Tema 9. Análisis factorial discriminante

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 9. Análisis factorial discriminante"

Transcripción

1 Máster en Técnicas Estadísticas Análisis Multivariante. Año Profesor: César Sánchez Sellero Introducción. Tema 9. Análisis factorial discriminante Supongamos que están denidos I grupos, y queremos construir una regla discriminante que permita clasicar en alguno de los grupos en función del resultado de un vector aleatorio X. Consideramos π 1,..., π I la distribucion a priori sobre los I grupos, y f 1,..., f I las funciones de densidad o probabilidad de X condicionadas a cada uno de los grupos. La regla discriminante óptima consistirá en Clasicar en el grupo g si π g f g (x) = max i {1,...,I} π if i (x) (9.1) Esta regla es la que clasica en el grupo con mayor probabilidad a posteriori, y es la regla de máxima verosimilitud si se omiten las probabilidades a priori. Pensemos que los grupos tienen las mismas probabilidades a priori, y que la distribuciones f i son normales de medias µ 1,..., µ I, y con la misma matriz de covarianzas Σ. Entonces la regla anterior se reduce a Clasicar en el grupo g si (x µ g ) Σ 1 (x µ g ) = min i {1,...,I} (x µ i) Σ 1 (x µ i ) esto es, se clasica la observación x en el grupo cuya media está más próxima, bajo la distancia de Mahalanobis. Cuando sólo hay dos grupos, hemos visto que esta regla es equivalente a efectuar la transformación lineal λ x (siendo λ = Σ 1 (µ 1 µ 2 )) y clasicar en el grupo 1 si λ x está más próximo a λ µ 1 que a λ µ 2. Cuando hay varios grupos, la regla discriminante también se convierte en un criterio lineal, aunque necesitaremos más de una transformación lineal. Además, será posible reducir la dimensión, escogiendo únicamente unas pocas transformaciones lineales, que permitan discriminar lo mejor posible entre los grupos. Los métodos que vamos a exponer han sido desarrollados por Fisher, y se les conoce como análisis factorial discriminante Clasicación óptima de varias poblaciones normales. Pensemos que se dispone de una muestra procedente de cada grupo X 11 X 1 n1 de una población N d (µ 1, Σ 1 ) X I1 X I ni de una población N d (µ I, Σ I ) Nótese que partimos de un modelo de análisis multivariante de la varianza con matrices de covarianzas desiguales. Debemos decir también que se ha cambiabo la notación de las observaciones, 89

2 90 Máster en Técnicas Estadísticas que eran Y ij en el tema de análisis multivariante de la varianza, para mantener coherencia con la notación del análisis discriminante. En esta situación, suponiendo unas probabilidades a priori π 1,..., π I, la regla óptima dada por la expresión (9.1), se puede reducir a Clasicar en el grupo g si d Q g (x) = max i {1,...,I} dq i (x) siendo d Q i (x) = 1 2 log Σ i 1 2 (x µ i) Σ 1 i (x µ i ) + log π i i {1,..., I} Las funciones d Q i (x) se pueden denominar funciones de clasicación, pues para clasicar a un individuo con observación x, se calculan las funciones de clasicación que le corresponden en cada grupo, d Q i (x), y se asigna al grupo cuya función sea más grande. El superíndice Q en d Q i (x) se debe a que estas funciones son cuadráticas, pues como ya vimos en el tema anterior, si las matrices de covarianzas son diferentes dentro de cada grupo, entonces la regla óptima es cuadrática. La muestra anterior servirá para estimar la regla discriminante, sustituyendo en las funciones de clasicación los vectores de medias y las matrices de covarianzas por sus análogos empíricos, ˆd Q i (x) = 1 2 log S i 1 2 ( ) ( ) x Xi S 1 i x Xi + log πi i {1,..., I} Si se puede suponer que las matrices de covarianzas dentro de cada grupo son iguales, esto es, Σ 1 = = Σ I = Σ, entonces en las funciones de clasicación se puede suprimir la parte cuadrática, pues es la misma para todos los grupos, y resultan las siguientes funciones de clasi- cación lineales: que se estiman mediante d i (x) = µ iσ 1 x 1 2 µ iσ 1 µ i + log π i i {1,..., I} ˆd i (x) = X i S 1 x 1 2 X i S 1 Xi + log π i i {1,..., I} donde S = (n I) 1 I i=1 (n i 1)S i es la estimación de la matriz de covarianzas común. En estas funciones lineales los coecientes vienen dados por los vectores X i S 1 y las constantes se obtienen de log π i 1 2 X i S 1 Xi Factores discriminantes. En la sección anterior vimos la solución óptima y su estimación para la discriminación entre varias poblaciones normales. Además de lo anterior, el procedimiento de clasicación entre poblaciones normales se puede presentar desde un enfoque más intuitivo o descriptivo. Situémonos en el modelo de análisis multivariante de la varianza, con la misma matriz de covarianzas dentro de cada grupo. Recordemos que en este contexto la matriz de covarianzas (mejor

3 Análisis Multivariante 91 dicho, de sumas de cuadrados y sumas de productos) que mide la variabilidad entre grupos se calcula así: I n i ( H = Xi X ) ( Xi X ) i=1 j=1 mientras que la variabilidad dentro de cada grupo se calcula así: E = I (n i 1) S i = i=1 I n i ( Xij X ) ( i Xij X ) i i=1 j=1 Nótese que la matriz de covarianzas dentro de los grupos se estima mediante S = E/(n I). Supongamos que se desea reducir la dimensión del problema, y construir una regla de clasicación basada únicamente en el valor que adopte un factor, calculado proyectando todas las variables en cierta dirección. Entonces la idea es tomar esa dirección como aquella que mantiene la mayor separación posible entre los grupos, haciendo grande la variabilidad entre grupos (entre sus medias) en comparación con la variabilidad dentro de cada grupo. Esta idea se puede formalizar en el siguiente problema de optimización Max α Hα α Eα El vector α en el que se alcance el máximo será el autovector de la matriz E 1 H asociado a su mayor autovalor. Si lo estandarizamos de la siguiente manera b 1 = n Iα/(α Eα), conseguiremos que b 1 Sb 1 = 1. En este momento denimos el primer factor discriminante como Z 1 = b 1X, siendo X el vector aleatorio constituido por las variables que sirven para la clasicación. Nótese que b 1 Sb 1 sirve como estimación de la varianza que presenta el primer factor discriminante, condicionado a cada grupo. Por tanto, al imponer que b 1 Sb 1 = 1 estamos obteniendo un factor cuya varianza intra-grupo valdría uno. Por supuesto, esto es válido en la medida en que los datos de entrenamiento cumplan el modelo homocedástico. Se pueden calcular las puntuaciones de los individuos que componen la muestra de entrenamiento, sin más que proyectar en la dirección b 1, lo cual se obtiene así Z 1ij = b 1 X ij. Las puntuaciones de un grupo concreto, por ejemplo el g, serían Z 1gj con j {1,..., n g } y por lo que dijimos anteriormente, este conjunto de puntuaciones deberían tener varianza muestral parecida a uno. No será exactamente porque S no es exactamente igual a S i. Para una futura observación de la que se conoce el valor de las variables, x, se puede calcular su puntuación z 1 = b 1x. Además, si hubiera que construir una regla discriminante basada en este valor z 1 = b 1x, la idea sería clasicar al nuevo individuo en el grupo cuya media proyectada b X 1 i le quede más cercana (en distancia usual). Aquí no hay que tener en cuenta diferentes varianzas, porque el factor está estandarizado para tener varianza intra-grupo igual a uno, y en principio se supone que las probabilidades a priori son iguales. Claro está que esta reducción de dimensión en la regla discriminante puede conducir a pérdidas considerables en las probabilidades de asignación correcta. En cualquier caso, esta primera dimensión es la que permite mantener más separados los datos de la muestra de entrenamiento, y sería la mejor opción si hubiera que optar por una regla basada en la proyección sobre una única dirección.

4 92 Máster en Técnicas Estadísticas Ahora bien, para no perder capacidad de discriminación, se puede avanzar en los autovalores de la matriz E 1 H. Así, se puede denir el segundo factor discriminante como Z 2 = b 2 X, siendo b 2 autovector de E 1 H asociado a su segundo mayor autovalor y normalizado de modo que b 2 Sb 2 = 1. Además verica que b 2 Sb 1 = 0. La consecuencia es que el par formado por los dos primeros factores principales (Z 1, Z 2 ) tiene como matriz de covarianzas dentro de cada grupo algo parecido a la identidad. No será exactamente igual a la identidad en la medida en que S i no sea igual a S. Pero esta propiedad permite construir una regla discriminante basada en los dos primeros factores discriminantes, y que consistiría en obtener las puntuaciones de una nueva observación x en los dos primeros factores principales (z 1, z 2 ) = (b 1, b 2 ) x y clasicarlo en el grupo cuya media en el espacio de factores (esta media sería (b 1, b 2 ) Xi ) le quede más cercana, con la distancia usual. Se puede emplear la distancia usual porque en el espacio de factores la matriz de covarianzas intra-grupo es la identidad, y por tanto la distancia de Mahalanobis coincide con la distancia usual. Como resultado obtenemos que los dos factores discriminantes constituyen el plano sobre el que se deben proyectar las observaciones de la muestra de entrenamiento para mantener la mayor separación entre los grupos, y la regla anterior es la mejor opción para la clasicación basada en la proyección sobre un plano. El proceso de construcción de factores discriminantes puede continuar hasta que se alcance, o bien el número de variables d (pues las matrices H y E son matrices d d) o el rango de la matriz H, que es (I 1). Denotemos entonces s = min{d, I 1} al número de factores discriminantes. Si se emplean los s factores discriminantes, tendríamos las puntuaciones de los individuos de la muestra de entrenamiento en los factores, Z ij = B X ij, siendo B = (b 1, b 2,..., b s ) la matriz cuyas columnas son los autovectores normalizados. Asimismo, se pueden obtener las puntuaciones medias de cada grupo, en ocasiones denominadas como centroides: Zi = B Xi. Ahora la regla de clasicación para una nueva observación consistiría en calcular sus puntuaciones z = B x y Clasicar en el grupo g si z Zg 2 = min z Zi 2 i {1,...,I} siendo z Z g 2 el cuadrado de la distancia usual entre z y Z g. Se puede demostrar que este procedimiento coincide con la regla discriminante presentada en la sección anterior, basada en funciones lineales discriminantes, en el caso de que las probabilidades a priori sean todas iguales. En el caso más general, en que las probabilidades a priori son cualesquiera π 1,..., π I, con la única condición de que π 0 y π π I = 1, y permitiendo además que las matrices covarianzas intra-grupo sean diferentes, también se puede construir la regla de clasicación utilizando las puntuaciones en los factores discriminantes. Para ello, se calculan las probabilidades a posteriori, de la siguiente manera: siendo P ( Procede del grupo g /x) = π g D g 1/2 exp{ d 2 g/2} I i=1 π i D i 1/2 exp{ d 2 i /2} g {1,..., I} D i = B S i B la matriz de covarianzas de los factores dentro del grupo i, y d 2 i = ( z Z ) ( ) i D 1 i z Zi

5 Análisis Multivariante 93 la distancia de Mahalanobis de z al centroide Z i respecto de la matriz D i. Las probabilidades a posteriori, además del interés que poseen en sí mismas, se pueden emplear para clasicar, siendo el críterio el de asignación al grupo con mayor probabilidad a posteriori. Ejemplo 9.1 Sobre los datos de los lirios de Fisher construiremos reglas discriminantes para clasicar entre las tres especies. Bibliografía. Everitt, B. (2005). An R and S-Plus companion to multivariate analysis. Springer. Johnson, R.A. y Wichern, D.W. (2007). Applied multivariate statistical analysis. Pearson Education. Peña, D. (2002). Análisis de datos multivariantes. McGraw-Hill. Pérez, C. (2004). Tecnicas de análisis multivariante de datos: Aplicaciones con SPSS. Pearson Educación, S.A.

Wenceslao González Manteiga.

Wenceslao González Manteiga. ANÁLISIS MULTIVARIANTE Wenceslao.gonzalez@usc.es ÍNDICE 0. MOTIVACIÓN HISTÓRICA 1. ANÁLISIS EXPLORATORIO DE DATOS 2. REVISIÓN DE LAS DISTRIBUCIONES NOTABLES MULTIDIMENSIONALES RELACIONADAS CON LA NORMAL

Más detalles

Tema 4. Análisis multivariante de la varianza

Tema 4. Análisis multivariante de la varianza Máster en Técnicas Estadísticas Análisis Multivariante Año 2008 2009 Profesor: César Sánchez Sellero Tema 4 Análisis multivariante de la varianza 4 Presentación del modelo Se trata de comparar las medias

Más detalles

Tema 8. Fundamentos de Análisis discriminante

Tema 8. Fundamentos de Análisis discriminante Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. Tema 8. Fundamentos de Análisis discriminante 8.1. Introducción. Empezamos deniendo el problema discriminante.

Más detalles

Tema 7. Escalamiento multidimensional

Tema 7. Escalamiento multidimensional Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. 7.1. Introducción. Tema 7. Escalamiento multidimensional El Escalamiento Multidimensional es una

Más detalles

Estadística II Tema 1: Distribución normal multivariante

Estadística II Tema 1: Distribución normal multivariante Estadística II Tema 1: Distribución normal multivariante José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Algunas propiedades de los vectores aleatorios Sea X = (X 1,..., X

Más detalles

Análisis multivariante II

Análisis multivariante II Análisis multivariante II Tema 1: Introducción Pedro Galeano Departamento de Estadística Universidad Carlos III de Madrid pedro.galeano@uc3m.es Curso 2016/2017 Grado en Estadística y Empresa Pedro Galeano

Más detalles

Tema 6. Análisis Factorial.

Tema 6. Análisis Factorial. Tema 6 Análisis Factorial El modelo Sea Y = (Y,, Y p ) t un vector aleatorio con vector de medias µ y matriz de covarianzas Σ Supondremos que existe un número entero m < p, una matriz L de orden p m de

Más detalles

Clasificación Supervisada

Clasificación Supervisada Clasificación Supervisada Ricardo Fraiman 26 de abril de 2010 Resumen Reglas de Clasificación Resumen Reglas de Clasificación Descripción del problema Muestra de entrenamiento (X 1, Y 1 ),..., (X n, Y

Más detalles

Tema 3. El modelo lineal general multivariante

Tema 3. El modelo lineal general multivariante Máster en Técnicas Estadísticas Análisis Multivariante. Año 2008 2009. Profesor: César Sánchez Sellero. Tema 3. El modelo lineal general multivariante 3.1. Presentación del modelo. En este tema vamos a

Más detalles

Clasificación. Aurea Grané. Análisis Discriminante

Clasificación. Aurea Grané. Análisis Discriminante Diplomatura en Estadística 1 Diplomatura en Estadística 2 Análisis discriminante Análisis Discriminante y Clasificación Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid Supongamos

Más detalles

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN

MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Teoría

Más detalles

Tema 2: Análisis Discriminante

Tema 2: Análisis Discriminante Tema 2: Análisis Discriminante P 1 P 2 Problema de clasificación: Ténemos observaciones que corresponden a 2 grupos P_1, P_2. Si nos dan uno nuevo x_0 a que grupo pertenece? Guión 1. Motivación 2. Clasificación

Más detalles

1. Introducción. CEDEX - Curso de formación estadística. Práctica Cómo introducir datos en SPSS/PC?

1. Introducción. CEDEX - Curso de formación estadística. Práctica Cómo introducir datos en SPSS/PC? Técnicas de análisis multivariante - I 9//oo5 CEDEX - Curso de formación estadística Práctica. Introducción En esta práctica trabajaremos con el fichero de datos pardals.xls que corresponde a un estudio

Más detalles

PRÁCTICA I. Ejercicios Teóricos

PRÁCTICA I. Ejercicios Teóricos PRÁCTICA I TEORÍA DE LA DECISIÓN BAYESIANA Ejercicios Teóricos Ejercicio. En el caso de dos categorías, en la regla de decisión de Bayes el error condicional está dado por la ecuación (7). Incluso si las

Más detalles

Tema 18 Análisis de la varianza de un factor (ANOVA) Contraste paramétrico de hipótesis

Tema 18 Análisis de la varianza de un factor (ANOVA) Contraste paramétrico de hipótesis Tema 18 Análisis de la varianza de un factor () Contraste paramétrico de hipótesis Compara la distribución de una variable continua normal en mas de dos poblaciones (niveles o categorías) Pruebas de contraste

Más detalles

Análisis conjunto en el análisis de correspondencia generada por una tabla de contingencia

Análisis conjunto en el análisis de correspondencia generada por una tabla de contingencia Análisis conjunto en el análisis de correspondencia generada por una tabla de contingencia Eliseo Martínez H. 1. Análisis conjunto En nuestro artículo anterior, habíamos designado arbitrariamente una variable

Más detalles

ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda.

ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda. ESTIMACIÓN Estas transparencias contienen material adaptado del curso de PATTERN RECOGNITION AND MACHINE LEARNING de Heikki Huttunen y del libro Duda. APRENDIZAJE AUTOMÁTICO, ESTIMACIÓN Y DETECCIÓN Introducción

Más detalles

Tema 4 - Introducción

Tema 4 - Introducción Tema 4 - Introducción 1 Tema 3. Estimación puntual Criterios de comparación de estimadores: Insesgadez. Estimadores de mínima varianza. Error cuadrático medio. Consistencia. Cómo obtener estimadores? Tema

Más detalles

Tema 3 Normalidad multivariante

Tema 3 Normalidad multivariante Aurea Grané Máster en Estadística Universidade Pedagógica Aurea Grané Máster en Estadística Universidade Pedagógica Tema 3 Normalidad multivariante 3 Normalidad multivariante Distribuciones de probabilidad

Más detalles

Sistemas de Reconocimiento de Patrones

Sistemas de Reconocimiento de Patrones Sistemas de Reconocimiento de Patrones p. 1/33 Sistemas de Reconocimiento de Patrones Luis Vázquez GTI - IIE Facultad de Ingeniería Universidad de la República Sistemas de Reconocimiento de Patrones p.

Más detalles

Tema 2 Datos multivariantes

Tema 2 Datos multivariantes Aurea Grané Máster en Estadística Universidade Pedagógica 1 Aurea Grané Máster en Estadística Universidade Pedagógica 2 Tema 2 Datos multivariantes 1 Matrices de datos 2 Datos multivariantes 2 Medias,

Más detalles

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t).

f(x, y, z, t) = (x + y t, x + 2y z 3t, 3x + 5y 2z 7t). Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Álgebra Convocatoria de enero de 20 de enero de 20 (2.5 p.) ) Se considera la aplicación lineal f : R 4 R definida por: f(x y

Más detalles

Análisis discriminante.

Análisis discriminante. Análisis discriminante. INTRODUCCIÓN Las técnicas de análisis discriminante se proponen la determinación de un criterio que nos permita decidir a qué grupo pertenece un cierto individuo, a partir de la

Más detalles

PROGRAMA OFICIAL DE POSTGRADO EN ESTADÍSTICA E INVESTIGACIÓN OPERATIVA

PROGRAMA OFICIAL DE POSTGRADO EN ESTADÍSTICA E INVESTIGACIÓN OPERATIVA PROGRAMA OFICIAL DE POSTGRADO EN ESTADÍSTICA E INVESTIGACIÓN OPERATIVA DATOS IDENTIFICATIVOS DE LA MATERIA Código de la materia: P1061101 Nombre de la materia: Modelos de Regresión Número de créditos ECTS:

Más detalles

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica

ECONOMETRÍA II Prof.: Begoña Álvarez TEMA 1 INTRODUCCIÓN. Estimación por máxima verosimilitud y conceptos de teoría asintótica ECONOMETRÍA II Prof.: Begoña Álvarez 2007-2008 TEMA 1 INTRODUCCIÓN Estimación por máxima verosimilitud y conceptos de teoría asintótica 1. ESTIMACIÓN POR MÁXIMA VEROSIMILITUD (MAXIMUM LIKELIHOOD) La estimación

Más detalles

Análisis de Datos. Clasificación Bayesiana para distribuciones normales. Profesor: Dr. Wilfrido Gómez Flores

Análisis de Datos. Clasificación Bayesiana para distribuciones normales. Profesor: Dr. Wilfrido Gómez Flores Análisis de Datos Clasificación Bayesiana para distribuciones normales Profesor: Dr. Wilfrido Gómez Flores 1 Funciones discriminantes Una forma útil de representar clasificadores de patrones es a través

Más detalles

Capítulo 8. Análisis Discriminante

Capítulo 8. Análisis Discriminante Capítulo 8 Análisis Discriminante Técnica de clasificación donde el objetivo es obtener una función capaz de clasificar a un nuevo individuo a partir del conocimiento de los valores de ciertas variables

Más detalles

Aplicación de la distribución empírica: Tests de bondad de ajuste

Aplicación de la distribución empírica: Tests de bondad de ajuste Aplicación de la distribución empírica: Tests de bondad de ajuste 4 de marzo de 2009 Test de bondad de ajuste Supongamos que se dispone de una m.a.s de tamaño n de una población X con distribución desconocida

Más detalles

Análisis Factorial General.

Análisis Factorial General. Capítulo 1 Análisis Factorial General. 1.1. Análisis Factorial General (AFG). Introducción. Sea una tabla rectangular de valores numéricos, representados por una matriz X n p, con términos x ij. Nos planteamos

Más detalles

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas

Estadística. Tema 2. Variables Aleatorias Funciones de distribución y probabilidad Ejemplos distribuciones discretas y continuas Estadística Tema 2 Variables Aleatorias 21 Funciones de distribución y probabilidad 22 Ejemplos distribuciones discretas y continuas 23 Distribuciones conjuntas y marginales 24 Ejemplos distribuciones

Más detalles

Componentes principales y dimensionalidad

Componentes principales y dimensionalidad Universisad de San Andrés y CONICET Dos problemas Bienestar 19 dimensiones del bienestar en Argentina Ingreso, educacion, tipo de trabajo, paga en cuotas, etc. Realmente el bienestar tiene 19 dimensiones?

Más detalles

ANÁLISIS DE COMPONENTES PRINCIPALES

ANÁLISIS DE COMPONENTES PRINCIPALES ANÁLISIS DE COMPONENTES PRINCIPALES INTRODUCCIÓN El objetivo principal de la mayoría de las técnicas numéricas de análisis multivariado, es reducir la dimensión de nuestros datos. Por supuesto, si esta

Más detalles

METODOS ESTADÍSTICOS

METODOS ESTADÍSTICOS METODOS ESTADÍSTICOS Introducción. Uno de los objetivos de la asignatura de Hidrología, es mostrar a los alumnos, las herramientas de cálculo utilizadas en Hidrología Aplicada para diseño de Obras Hidráulicas.

Más detalles

Preguntas más Frecuentes: Tema 8

Preguntas más Frecuentes: Tema 8 Preguntas más Frecuentes: Tema 8 Pulse sobre la pregunta para acceder directamente a la respuesta 1. En el ejemplo 8.1, por qué se escoge n =?. En el ejemplo 8.1, si n fuera igual a 3 habría que obtener

Más detalles

Tema 1: Distribución normal multivariante

Tema 1: Distribución normal multivariante Tema 1: Distribución normal multivariante Amparo Baíllo Moreno Departamento de Matemáticas Universidad Autónoma de Madrid Vectores aleatorios Los datos multivariados son el resultado de observar un vector

Más detalles

Tema 13: Contrastes No Paramétricos

Tema 13: Contrastes No Paramétricos Tema 13: Contrastes No Paramétricos Presentación y Objetivos. La validez de los métodos paramétricos depende de la validez de las suposiciones que se hacen sobre la naturaleza de los datos recogidos. La

Más detalles

ANÁLISIS DISCRIMINANTE (AD)

ANÁLISIS DISCRIMINANTE (AD) discrim_predictivo.doc 30//05 vgg ANÁLISIS DISCRIMINANTE (AD) Regresión con respuesta categórica Y Cómo depende Y de las variables X, X,... X p? cualitativa cuantitativas Planteamiento Predictivo del AD:

Más detalles

Regresión múltiple. Demostraciones. Elisa Mª Molanes López

Regresión múltiple. Demostraciones. Elisa Mª Molanes López Regresión múltiple Demostraciones Elisa Mª Molanes López El modelo de regresión múltiple El modelo que se plantea en regresión múltiple es el siguiente: y i = β 0 + β 1 x 1i + β 2 x 2i +...+ β k x ki +

Más detalles

Componentes principales (II)

Componentes principales (II) Componentes principales (II) Eliseo Martínez Herrera 1. Propiedades de los componentes Los componentes principales tienen las siguientes propiedades: 1 La suma de las varianzas de los componentes es igual

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURAEN INFORMÁTICA

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURAEN INFORMÁTICA UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURAEN INFORMÁTICA PROGRAMA DE LA ASIGNATURA DE: Seminario de Técnicas estadísticas avanzadas para la toma de

Más detalles

VECTORES ALEATORIOS Julián de la Horra Departamento de Matemáticas U.A.M.

VECTORES ALEATORIOS Julián de la Horra Departamento de Matemáticas U.A.M. 1 Introducción VECTORES ALEATORIOS Julián de la Horra Departamento de Matemáticas U.A.M. Desde un punto de vista formal, los vectores aleatorios son la herramienta matemática adecuada para transportar

Más detalles

CAPÍTULO 2 INTRODUCCIÓN A ICA Y PCA

CAPÍTULO 2 INTRODUCCIÓN A ICA Y PCA CAPÍTULO INTRODUCCIÓN A ICA Y PCA. Análisis de componentes principales.. Introducción El Análisis de Componentes Principales (PCA), también llamado transformada de Karhunen-Loève, es una técnica estadística

Más detalles

Análisis en Componentes Principales

Análisis en Componentes Principales This is page i Printer: Opaque this Análisis en Componentes Principales Dr. Oldemar Rodríguez Rojas 29 de mayo de 2008 ii This is page iii Printer: Opaque this Contents. Análisis en Componentes Principales

Más detalles

El análisis de correspondencias. Ana María López Jiménez Dept. Psicología Experimental (USE)

El análisis de correspondencias. Ana María López Jiménez Dept. Psicología Experimental (USE) El análisis de correspondencias Ana María López Jiménez Dept. Psicología Experimental (USE) 4. El análisis de correspondencias 4.. Introducción 4.2. Tabla de correspondencias 4.3. Dependencia e independencia

Más detalles

Análisis Multivariante de Datos

Análisis Multivariante de Datos Análisis Multivariante de Datos Curso 2016-2017 Por qué es importante realizar inferencia sobre los parámetros de la normal? La estimación máximo-verosímil (MV) de la distribución Normal son la media y

Más detalles

Capítulo 5. Escalado Multidimensional 5.1. ESCALADO MÉTRICO

Capítulo 5. Escalado Multidimensional 5.1. ESCALADO MÉTRICO Capítulo 5 Escalado Multidimensional 5.1. ESCALADO MÉTRICO Dada una matriz de distancias D = (d ij ) o de disimilaridades = (δ ij ) entre n objetos, el escalado métrico consiste en encontrar las coordenadas

Más detalles

ANÁLISIS DE COMPONENTES PRINCIPALES

ANÁLISIS DE COMPONENTES PRINCIPALES ANÁLISIS DE COMPONENTES PRINCIPALES INTRODUCCIÓN El objetivo principal de la mayoría de las técnicas numéricas de análisis multivariado, es reducir la dimensión de nuestros datos. Por supuesto, si esta

Más detalles

AMD - Análisis Multivariante de Datos

AMD - Análisis Multivariante de Datos Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2016 200 - FME - Facultad de Matemáticas y Estadística 1004 - UB - Universitat de Barcelona 715 - EIO - Departamento de Estadística

Más detalles

PROGRAMA DE LA ASIGNATURA Curso académico 2012/2013

PROGRAMA DE LA ASIGNATURA Curso académico 2012/2013 PROGRAMA DE LA ASIGNATURA Curso académico 2012/2013 Identificación y características de la asignatura Denominación Estadística Multivariante Código 108772 Créditos (T+P) Titulación Licenciatura en Matemáticas

Más detalles

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears

Análisis de la varianza. Magdalena Cladera Munar Departamento de Economía Aplicada Universitat de les Illes Balears Análisis de la varianza Magdalena Cladera Munar mcladera@uib.es Departamento de Economía Aplicada Universitat de les Illes Balears CONTENIDOS Análisis de la varianza de un factor. Análisis de la varianza

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 01 1. Intervalo de Confianza para la Media µ (con σ conocida Dada una muestra de tamaño n, para un nivel de confianza 1-α y la desviación típica de la población σ, el Intervalo

Más detalles

Estadística Bayesiana

Estadística Bayesiana Universidad Nacional Agraria La Molina 2017-1 Teoría de la decisión Riesgo de Bayes La teoría de decisión es un área de suma importancia en estadística ya que muchos problemas del mundo real pueden tomar

Más detalles

Ejemplos Resueltos Tema 4

Ejemplos Resueltos Tema 4 Ejemplos Resueltos Tema 4 2012 1. Contraste de Hipótesis para la Media µ (con σ conocida) Dada una muestra de tamaño n y conocida la desviación típica de la población σ, se desea contrastar la hipótesis

Más detalles

Ms. C. Marco Vinicio Rodríguez

Ms. C. Marco Vinicio Rodríguez Ms. C. Marco Vinicio Rodríguez mvrodriguezl@yahoo.com http://mvrurural.wordpress.com/ Uno de los objetivos de la estadística es saber acerca del comportamiento de parámetros poblacionales tales como:

Más detalles

Examen de Teoría de (Introducción al) Reconocimiento de Formas

Examen de Teoría de (Introducción al) Reconocimiento de Formas Examen de Teoría de (Introducción al) Reconocimiento de Formas Facultad de Informática, Departamento de Sistemas Informáticos y Computación Universidad Politécnica de Valencia, Enero de 007 Apellidos:

Más detalles

2.3. Análisis bayesiano para datos normales

2.3. Análisis bayesiano para datos normales 2.3. Análisis bayesiano para datos normales 87 2.3. Análisis bayesiano para datos normales Otra de las situaciones más frecuentes en la práctica estadística es aquella en la que nos encontramos con datos

Más detalles

TEMA III: DIAGONALIZACIÓN.

TEMA III: DIAGONALIZACIÓN. TEMA III: DIAGONALIZACIÓN. OBJETIVOS: Generales: 1. Captar el motivo que justifica el problema de la diagonalización de endomorfismos. 2. Resolver y aplicar dicho problema cuando sea posible. Específicos:

Más detalles

Representaciones gráficas de las distribuciones bidimensionales de frecuencias... 74

Representaciones gráficas de las distribuciones bidimensionales de frecuencias... 74 Índice 1. Introducción al R 15 1.1. Introducción............................. 15 1.2. El editor de objetos R....................... 18 1.3. Datos en R............................. 19 1.3.1. Vectores...........................

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE DEFINICIÓN: Cómo técnica de análisis de dependencia: Pone en marcha un modelo de causalidad en el que la variable endógena es una variable NO MÉTRICA y las independientes métricas. Cómo técnica de análisis

Más detalles

Fiabilidad y variabilidad

Fiabilidad y variabilidad Fiabilidad y variabilidad El coeficiente de fiabilidad de un test se ve afectado por la variabilidad de la muestra. Un test tiende a manifestar un coeficiente de fiabilidad mayor cuanto mayor sea su variabilidad.

Más detalles

Análisis de Correspondencias Simple

Análisis de Correspondencias Simple 1 Capítulo 4 Análisis de Correspondencias Simple 41 INTRODUCCIÓN El Análisis de Correspondencias Simple permite describir las relaciones entre dos variables categóricas dispuestas en una tabla de contingencia

Más detalles

Tema 6: Introducción a la Inferencia Bayesiana

Tema 6: Introducción a la Inferencia Bayesiana Tema 6: Introducción a la Inferencia Bayesiana Conchi Ausín Departamento de Estadística Universidad Carlos III de Madrid concepcion.ausin@uc3m.es CESGA, Noviembre 2012 Contenidos 1. Elementos básicos de

Más detalles

Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales

Capítulo 2. Medidas Estadísticas Básicas Medidas estadísticas poblacionales Capítulo 2 Medidas Estadísticas Básicas 2.1. Medidas estadísticas poblacionales Sea X una variable aleatoria con función de probabilidad p(x) si es discreta, o función de densidad f(x) si es continua.

Más detalles

Maestría en Bioinformática Probabilidad y Estadística: Clase 13

Maestría en Bioinformática Probabilidad y Estadística: Clase 13 Maestría en Bioinformática Probabilidad y Estadística: Clase 13 Gustavo Guerberoff gguerber@fing.edu.uy Facultad de Ingeniería Universidad de la República Mayo de 2010 Contenidos 1 Hidden Markov Models

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 34 Álgebra matricial y vectores aleatorios Una matriz es un arreglo

Más detalles

Tema 5. Muestreo y distribuciones muestrales

Tema 5. Muestreo y distribuciones muestrales 1 Tema 5. Muestreo y distribuciones muestrales En este tema: Muestreo y muestras aleatorias simples. Distribución de la media muestral: Esperanza y varianza. Distribución exacta en el caso normal. Distribución

Más detalles

Técnicas de Inferencia Estadística II. Tema 5. Estadísticos de orden

Técnicas de Inferencia Estadística II. Tema 5. Estadísticos de orden Técnicas de Inferencia Estadística II Tema 5. Estadísticos de orden M. Concepción Ausín Universidad Carlos III de Madrid Grado en Estadística y Empresa Curso 2010/11 Tema 5. Estadísticos de orden Contenidos

Más detalles

Álgebra Lineal. Tema 12. Mínimos cuadrados II. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Tema 12. Mínimos cuadrados II. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Tema 2 Mínimos cuadrados II Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J S ALAS, A T ORRENTE Y EJS V ILLASEÑOR Índice general

Más detalles

Distribución Gaussiana Multivariable

Distribución Gaussiana Multivariable Distribución Gaussiana Multivariable Carlos Belaustegui Goitia, Juan Augusto Maya 8 de Agosto de Resumen En este documento presentamos la deducción de la expresión de la función densidad de probabilidad

Más detalles

Regresión Lineal Múltiple

Regresión Lineal Múltiple Unidad 4 Regresión Lineal Múltiple Javier Santibáñez (IIMAS, UNAM) Regresión Semestre 2017-2 1 / 35 Introducción La idea de la regresión lineal múltiple es modelar el valor esperado de la variable respuesta

Más detalles

Estadística I Tema 5: Introducción a la inferencia estadística

Estadística I Tema 5: Introducción a la inferencia estadística Estadística I Tema 5: Introducción a la inferencia estadística Tema 5. Introducción a la inferencia estadística Contenidos Objetivos. Estimación puntual. Bondad de ajuste a una distribución. Distribución

Más detalles

RECONOCIMIENTO DE PAUTAS

RECONOCIMIENTO DE PAUTAS RECONOCIMIENTO DE PAUTAS ANÁLISIS DISCRIMINANTE (Discriminant analysis) Reconocimiento de pautas supervisado si se cuenta con objetos cuya pertenencia a un grupo es conocida métodos: análisis de discriminantes

Más detalles

DISCRIMINACIÓN CUADRÁTICA MEDIANTE MATRICES DE COVARIANZAS

DISCRIMINACIÓN CUADRÁTICA MEDIANTE MATRICES DE COVARIANZAS PESQUIMAT, Revista de la F.C.M. de la Universidad Nacional Mayor de San Marcos Vol. I - N'2 Pgs. 111-116 Lima - Perú Dic. 1998 DISCRIMINACIÓN CUADRÁTICA MEDIANTE MATRICES DE COVARIANZAS? Doris Gómez Ticerán

Más detalles

Vectores aleatorios (distribuciones multivariantes)

Vectores aleatorios (distribuciones multivariantes) Vectores aleatorios (distribuciones multivariantes) Tema 9. Distribución conjunta de un vector aleatorio. Distribuciones marginales y condicionadas Ignacio Cascos Depto. Estadística, Universidad Carlos

Más detalles

Regresión con efecto interactivo

Regresión con efecto interactivo 4 Regresión con efecto interactivo. Introducción El modelo de regresión múltiple tratado previamente supone la independencia de efectos de las diferentes variables predictoras, En este sentido, es un modelo

Más detalles

Métodos Bayesianos (Convocatoria Febrero 2005)

Métodos Bayesianos (Convocatoria Febrero 2005) Dpto. Métodos Cuantitativos en Economía y Gestión Univ. de Las Palmas de G.C. Licenciatura en Economía Cuarto curso Curso 04/05 Métodos Bayesianos (Convocatoria Febrero 005) EJERCICIO 1. El método estándar

Más detalles

Cálculo de Probabilidades II Preguntas Tema 2

Cálculo de Probabilidades II Preguntas Tema 2 Cálculo de Probabilidades II Preguntas Tema 2 1. Demuestre que la suma de n v.a. Bernuolli(p) independientes tiene una distribución Binomial con parametros (n, p). 2. Se dice que una v.a tiene una distribución

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

1. Conceptos de Regresión y Correlación. 2. Variables aleatorias bidimensionales. 3. Ajuste de una recta a una nube de puntos

1. Conceptos de Regresión y Correlación. 2. Variables aleatorias bidimensionales. 3. Ajuste de una recta a una nube de puntos TEMA 10 (curso anterior): REGRESIÓN Y CORRELACIÓN 1 Conceptos de Regresión y Correlación 2 Variables aleatorias bidimensionales 3 Ajuste de una recta a una nube de puntos 4 El modelo de la correlación

Más detalles

1. ESPACIO EUCLÍDEO. ISOMETRÍAS

1. ESPACIO EUCLÍDEO. ISOMETRÍAS 1 1. ESPACIO EUCLÍDEO. ISOMETRÍAS Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos

Más detalles

Ejercicios de optimización sin restricciones

Ejercicios de optimización sin restricciones Ejercicios de optimización sin restricciones Programación Matemática Licenciatura en Ciencias y Técnicas Estadísticas Curso 5/6 Indica la dirección que el método de Newton (sin modificaciones calcularía

Más detalles

Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL

Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL Tema 3: VARIABLE ALEATORIA BIDIMENSIONAL Carlos Alberola López Lab. Procesado de Imagen, ETSI Telecomunicación Despacho 2D014 caralb@tel.uva.es, jcasasec@tel.uva.es, http://www.lpi.tel.uva.es/sar Concepto

Más detalles

Diseño de experimentos

Diseño de experimentos Diseño de experimentos Quimiometría Por qué diseñar experimentos? Exploración: cuáles factores son importantes para realizar exitosamente un proceso Optimización: cómo mejorar un proceso Ahorro de tiempo:

Más detalles

COMPONENTES PRINCIPALES

COMPONENTES PRINCIPALES COMPONENTES PRINCIPALES Jorge Galbiati R. El método de Componentes Principales tiene por objeto reducir la dimensionalidad de un problema de múltiples variables, aplicando una sucesión de transformaciones

Más detalles

Los estimadores mínimo cuadráticos bajo los supuestos clásicos

Los estimadores mínimo cuadráticos bajo los supuestos clásicos Los estimadores mínimo cuadráticos bajo los supuestos clásicos Propiedades estadísticas e inferencia Mariana Marchionni marchionni.mariana@gmail.com Mariana Marchionni MCO bajo los supuestos clásicos 1

Más detalles

Ejercicio 1. Ejercicio 2

Ejercicio 1. Ejercicio 2 Guía de Ejercicios Ejercicio. Calcular los momentos de primer y segundo orden (media y varianza) de una variable aleatoria continua con distribución uniforme entre los límites a y b.. Sabiendo que la función

Más detalles

GUIÓN TEMA 3. CONTRASTE DE HIPÓTESIS EN EL MRL Contrastes de hipótesis en el MRL

GUIÓN TEMA 3. CONTRASTE DE HIPÓTESIS EN EL MRL Contrastes de hipótesis en el MRL ECONOMETRIA I. Departamento de Fundamentos del Análisis Económico Universidad de Alicante. Curso 011/1 GUIÓN TEMA 3. CONTRASTE DE HIPÓTESIS EN EL MRL Los procedimientos clásicos de contrastes de hipótesis

Más detalles

Distribución bidimensional. Marginales. Correlación lineal. Rectas de regresión.

Distribución bidimensional. Marginales. Correlación lineal. Rectas de regresión. REGRESIÓN LINEAL. Distribución bidimensional. Marginales. Correlación lineal. Rectas de regresión. Dada una población, hasta ahora hemos estudiado cómo a partir de una muestra extraída de ella podemos

Más detalles

DEPARTAMENTO DE MATEMÁTICAS Página 1

DEPARTAMENTO DE MATEMÁTICAS Página 1 DEPARTAMENTO DE MATEMÁTICAS Página 1 APROBADO EN EL CONSEJO DE LA FACULTAD DE CIENCIAS EXACTAS ACTA 13 DEL 21 ABRIL 2010 PROGRAMAS DEL DEPARTAMENTO DE MATEMÁTICAS El presente formato tiene la finalidad

Más detalles

Estimación de densidades basada en núcleos: algunos elementos. Isabel Cañette

Estimación de densidades basada en núcleos: algunos elementos. Isabel Cañette Estimación de densidades basada en núcleos: algunos elementos básicos. Isabel Cañette Seminario de Reconocimiento de Patrones. Seminario de Probabilidad y Estadística. Diciembre, 2002 Introducción. Decimos

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 20 Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre

Más detalles

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada.

ANEXO 1. CONCEPTOS BÁSICOS. Este anexo contiene información que complementa el entendimiento de la tesis presentada. ANEXO 1. CONCEPTOS BÁSICOS Este anexo contiene información que complementa el entendimiento de la tesis presentada. Aquí se exponen técnicas de cálculo que son utilizados en los procedimientos de los modelos

Más detalles

Repaso de conceptos de álgebra lineal

Repaso de conceptos de álgebra lineal MÉTODOS AVANZADOS EN APRENDIZAJE ARTIFICIAL: TEORÍA Y APLICACIONES A PROBLEMAS DE PREDICCIÓN Manuel Sánchez-Montañés Luis Lago Ana González Escuela Politécnica Superior Universidad Autónoma de Madrid Repaso

Más detalles

Notas de clase Estadística R. Urbán R.

Notas de clase Estadística R. Urbán R. Inferencia estadística Sabemos que una población puede ser caracterizada por los valores de algunos parámetros poblacionales, por ello es lógico que en muchos problemas estadísticos se centre la atención

Más detalles