADAS ESCUELA DE CIENCIAS APLICADAS DEPARTAMENTO DE MATEMATICA Y CIENCIAS CATEDRA DE FISICA FISICA I, CICLO 02-2015 LABORATORIO

Más detalles

Ejercicios y respuestas del apartado: Cálculo de errores. Error absoluto y error relativo. EDUCAMIX

Ejercicios y respuestas del apartado: Cálculo de errores. Error absoluto y error relativo. EDUCAMIX Ejercicios y respuestas del apartado: Cálculo de errores. Error absoluto y error relativo. Instrumentos de medida 1. Hemos realizado una medida de longitud con una cinta métrica y nos ha dado 2,34 m. De

Más detalles

Mediciones. Errores. Propagación de errores. Estadística. Prof. Arturo S. Vallespi

Mediciones. Errores. Propagación de errores. Estadística. Prof. Arturo S. Vallespi Mediciones. Errores. Propagación de errores. Estadística Prof. Arturo S. Vallespi Incertidumbre estadística: Qué ocurre si cada magnitud de interés en el experimento se mide más de una vez, por ejemplo

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles

UNIVERSO QUE QUEREMOS ESTUDIAR

UNIVERSO QUE QUEREMOS ESTUDIAR EXPERIMENTACION UNIVERSO QUE QUEREMOS ESTUDIAR QUEREMOS saber: Cómo funciona? Cómo evolucionará en el tiempo? EXPERIMENTACION SISTEMA Porción representativa del universo de estudio Obtenemos información

Más detalles

GUÍA DE EJERCICIOS CIFRAS SIGNIFICATIVAS

GUÍA DE EJERCICIOS CIFRAS SIGNIFICATIVAS GUÍA DE EJERCICIOS CIFRAS SIGNIFICATIVAS Área Química Resultados de aprendizaje Conocer y aplicar las normas en la determinación de cifras significativas en el entrega de resultados. Contenidos 1. Conteo

Más detalles

NÚMEROS REALES. Expresiones decimales infinitas no periódicas que presentan algún tipo de regularidad:

NÚMEROS REALES. Expresiones decimales infinitas no periódicas que presentan algún tipo de regularidad: NÚMEROS REALES NÚMEROS IRRACIONALES: Se caracterizan porque: 1. No pueden expresarse en forma de fracción. 2. Su expresión decimal tiene infinitas cifras y no es periódica. El conjunto de todos los números

Más detalles

Equipos Cantidad Observacion Calibrador 1 Tornillo micrometrico 1 Cinta metrica 1 Esferas 3 Calculadora 1

Equipos Cantidad Observacion Calibrador 1 Tornillo micrometrico 1 Cinta metrica 1 Esferas 3 Calculadora 1 No 1 LABORATORIO DE FISICA PARA LAS CIENCIAS DE LA VIDA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Realizar mediciones de magnitudes de diversos objetos

Más detalles

Aunque probablemente estos conceptos ya los conoces, es importante repasarlos de nuevo.

Aunque probablemente estos conceptos ya los conoces, es importante repasarlos de nuevo. La unidad. Aunque probablemente estos conceptos ya los conoces, es importante repasarlos de nuevo. Unidad es una cantidad perfectamente definida que se toma para compararla con otras cantidades de la misma

Más detalles

DESCRIPCIÓN El método científico consiste en una serie de pasos ordenados que permiten encontrar el conocimiento con gran seguridad.

DESCRIPCIÓN El método científico consiste en una serie de pasos ordenados que permiten encontrar el conocimiento con gran seguridad. UNIDAD 1: LA ACTIVIDAD CIENTÍFICA EL MÉTODO CIENTÍFICO DESCRIPCIÓN El método científico consiste en una serie de pasos ordenados que permiten encontrar el conocimiento con gran seguridad. OBSERVACIÓN Analizamos

Más detalles

Las medidas y su incertidumbre

Las medidas y su incertidumbre Las medidas y su incertidumbre Laboratorio de Física: 1210 Unidad 1 Temas de interés. 1. Mediciones directas e indirectas. 2. Estimación de la incertidumbre. 3. Registro de datos experimentales. Palabras

Más detalles

Teoría de errores: problemas propuestos

Teoría de errores: problemas propuestos Teoría de errores: problemas propuestos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M. ISABEL MARRERO RODRÍGUEZ (imarrero@ull.es)

Más detalles

EJERCICIO. Completa el siguiente cuadro según los textos que vienen en los ejemplos: 1 hm 1 dam 1 m 1 mm. 1 q 1 mag 1 kg 1 g 1 dg 1 cg

EJERCICIO. Completa el siguiente cuadro según los textos que vienen en los ejemplos: 1 hm 1 dam 1 m 1 mm. 1 q 1 mag 1 kg 1 g 1 dg 1 cg Números decimales EJERCICIO. Completa el siguiente cuadro según los textos que vienen en los ejemplos: Longitud 1 hm 1 dam 1 m 1 mm Capacidad 1 kl 1 l 1 dl 1 cl Peso 1 q 1 mag 1 kg 1 g 1 dg 1 cg 1. Números

Más detalles

Sesión de cálculo de errores

Sesión de cálculo de errores Sesión de cálculo de errores Dpto. Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Contenido Boletines y fichas Toma de datos Unidades Errores de medida Cifras significativas

Más detalles

Tema 1: Conceptos generales del Análisis

Tema 1: Conceptos generales del Análisis Tema 1: Conceptos generales del Análisis Numérico Cálculo Numérico I Anna Doubova y Blanca Climent Ezquerra Dpto. EDAN, Universidad de Sevilla 11 de febrero de 2018 A.Doubova y B. Climent Conceptos generales

Más detalles

Cifras significativas e incertidumbre en las mediciones

Cifras significativas e incertidumbre en las mediciones Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades

Más detalles