Límites y Continuidad de funciones de dos variables

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Límites y Continuidad de funciones de dos variables"

Transcripción

1 Límites y Continuidad de funciones de dos variables 1.- Si en un cierto punto ( a, b) R existe el lim f = L R a,b, entonces: f es continua en (a, b). b) Existen los límites reiterados de f en (a, b) y ambos valen L. + + c) ε R, δ R tal que si un punto (x, y) del dominio de f pertenece al disco abierto de centro (a, b) y radio δ, con (x, y) (a, b), entonces la distancia de f(x, y) a L es menor que ε..- Si z = f(x, y) es continua en R, entonces: Existe y es finito el lim f, a, b R. x, y a,b b) f admite derivadas parciales en todo punto ( b) R a,. c) f es diferenciable en todo R. 3.- Sea z = f() una función tal que sus límites radiales en P 0 (0,0) valen todos L. Podemos asegurar que: b) Los límites reiterados, si existen, también valen L. c) Si se verifica que f ( r cos,r senα) L g( r) ( lím f ) ( x, y) = L. α y 4.- Si lím f (x, y) = L R, podemos afirmar: ( ) ( x o, ) Existen los límites reiterados en ( x o, ) y ambos valen L. b) Existen los límites radiales en ( x o, ) y todos valen L. c) f es continua en ( x o, ). xy 5.- El lím : ( x, y ) ( 0,0 ) x + y Vale 0. b) No existe. c) Vale 1. lím g() r = 0, entonces 6.- Supongamos que lim f 0,0 el cambio a coordenadas polares, quedando lim f = lim F( r, α) 0,0 también que F ( r, α) = g( r) h( r, α), entonces: Si limg() r = 0, podemos asegurar que f b) Si ( r,α) es, en principio, una indeterminación y se efectúa lim = 0. y supongamos h depende sólo de α, podemos asegurar que NO existe f c) Si limg() r = 0 que f lim = 0. lim. y h ( r,α) es una función acotada para todo α, podemos asegurar Unidad Docente de Matemáticas de la E.T.S.I.T.G.C. 1

2 7.- Estamos calculando ( ) ( a,b) L = lim f y demostramos que: ( α + cosα) r sen f ( r cos α, r senα ) 5 = 3+ senα para todos r y α. Entonces podemos asegurar que: L existe y vale 5. b) L existe y vale 0 c) No existe el límite buscado. x + y si y x 8.- Sea f() = x+ y α si y = x No existe ningún valor de α para el cual f sea continua en (0,0). b) f es continua en (0,0) independientemente del valor de α. c) Para que f sea continua en (0,0), ha de ser α= Cuál de las siguientes afirmaciones es cierta para una función z=f()? f L g r, α L <h r 0 cuando r 0, entonces Si se verifica que lím f ( x, y ) xy, x0, y0 b) Si existen los límites reiterados de f en un punto (x 0,y 0 ), entonces existe lím f x, y ( xy, ) ( x, y) 0 0 c) Si existen los límites radiales de f, entonces existe lím f x y. xy, x0, y Sea z=f() una función real de dos variables reales. Entonces: Si f es continua en (a,b) y existen f x (a,b) y f y (a,b) f es diferenciable en (a,b). b) Si existen f x (a,b) y f y (a,b) f es continua en (a,b) f es diferenciable en (a,b). c) Si f es diferenciable en (a,b) f es derivable en cualquier dirección y continua en (a,b). lím lím f (x, y) = lím lím f (x, y) = Supongamos que () (,5) lím f (x, y) = 3 x y 5 y 5 x b) No existe lím f (x, y). () (,5) c) Si existe el lím f (x, y) vale 3. () (,5) x + y si (x, y) (0,0) 1.- Sea f() = x y 0 si () = (0,0) / lim f x, y. b) ( ) ( 0,0) ( ) ( 0,0) lim f x, y, pero, no es continua (0,0). c) Los límites reiterados son indeterminados (del tipo 0/0) cuando () (0,0). Unidad Docente de Matemáticas de la E.T.S.I.T.G.C.

3 lím lím f (x, y) = lím lím f (x, y) = k, entonces se verifica: 13.- Si b) x 0 x 0 y 0 y 0 x 0 lím f (x, y) = k m R lím f (x, y) = k. () (0,0) c) Si existe el lím f (x, y) vale k. () (0,0) 14.- Si lím f (x, y) = k, entonces se verifica que: () (0,0) Existen los límites reiterados y ambos valen k. b) f es continua en (0,0). c) Existen los límites reiterados y ambos valen k, o bien, alguno de ellos no existe Si lím f (x, y) = L, entonces se verifica que: () (a,b) Si existen los límites reiterados y coinciden, han de ser iguales a L. b) L=f(a,b), siempre que f esté definida en dicho punto. c) Existen los límites reiterados y valen L Sea una función z=f() que en el origen (0,0) verifica que existen sus límites reiterados y valen L, entonces: lim f x, y = L. ( ) ( 0,0) b) Si existe lim f c) x 0 0,0 lím f (x, y) = L m R vale L Supongamos que lím f x y = L R. Entonces: Existen los límites reiterados de f en (0,0). b) f es continua en (0,0). c) Si f es continua en (0,0), ha de ser f(0,0)=l Sea z = f(x, y) una función de R en R De cuál de las siguientes situaciones se puede deducir que lím f (x, y) = 7?: ( ) (0,0) lím lím f (x, y) = 7. x 0 y 0 b) f (x, y) 7 r cosα, r, α R. c) Todos los límites radiales en (0,0) existen y valen 7. 3 x si (x, y) (0,0) 19.- Sea f() = x + y 0 si () = (0,0) lim f x, y = 0. 0,0 b) f no es continua (0,0). c) Los límites radiales en (0,0) no son todos iguales. 0.- Sea z = f() una función tal que sus límites radiales en P 0 (0,0) valen todos L. Podemos asegurar que: Unidad Docente de Matemáticas de la E.T.S.I.T.G.C. 3

4 b) Los límites reiterados, si existen, también valen L. c) Si se verifica que f ( r cos,r senα) L g( r) α y lím g() r = 0, entonces 1.- El dominio de la función f() = x + y es El conjunto de puntos de R por encima de la recta y = -x. b) El conjunto de puntos de R por debajo de la recta y = -x. c) El conjunto de puntos de R formado por los puntos situados por encima de la recta y = -x y los puntos de dicha recta..- La curva de nivel de la superficie z = xy correspondiente a z = 1: Es una hipérbola equilátera. b) Son un par de rectas. c) No es una cónica. 3.- Sea z = f(x, y) = x + 3y, con R. Se verifica que: f admite curva de nivel z R. b) f alcanza en (0, 0) un valor mínimo relativo, pero, no un mínimo absoluto. c) La curva de nivel correspondiente a z = es una elipse de centro (0, 0) y semieje mayor a =. 8y 4.- La curva de nivel de la función f = 1+ x + y correspondiente a c = es Una circunferencia de centro C(0, 4) y radio 3. b) Una elipse de centro C(0, ). c) Una circunferencia de centro C(0, ) y radio Sea F(x, y, z) = 0, con z = f(x, y), la ecuación implícita de una superficie S de Si f es diferenciable en un punto P de S, entonces: f (P) S f f P, x y P,1 b) S. 3 R. c) F (P) S. 6.- La curva de nivel de la superficie z = ln(xy ) correspondiente a z = 0: Es una hipérbola equilátera. b) Son un par de rectas. c) No es una cónica. 7.- Consideremos la superficie de ecuación x + yz xz = 0. Puede afirmarse que: Todas sus curvas de nivel son parábolas, excepto una de ellas que es una recta. b) Esta superficie sólo admite curvas de nivel para z 0. c) La curva de nivel correspondiente a la cota k = 5 está contenida en el plano z = Sea la función z=f() dada implícitamente por la ecuación x +y -z-lnz=0. La circunferencia unidad (centro el origen y radio1) es la curva de nivel de f para la cota: z=1. Unidad Docente de Matemáticas de la E.T.S.I.T.G.C. 4

5 b) z=0. c) no es una curva de nivel. 9.- Consideremos la superficie de ecuación xy+z 3 =5. La curva de nivel para el punto (,) es: x4. b) z=. b) x Consideremos la superficie de ecuación z =. La curva de nivel para x + y 8 z=1 es: La circunferencia de centro (0,0) y radio 9. b) La circunferencia de centro (0,0) y radio 3. c) Ninguna de las dos anteriores Sea z=f() la ecuación de una superficie en R 3. Se llama curva de nivel de dicha superficie a toda línea en el plano R que tenga por ecuación: f(x, y) = k, k Im(f). b) f()=0. c) Ninguna de las anteriores. x y z 3.- Las curvas de nivel de la superficie + + = 1 correspondientes a una cota 9 4 k: Se reducen a un punto si k = ±. b) Son elipses de semiejes a = 3, b = si k = ± 1. c) Solo existen para k Si lím f (x, y) = L R, podemos afirmar: ( ) ( x o, ) Existen los límites reiterados en ( o, ) b) Existen los límites radiales en ( o, ) c) f es continua en x. o x y ambos valen L. x y todos valen L. Unidad Docente de Matemáticas de la E.T.S.I.T.G.C. 5

Límites y Continuidad de funciones de dos variables

Límites y Continuidad de funciones de dos variables Límites Continuidad de funciones de dos variables 1.- Si en un cierto punto a, b R existe el lim f x, L R, entonces: x, a, b a) f es continua en (a, b). b) Existen los límites reiterados de f en (a, b)

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

SOLUCIONES Límites y continuidad de funciones de varias variables 06-07

SOLUCIONES Límites y continuidad de funciones de varias variables 06-07 SOLUCIONES Límites continuidad de funciones de varias variables 6-7 Determinar las guientes funciones son acotadas: a z sen ( + ) cos( - e ), sen ( + ) cos( - e ), luego, es acotada: b z sen + sen Es acotada,

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

Funciones de varias variables: continuidad derivadas parciales y optimización

Funciones de varias variables: continuidad derivadas parciales y optimización Titulación: Ingeniero en Telecomunicación. Asignatura: Cálculo. Relación de problemas número 4. Funciones de varias variables: continuidad derivadas parciales y optimización Problema 1. Determinar el dominio

Más detalles

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A

Prueba de Funciones de varias variables. 5 de noviembre de 2012 GRUPO A 5 de noviembre de 1 GRUPO A xy5 si y x x y 1.- Consideremos f(xy)=. Se pide: 1 si y=x a) Existe el límite: lím f(xy)? xy 1 b) Es continua la función en (1)? c) Es diferenciable la función en (1)? ( puntos).-

Más detalles

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García

TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García TEORÍA DE CÁLCULO I Para Grados en Ingeniería Capítulo 1: Funciones de una variable real Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez 1 CAPÍTULO 1.

Más detalles

OCW-Universidad de Málaga, (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3.

OCW-Universidad de Málaga,  (2014). Bajo licencia. Creative Commons Attribution- NonComercial-ShareAlike 3. OCW-Universidad de Málaga, http://ocw.uma.es (014). Bajo licencia Creative Commons Attribution- NonComercial-ShareAlike 3.0 Spain Matemáticas III Relación de ejercicios Tema 1 Ejercicios Ej. 1 Encuentra

Más detalles

CUESTIONES RESUELTAS 2. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CURSO

CUESTIONES RESUELTAS 2. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CURSO CUESTIONES RESUELTAS. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. º GRADO GESTIÓN AERONAÚTICA CURSO 0-0. CONCEPTOS DE DOMINIO, RECORRIDO Y GRÁFICA e. Sea f() definida por: f ( ) Entonces

Más detalles

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES

CALCULO VECTORIAL GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES GUÍA DE EJERCICIOS N 1 INTEGRALES DE LINEA Y SUS APLICACIONES 1.- En cada uno de los siguientes casos calcular la integral de línea dada a) + +, donde C es el segmento de recta que une el punto O(0,0)

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

Práctico Preparación del Examen

Práctico Preparación del Examen Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x

Más detalles

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra.

Integral definida. dx es diferencial de x, e indica cuál es la variable de la función que se integra. Integral definida Integral definida Dada una función f(x) y un intervalo [a,b], la integral definida es igual al área limitada entre la gráfica de f(x), el eje de abscisas, y las rectas verticales x =

Más detalles

Fonaments Matemàtics

Fonaments Matemàtics Fonaments Matemàtics Grau en Engineria de la Construcció Cónicas. Denición Dadas una recta l un punto F no situado en l el conjunto de puntos P equidistantes de F de l se denomina parábola. La recta l

Más detalles

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)

1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad

Más detalles

4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16.

4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. Problemas de circunferencias 4. Escribe la ecuación de la circunferencia de centro C(-2,3) y radio 4. Sol: (x+2) 2 +(y-3) 2 =16. 10. 5. Calcula la potencia del punto P(-1,2) a la circunferencia: x 2 +y

Más detalles

Extremos de funciones de dos variables 1.- Sea z = f(x, y) una función cuyas derivadas parciales son continuas en afirmarse que:

Extremos de funciones de dos variables 1.- Sea z = f(x, y) una función cuyas derivadas parciales son continuas en afirmarse que: Etremos de unciones de dos variables 1.- Sea z = (, ) una unción cuas derivadas parciales son continuas en airmarse que: a) alcanza sus valores máimo mínimo absolutos en R. b) es dierenciable en todo punto

Más detalles

Profesores de Enseñanza Secundaria. MATEMÁTICAS. ANDALUCÍA 2018

Profesores de Enseñanza Secundaria. MATEMÁTICAS. ANDALUCÍA 2018 ANDALUCÍA 8 PROBLEMA Dados la matriz A R, el vector b R, α R y el subespacio F de R A =, b = y F + = α + + = α a) Discutir y resolver cuando sea compatible el sistema AX=b con X R. b) Sea E el espacio

Más detalles

R. Puede. a) f alcanza sus valores máximo y mínimo absolutos en R. X b) f es diferenciable en todo punto de R. ' ' , para algún punto

R. Puede. a) f alcanza sus valores máximo y mínimo absolutos en R. X b) f es diferenciable en todo punto de R. ' ' , para algún punto Etremos de unciones de dos variables Etremos de unciones de dos variables 1.- Sea z = (, ) una unción cuas derivadas parciales son continuas en airmarse que: a) alcanza sus valores máimo mínimo absolutos

Más detalles

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( )

a) sen(2t) cos(2t). b) 4sent cost. c) Si una función z = f(x, y) tiene plano tangente en un punto ( ) Diferenciabilidad de fnciones de dos variables - Sea = f(,) na fnción real de variable real, se verifica qe: a) Si f admite derivada direccional en n pnto P en calqier dirección, entonces f es diferenciable

Más detalles

De x = 1 a x = 6, la recta queda por encima de la parábola.

De x = 1 a x = 6, la recta queda por encima de la parábola. Área entre curvas El área comprendida entre dos funciones es igual al área de la función que está situada por encima menos el área de la función que está situada por debajo. Ejemplos 1. Calcular el área

Más detalles

GUIA PARA EL EXAMEN EXTRAORDINARIO DE MATEMATICAS V

GUIA PARA EL EXAMEN EXTRAORDINARIO DE MATEMATICAS V GUIA PARA EL EXAMEN EXTRAORDINARIO DE MATEMATICAS V 1) Determinar el dominio de las siguientes funciones dando el resultado en parentesis para:. y = x + 4. y = 3x c). y = x 3 x+ ) Obtener el rango para

Más detalles

Tema 3. GEOMETRIA ANALITICA.

Tema 3. GEOMETRIA ANALITICA. Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase

Más detalles

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas

Funciones en R n Conceptos métricos y topológicos Límites y continuidad en R 2. Funciones en R n : nociones topológicas Funciones en R n : nociones topológicas 1 Funciones en R n 2 Conceptos métricos y topológicos 3 Límites y continuidad en R 2 Definición Definición Llamaremos función escalar real de n variables reales,

Más detalles

Matemáticas III Andalucía-Tech

Matemáticas III Andalucía-Tech Matemáticas III Andalucía-Tech Tema Optimización en campos escalares Índice 1. Formas cuadráticas y matrices simétricas reales 1. Extremos relativos de un campo escalar 3.1. Polinomio de Taylor de un campo

Más detalles

Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante.

Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. REPARTIDO IV - CÓNICAS Elipse Es el lugar geométrico de los puntos del plano cuya suma de distancias a dos puntos fijos llamados focos es constante. Elementos de la elipse Focos Son los puntos fijos F

Más detalles

Funciones reales de varias variables.

Funciones reales de varias variables. Tema 4 Funciones reales de varias variables. 4.1. El espacio euclídeo R n. Definición 4.1.1. Se define el producto escalar entre vectores de R n como la aplicación: ( ) : R n R n R : x y = (x 1, x 2,...,

Más detalles

Academia de Matemáticas T.M Geometría Analítica Página 1

Academia de Matemáticas T.M Geometría Analítica Página 1 INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos

Más detalles

Práctica 3: Diferenciación I

Práctica 3: Diferenciación I Análisis I Matemática I Análisis II (C) Cuat II - 009 Práctica 3: Diferenciación I Derivadas parciales y direccionales. Sea f una función continua en x = a. Probar que f es derivable en x = a si y solo

Más detalles

Funciones de varias variables. Continuidad

Funciones de varias variables. Continuidad Capítulo 1 Funciones de varias variables. Continuidad 1. Topología en R n Definición (Norma, espacio vectorial normado). Una norma sobre R n es una aplicación: : R n [0,+ [ x x, que satisface las siguientes

Más detalles

Normas Equivalentes. Espacios Normados de Dimensión Finita

Normas Equivalentes. Espacios Normados de Dimensión Finita Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece

Más detalles

a(a+1)=0 a 2 -a-2=0 4 (a+1)(a-2)=0 a=-1, a=2 a(a-2)=0 a=0, a= x+2y+z=2 -z=2

a(a+1)=0 a 2 -a-2=0 4 (a+1)(a-2)=0 a=-1, a=2 a(a-2)=0 a=0, a= x+2y+z=2 -z=2 EXTRAORDINARIO DE. PROBLEMA A. Estudia el siguiente sistema de ecuaciones lineales dependiente del parámetro real a y resuélvelo en los casos en que es compatible: ~ Aplicamos el método de Gauss: a +a

Más detalles

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1

Respuestas faltantes en ejercicios edición 2007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4-1 Editorial Mc Graw Hill. Edición 007 Respuestas faltantes en ejercicios edición 007 Sección 4.4: Superficie cuadráticas de revolución Ejercicio 4- R r + x + y Ejercicio 4-3 + R x + y + z Ecuaciones: x +

Más detalles

Unidad 8 Lugares geométricos. Cónicas

Unidad 8 Lugares geométricos. Cónicas Unidad 8 Lugares geométricos. Cónicas PÁGINA 75 SOLUCIONES. La elipse es una cónica obtenida al cortar una superficie cónica por un plano oblicuo al eje y que corte a todas las generatrices. La hipérbola

Más detalles

Integración en una variable (repaso)

Integración en una variable (repaso) Análisis I Matemática I Análisis II (C) Primer Cuatrimestre - 2 Práctica 8: Integración Integración en una variable (repaso). Calcular: sen x. 2π sen x. El área entre las curvas y = sen x, y =, x =, x

Más detalles

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código:

Examen Final de Cálculo Vectorial MATE PREGUNTAS ABIERTAS TEMA A Diciembre 6 de Nombre: Código: UNIVERSIDAD DE LOS ANDES DEPARTAMENTO DE MATEMÁTICAS Examen Final de Cálculo Vectorial MATE 1207 PREGUNTAS ABIERTAS TEMA A Diciembre 6 de 2017 Este es un examen individual, no se permite el uso de libros,

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 162 CONTENIDO Funciones

Más detalles

Funciones reales de varias variables

Funciones reales de varias variables PROBLEMAS DE CÁLCULO II Curso 2-22 2 Funciones reales de varias variables. Dibuja las curvas de niveles,,..., 5 y la representación gráfica de las siguientes funciones a) f(x, y) = 5 x y b) f(x, y) = x

Más detalles

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

1. DIFERENCIABILIDAD EN VARIAS VARIABLES . DIFERENCIABILIDAD EN VARIAS VARIABLES. Calcular las derivadas direccionales de las siguientes funciones en el punto ā y la dirección definida por v... f(x, y = x + 2xy 3y 2, ā = (, 2, v = ( 3 5, 4 5.

Más detalles

Temas 4 y 5. Teoremas de inversión local. Extremos.

Temas 4 y 5. Teoremas de inversión local. Extremos. Problemas de Diferenciación de Funciones de Varias Variables Curso 2013-2014 Temas 4 y 5. Teoremas de inversión local. Extremos. 1. Sea U R n abierto convexo y f : U R. Decimos que f es convexa si: f(tx+(1

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

Cálculo II. Tijani Pakhrou

Cálculo II. Tijani Pakhrou Cálculo II Tijani Pakhrou Índice general 1. Nociones topológicas en R n 1 1.1. Distancia y norma euclídea en R n.................... 1 1.2. Bolas abiertas y cerradas en R n..................... 3 1.3.

Más detalles

FUNCIONES DE VARIAS VARIABLES

FUNCIONES DE VARIAS VARIABLES FUNCIONES DE VARIAS VARIABLES Deinición: Si D es un conjunto de n-uplas de números reales... n una unción de valores reales sobre es una regla que asigna un número real w... n a cada elemento de D donde

Más detalles

Ejercicios de Álgebra y Geometría Analítica

Ejercicios de Álgebra y Geometría Analítica Ejercicios de Álgebra y Geometría Analítica Profr. Fausto Cervantes Ortiz Recta Dibujar las rectas indicadas 1. y = x + 1 2. y = 2x + 5 2 3. y = x + 2 4. y = x + 2 5. y = 2x 3 2 6. y = 3 2 x + 1 2 7. y

Más detalles

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES

9. Diferenciación de funciones reales de varias variables reales Diferenciación DERIVADAS PARCIALES 9.1. Diferenciación 9.1.1. DERIVADAS PARCIALES Derivadas parciales de una función de dos variables Se llaman primeras derivadas parciales de una función f(x, y) respecto de x e y a las funciones: f x (x,

Más detalles

Geometría Analítica. Ecuación de una recta que pasa por un punto y tiene una pendiente dada:

Geometría Analítica. Ecuación de una recta que pasa por un punto y tiene una pendiente dada: Geometría Analítica Definición de línea recta: Llamamos línea recta al lugar geométrico de los puntos tales que tomados dos puntos diferentes cualesquiera y del lugar, el valor de la pendiente m calculado

Más detalles

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A

PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO Opción A IES Fco Ayala de Granada Modelo del 996. Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 996-997. Opción A Modelo Ejercicio opción A sobrantes 996 La capacidad

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x.

Área entre curvas. Ejercicios resueltos. 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. Área entre curvas Ejercicios resueltos 1. Calcular el área limitada por la curva y = x 2 5x + 6 y la recta y = 2x. En primer lugar hallamos los puntos de corte de las dos funciones para conocer los límites

Más detalles

Funciones de Varias Variables

Funciones de Varias Variables Tema Funciones de Varias Variables. Definiciones Generales Definición: Una función de varias variables reales f : A R n R m es una correspondencia que a cada x = (x,,..., x n ) R n le asigna a lo más una

Más detalles

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación

E.T.S.I. Industriales y Telecomunicación Curso Grados E.T.S.I. Industriales y Telecomunicación Conocimientos previos Para poder seguir adecuadamente este tema, se requiere que el alumno repase ponga al día sus conocimientos en los siguientes contenidos: Cálculo de derivadas Propiedades de las funciones

Más detalles

Funciones Reales de Varias Variables

Funciones Reales de Varias Variables Funciones Reales de Varias Variables Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Matematica II Hermes Pantoja Carhuavilca 1 de 54 CONTENIDO Funciones

Más detalles

1. CONTINUIDAD EN VARIAS VARIABLES

1. CONTINUIDAD EN VARIAS VARIABLES 1 1. CONTINUIDAD EN VARIAS VARIABLES 1.1. PRIMERAS DEFINICIONES. LÍMITES Definición 1.1. Sea A R n. Una función real de varias variables es una aplicación f : A R n R m con f(x 1,..., x n ) = (y 1,...,

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Práctica 2: Funciones de R n en R m

Práctica 2: Funciones de R n en R m Análisis I Matemática Análisis II (C) Análisis Matemático I (Q) er. Cuatrimestre - 207 Práctica 2: Funciones de R n en R m. Describir y gracar el dominio de denición para cada una de las siguientes funciones:

Más detalles

Análisis Matemático. Grupo D. Examen 1

Análisis Matemático. Grupo D. Examen 1 Análisis Matemático. Grupo D. Examen Apellidos, Nombre y Firma: Importante: En la puntuación de los problemas no sólo se tendrá en cuenta la solución obtenida sino la exposición correcta de los razonamientos

Más detalles

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones:

Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones. 1. Estudiar la acotación de las siguientes funciones: Fundamentos Matemáticos para la Ingeniería. Curso 2015-2016. Tema 3. Hoja 1 Tema 3. FUNCIONES. CÁLCULO DIFERENCIAL. Funciones 1. Estudiar la acotación de las siguientes funciones: (a) y = 2x 1; (b) y =

Más detalles

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS

Análisis Matemático I (Ing. de Telecomunicación), Examen final, 26 de enero de 2010 RESPUESTAS A AMBOS MODELOS Análisis Matemático I (Ing. de Telecomunicación), 29-1 Examen final, 26 de enero de 21 RESPUESTAS A AMBOS MODELOS Primera Parte Las preguntas 1 14 son de tipo test. Se pide elegir una única respuesta en

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

ETSI de Topografía, Geodesia y Cartografía

ETSI de Topografía, Geodesia y Cartografía ETSI de Topografía, Geodesia Cartografía LÍMITES, CONTINUIDAD Y DIFERENCIABILIDAD DE FUNCIONES DE VARIAS VARIABLES REALES Prueba de Evaluación Continua Grupo ºA 3-Octubre-04.- Sea la función 5 si (,) 4

Más detalles

SERIE # 1 CÁLCULO VECTORIAL

SERIE # 1 CÁLCULO VECTORIAL SERIE # 1 CÁLCULO VECTORIAL Página 1) Determinar la naturaleza de los puntos críticos de la función f x, y = x y x y. P 1 0,0 máximo relativo, P 1, 1 punto silla, P 1, 1 punto silla, 4 1, 1 silla, P5 1,

Más detalles

2 Estudio local de funciones de varias variables.

2 Estudio local de funciones de varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 2 Estudio local de funciones de varias variables. 2.1 Derivadas de orden superior. Problema 2.1 Sea

Más detalles

EXÁMENES DE BACHILLERATO MATEMÁTICAS I y II

EXÁMENES DE BACHILLERATO MATEMÁTICAS I y II EXÁMENES DE BACHILLERATO MATEMÁTICAS I y II Los exámenes finales de bachillerato que aquí se muestran son sobre la totalidad de contenidos de 1º y 2º de Bachillerato Mauricio Contreras EXÁMENES DE BACHILLERATO

Más detalles

Capítulo 3 Soluciones de ejercicios seleccionados

Capítulo 3 Soluciones de ejercicios seleccionados Capítulo 3 Soluciones de ejercicios seleccionados Sección 3.1.4 1. Dom a = [ 1, 1]. Dom b = R. Dom c = (, 4). Dom d = ( 1, ). Dom e = R ( 1, 3] y Dom f = R {, }. 5x 4 x < 1, (x 1)(3x ) x < 1,. (f + g)(x)

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD Opción A Ejercicio 1. [2 5 puntos] Calcula lim x 0 siendo Ln(1 + x) el logaritmo neperiano de 1 + x. Ln(1 + x) sen x, x sen x Ejercicio 2. Sea f : R R la función definida por f(x) = e x/3. (a) [1 punto]

Más detalles

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Temas 1 y 2: Cálculo Diferencial y Optimización ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO CÁLCULO II. Ejercicio de Examen Final Temas 1 y : Cálculo Diferencial y Optimización Calificación: FECHA: 1/06/1 TIEMPO RECOMENDADO: 40 m Puntuación/TOTAL:,5/10 ENUNCIADO Y RESPUESTA AL EJERCICIO: ENUNCIADO

Más detalles

Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante.

Es la elipse el conjunto de puntos fijos cuya suma de distancias a dos puntos fijos llamados focos es constante. ESQUEMA LAS CÓNICAS LA PARÁBOLA ECUACIONES DE LA PARÁBOLA ECUACIÓN DE LA TANGENTE A UNA PARÁBOLA ELIPSE ECUACIONES DE LA ELIPSE PROPIEDADES DE LA ELIPSE LA HIPÉRBOLA ECUACIONES DE LA HIPÉRBOLA 10 ASÍNTOTAS

Más detalles

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS

COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:

Más detalles

Formas de trazar una circunferencia, semicircunferencia, arcos y las cónicas.

Formas de trazar una circunferencia, semicircunferencia, arcos y las cónicas. Formas de trazar una circunferencia, semicircunferencia, arcos y las cónicas. 1 Circunferencia es el lugar geométrico de un punto que se mueve en un plano de tal manera que se conserva siempre a una distancia

Más detalles

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2

E.T.S.I. INFORMÁTICOS (UPM) SOLUCIONES EXAMEN FINAL (16/6/2014) 2 n 2 +n. n = (n 2 + 1) (n 2 3n) n n 2 3n = lím. n + 1 n. n 2 n = 3 2 MATEMÁTICA APLICADA CÁLCULO E.T.S.I. INFORMÁTICOS UPM o G.I.I. SOLUCIONES EXAMEN FINAL 6/6/04 er EXAMEN PARCIAL. Calcule los siguientes ites, si existen: a n + n 3n. b n n + 3 n +n a El ite presenta una

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.

1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo. SEMESTRE 018-1 SERIE CURVAS EN EL PLANO POLAR 1. Obtener las coordenadas cartesianas del punto B simétrico del punto A(5,30 ), respecto al polo.. Determinar las coordenadas polares del punto C simétrico

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2003 [2'5 puntos] Sea la función f : R R definida por f(x) = 2x 3-6x + 4. Calcula el área del recinto limitado por la gráfica de f y su recta tangente en el punto

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN

GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN GUIA DE EJERCICIOS TIPO PSU ECUACIONES Y FUNCIONES DE SEGUNDO GRADO MATEMÁTICA COMÚN 1) El vértice de la parábola f ( x) x² 8x 5 corresponde al par ordenado: a) (4,11) b) (4, 11) c) ( 8,5) d) ( 4,11) e)

Más detalles

Introducción al Cál lculo Infinitesimal

Introducción al Cál lculo Infinitesimal Tema 3 1. Conceptos básicos: dominio, recorrido.. Funciones reales de dos variables reales. 3. Gráficas. 4. Curvas de nivel. 5. Trazas. 6. Concepto de límite. 7. Límites reiterados, según trayectorias

Más detalles

Función Real de variable Real. Definiciones

Función Real de variable Real. Definiciones Función Real de variable Real Definiciones Función Sean A y B dos conjuntos cualesquiera. Una aplicación de A en B es una relación que asocia a cada elemento (x=variable independiente) de A un único valor

Más detalles

FUNCIONES DE DOS VARIABLES

FUNCIONES DE DOS VARIABLES FUNCIONES DE DOS VARIABLES - Funciones de dos variables reales - Límites 3- Continuidad de funciones de dos variables 4- Derivabilidad de funciones de dos variables 5- Diferenciabilidad de funciones de

Más detalles

MATEMÁTICAS II Notas de clase

MATEMÁTICAS II Notas de clase MATEMÁTICAS II Notas de clase Ramón Espinosa Departamento de Matemáticas, ITAM Resumen El propósito de estas notas es presentar algunos temas que se ven en el curso de Matemáticas II en el ITAM. En particular

Más detalles

Análisis Matemático I

Análisis Matemático I Análisis Matemático I Funciones Implícitas Francisco Montalvo Curso 2011/12 Índice 1. Teorema de existencia de Funciones Implícitas 1 1.1. Punto fijo.............................. 1 1.2. Planteamiento............................

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

Tema 6 Funciones reales de varias variables

Tema 6 Funciones reales de varias variables Tema 6 Funciones reales de varias variables 6.1 Continuidad y límites 6.1.1 Introducción. Existen muchos procesos en la naturaleza que dependen de dos o más variables. Por ejemplo, el volumen de un sólido

Más detalles

Integración múltiple: integrales dobles

Integración múltiple: integrales dobles Problemas propuestos con solución Integración múltiple: integrales dobles ISABEL MAEO epartamento de Análisis Matemático Universidad de La Laguna imarrero@ull.es Índice. Integrales iteradas 2. Teorema

Más detalles

Cónicas. Clasificación.

Cónicas. Clasificación. Tema 7 Cónicas. Clasificación. Desde el punto de vista algebraico una cónica es una ecuación de segundo grado en las variables x, y. De ese modo, la ecuación general de una cónica viene dada por una expresión

Más detalles

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana.

. Podemos afirmar: Dom f. c) f es creciente en un entorno de x 0. = y(t) 9.- Sean las ecuaciones paramétricas de una curva plana. 1.- Sea una función coninua y = f() al que el dominio de f() =[a,b], enonces: a) El máimo absoluo de f() se alcanza en uno de los valores ales que f ()=0. b) No iene porque ener máimo absoluo. c) El máimo

Más detalles

LÍMITE DE FUNCIONES. Análisis Matemático A

LÍMITE DE FUNCIONES. Análisis Matemático A LÍMITE DE FUNCIONES Nos aproximamos intuitivamente al límite ε ε δ = Mín(δ 1, δ 2 ) δ 1 δ 2 lim x 2 f x = 7 f 2 Otro ejemplo Algunas observaciones: ε es cualquier número real positivo, tan pequeño como

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3 b) y 16 x Lugares geométricos y cónicas

Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 3 b) y 16 x Lugares geométricos y cónicas Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 4 La ecuación del lugar geométrico de los puntos del plano que equidistan de la recta x y 4, y del punto P (, ) es: a) x y x y 68 0 b) 4x 9y

Más detalles

CONOCIMIENTOS PREVIOS PARA SUPERFICIES EN 3D. 1. Conocimientos previos sobre puntos, rectas y planos en el espacio

CONOCIMIENTOS PREVIOS PARA SUPERFICIES EN 3D. 1. Conocimientos previos sobre puntos, rectas y planos en el espacio Unidad 2 Conocimientos previos Superficies en 3D 2014 CONOCIMIENTOS PREVIOS PARA SUPERFICIES EN 3D Antes de comenzar con el Trabajo Práctico 2 quizás necesites repasar, además de los conocimientos ya repasados

Más detalles

Práctica 2: Funciones de R n en R m

Práctica 2: Funciones de R n en R m Análisis I Matemática I Análisis II C) Análisis Matemático I Q) Primer Cuatrimestre - 208 Práctica 2: Funciones de R n en R m. Dar el dominio de denición para cada una de las siguientes funciones y gracarlo:

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM2 ENRICH CREUS CARNICERO Nivel 2 Unidad 2 Conocimientos previos Superficies en 3D 2015 CONOCIMIENTOS PREVIOS PARA SUPERFICIES EN 3D Antes de comenzar con el Trabajo Práctico 2 quizás necesites repasar,

Más detalles

Bloque 2. Geometría. 4. Iniciación a las Cónicas

Bloque 2. Geometría. 4. Iniciación a las Cónicas Bloque 2. Geometría 4. Iniciación a las Cónicas 1. La circunferencia Se llama circunferencia al lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. Elevando al cuadrado

Más detalles

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario

CÁLCULO III. Pablo Torres. Funciones definidas en R n. Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario CÁLCULO III Pablo Torres Facultad de Ciencias Exactas, Ingeniería y Agrimensura - Universidad Nacional de Rosario Funciones definidas en R n. INTRODUCCIÓN Sean n,m N y A R n. Una función f : A R m se denomina

Más detalles

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación

Soluciones de los ejercicios del examen de Cálculo del 29 de junio de 2007 Primero de Ingeniería de Telecomunicación Soluciones de los ejercicios del examen de del 29 de junio de 27 Primero de Ingeniería de Telecomunicación Ejercicio a Justifica que la ecuación x 2 = x sen x+ cos x tiene exactamente dos soluciones reales.

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

Función lineal y cuadrática. Curvas de primer y segundo grado.

Función lineal y cuadrática. Curvas de primer y segundo grado. Tema 5 Función lineal y cuadrática. Curvas de primer y segundo grado. 5.0.1 Ecuaciones en dos variables. Una linea del plano es el conjunto de puntos (x, y), cuyas coordenadas satisfacen la ecuación F

Más detalles