S-23: Extremos Locales
|
|
|
- Belén Pinto Prado
- hace 7 años
- Vistas:
Transcripción
1 S-3: Extremos Locales P) Halla el máximo y el mínimo de f x = x x x, x > 0. Utilizaremos que: u = e ln (u) y que ln(v) r = rln v. f x = x x x = x x = e ln x x = e xln(x) Recuerda que para calcular los máximos y los mínimos de f x continua y derivable en X R: Encontramos los puntos críticos x i (los ceros de la ecuación f x = 0). Evaluamos cada uno de los puntos críticos x i en la segunda derivada y si: f x i > 0 x i es un mínimo local. f x < 0 x i es un máximo local. Entonces: f (x) = e xln x ln x + x x = x x ln x + Como x x > 0 hacemos: ln x + = 0 ln x = x = e x = Unicamente tenemos un punto crítico x = e, lo valoramos en e f x : f (x) = x x ln x + + x x x = x x ln x + + x
2 f x = x x ln x + + x f e = e e 0 + e > 0 En consecuencia el punto e es un mínimo.
3 P) Halla donde la grafica de f x = x x, x > 0, alcanza su mínimo. Para calcular la derivada de f(x) tomamos logaritmos*: f x = x x ln f x = ln x x ln f x = x ln x f x = e xln(x) Derivamos para hallar los puntos críticos: f (x) = e xln x ln x + x x = xx ln x + Como x x > 0 hacemos: ln x + = 0 ln x = x = e x = e Unicamente tenemos un punto crítico x = e, lo valoramos en f x : f (x) = x x ln x + + x x x = xx ln x + + x f e = e e 0 + e > 0. Hemos usado que ln e = ln ln e = 0. En consecuencia el punto es un mínimo, y el punto buscado es, e e e e = 0.36,0.69 *Podemos usar la fórmula f x g x = f x g x g x ln (f x ) + g x f x x x = x x ln x + f (x), con f x = x, g x = x:
4 P3) Halla donde la grafica de f x = x x, x > 0, alcanza su máximo. Para calcular la derivada de f(x) tomamos logaritmos*: Derivamos para hallar los puntos críticos: f x = e x f x = x x ln f x = ln x x ln f x = x ln x f x = e x ln (x) ln x ln x x + x = e ln x x ln x x = x x ln x x Como x x > 0, hacemos: ln x = 0 ln x = x = x e x 0 = e Unicamente tenemos un punto crítico x 0 = e, lo valoramos en f x : f x = x x ln x x + x x ln x x = x x ln x x + x x x ln (x) x x x 4 f x = x x f e = e e ln x x + x x 3+ln (x) x 3 = x x ln x 3 x + ln (x) x 3 x 3 ln e e 3 e 3 + ln (e) e 3 = e e 3 e 3 + e 3 = e e e 3 = e e e 3 < 0 *Podemos usar la fórmula f x g x = f x g x g g x x ln (f x ) + f (x), con f x = x, g x = : f x x x x = x x ln (x) x + x = xx ln (x) x
5 x = e es un máximo local o relativo de f. Finalmente, x 0 = e tiene que ser el máximo absoluto de f porque es el único extremo local. Así, el punto máximo de la gráfica es x 0, f x 0 = e, e e P4) Halla el máximo y el mínimo de f x = x Calculamos la derivada*: a x, con a > 0, a. f (x) = x a x = xax x a x a x = x x a x Igualamos a cero: x x a x = 0 x x ln a = 0 x xln a = 0 x = 0 x = Tenemos dos puntos críticos. Calculamos la segunda derivada para ver si son máximos o mínimos: * a x = a x ln a
6 f x = x x ln a a x = a x x ln a x x ln a a x ln a a x = 4xln a +x ln a a x f 0 = > 0 x = 0 es un mínimo local de f. f = 4 ln a + a ln a = 8+4 a = a Si hacemos r = a ln r = ln aln a = ln a = ln r = r = ln a e f = 4 ln a + a ln a = < 0 x e = es un Máximo local.
7 P) Prueba que f x = x e x es monótona creciente en R. Prueba también que f f < 0. e Se puede afirmar que f se anula una sola vez en el intervalo,? e Calculamos la derivada de f x : f x = + e x > 0 Es creciente en R f = e = e = 0.36 > 0, f e = e e e = e e e = < 0 Por el teorema de Bolzano, f tiene al menos un cero en e,. Por la aplicación del teorema de Rolle, si f no se anula, f tiene, a lo sumo, un cero en el intervalo e,. Por lo tanto, f se anula una sola vez en el intervalo e,.
8 P) Desarrolla los medios necesarios para proceder a la representación gráfica de: Dominio: f x = x+ex x e x Todo R, x e x nunca es cero, las graficas de x y de e x nunca se cortan. Cortes con el eje X: x + ex f x = 0: x e x = 0 x + ex = 0 x = e x x = Cortes con el eje Y: Asíntotas verticales: Asíntotas Horizontales: x = 0: y = 0 + e0 0 e 0 = No tiene. La función es continua, el denominador no se anula Hacemos x = e x, inicio con cualquiera, por ejemplo x = : Calculo x = e = Calculo x = e.783 = Calculo x = e x + e x + 0 lim f x = lim x x x ex = 0 + e x = L Hôpital = lim x e x = = ;
9 x + e x + + lim f x = lim x x x ex = + = lim e x e x x = lim x = ; + e x = L Hôpital = lim x e x = + = L Hôpital = Puntos críticos: f x = + ex x e x x + e x e x x e x = x ex + xe x e x x e x + xe x + e x x e x = ex + xe x x e x = ex x x ex = 0 x 0 =, es el único punto crítico, y es mínimo local pues f (x) es negativa si x < y positiva si x >.
10 P) Sea f x = x + 3 sen log x, x 0, f 0 = 0. Prueba que f es continua y monótona pero que f (0) no existe. Dónde puede tener la función puntos de discontinuidad? La función podría tener un punto de discontinuidad en x = 0 por el logaritmo: lim f(x) = lim x + x 0 x 0 3 sen log x = lim x x 0 lim + sen log x x 0 3 Dónde puede no ser diferenciable? lim f(x) = 0 función oscilante pero acotada = 0 x 0 La función es diferenciable en R\ 0, y su derivada vale: en R\ 0 : f x = + 3 sen log x + cos log x 3 f x > 0 x 0, pues para que f x = 0: sen log x y cos log x deberían valer a la vez, lo que es imposible. Por lo anterior f(x) es creciente en, 0 y en 0, + Existe f 0?
11 f 0 = lim h 0 f 0 + h f(0) h = lim h 0 h + sen log h 3 h = lim + sen log h h 0 3 NO EXISTE Porque oscila entre + 3 y 3 Para concluir. La función f(x) es creciente en todo R porque: Es creciente y negativa en, 0. f 0 = 0. Es creciente y positiva en 0, +.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 04 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
ln( = x, como x = f -1 (y), cambiamos y por x, entonces Ej 1. (2 puntos) Sea f ( x ) = 2e + 8, entonces: a) La función inversa de f es:
ANÁLIS. MAT. ING. - EXACTAS C 7 APELLIDO: NOMBRES: SOBRE Nº: Duración del eamen: hs DNI/CI/LC/LE/PAS. Nº: E-MAIL: CALIFICACIÓN: TEMA - --7 TELÉFONOS part: cel: Apellido del evaluador: + Ej. ( puntos) Sea
Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 20 - Todos resueltos
página /0 Problemas Tema 2 Solución a problemas de Límite y Continuidad - Hoja 20 - Todos resueltos Hoja 20. Problema. Sabiendo que x 0 x cos(2 x)+b sen( x) 4 x 2 es finito, calcula b y el valor del límite.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
(3 p.) 3) Se considera la superficie z = z(x, y) definida implícitamente por la ecuación. 3x 2 z x 2 y 2 + 2z 3 3yz = 15.
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Curso 2012/2013 21 de junio de 2013 4 p.) 1) Se considera la función fx) = x 4 e 1 x 2. a) Calcular los intervalos de
M a t e m á t i c a s I I 1
Matemáticas II Matemáticas II CASTILLA Y LEÓN CONVOCATORIA SEPTIEMBRE 9 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Prueba A Problemas a) f(x) x El denominador de f(x) nunca se anula; por
M a t e m á t i c a s I I 1
Matemáticas II 1 Matemáticas II COMUNIDAD DE MADRID MODELO CURSO 009-010 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: José Luis Pérez Sanz Opción A Ejercicio 1 a) Para calcular los extremos y los intervalos
Para calcular las asíntotas, empezaremos por las verticales, precisamente en ese punto donde no está definida la función.
1.- Dada la función: f(x) = x + 1 a) Calculad el dominio de f(x). Encontrar también sus asíntotas verticales, horizontales y oblicuas. b) Encontrad la recta tangente a f(x) en el punto x= 0. c) Calculad
Soluciones a los ejercicios del examen final
Cálculo I Curso 2016/17 19 de junio de 2017 Soluciones a los ejercicios del examen final 1) Se considera la función f : [0, ) R definida por { 1 + x(ln(x) 1) si x > 0, f(x) = 1 si x = 0. (a) Probar que
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Unidad 10 Continuidad de las funciones
Unidad 10 Continuidad de las funciones 4 SOLUCIONES 1. La continuidad queda: a) La continuidad en x = 0. No es continua en ese punto al no coincidir los límites laterales. b) La continuidad en x = 3. 2.
FUNCIONES REALES DE VARIABLE REAL
FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Continuidad de funciones
Apuntes Tema 3 Continuidad de funciones 3.1 Continuidad de funciones Def.: Dada una función f(x), diremos que es continua en x = a, si cumple la siguiente condición: En caso de que no cumpla esta condición,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU
EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU Problema 1 (2 puntos) De una función derivable f (x) se conoce que pasa por el punto A(-1,
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 203 Capítulo 7 Año 2006 7.. Modelo 2006 - Opción A Problema 7.. 2 puntos Un punto de luz situado
(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el
Matemáticas II. Segundo de Bachillerato. Curso Exámenes
Matemáticas II. Segundo de Bachillerato. Curso 0-03. Exámenes LÍMITES Y CONTINUIDAD o F. Límites y continuidad o F Ejercicio. Calcular el dominio de definición de las siguientes funciones: f(x) = 4 x h(x)
Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO
EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un
Examen de Matemáticas 2 o de Bachillerato Mayo 2003
Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio
3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz.
21 de diciembre de 2000. 1 1) Calcula: 0 ln 2) Halla las asíntotas de la función: 5 3 f() 2-2 3 +7 3) Prueba que la ecuación 5 8-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva, Ejercicio,
Unidad 15 Integrales definidas. Aplicaciones
Unidad 15 Integrales definidas. Aplicaciones 3 SOLUCIONES 1. La suma superior es: La suma inferior es:. La suma superior es: s ( P) = ( 1) 3 + (3 ) 10 = 3 + 10 = 13 La suma inferior es: s ( P) = ( 1) 1+
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva,
1) (1p) Demuestra la fórmula de la derivada de y=arc sen f. 3) (1p) Enuncia el criterio de la derivada tercera y pruébalo en uno de los casos.
28 de noviembre de 2008. 1) (1p) Demuestra la fórmula de la derivada de y=arc sen f. 2) (1p) Enuncia el teorema de Rolle. 3) (1p) Enuncia el criterio de la derivada tercera y pruébalo en uno de los casos.
(Límites y continuidad, derivadas, estudio y representación de funciones)
ANÁLISIS I: CÁLCULO DIFERENCIAL (Límites y continuidad, derivadas, estudio y representación de funciones) Curso 009-010 -Enunciados: pg -Soluciones: pg 3 Curso 010-011 -Enunciados: pg 5 -Soluciones: pg
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
a sea la siguiente: x 2 +bx+c 1. [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y =
Y [ANDA] [2000] [JUN-B] Determina a, b y c para que la curva y = a sea la siguiente: 2 +b+c 3 2-2 3 4 X 2 [ARAG] [20] [JUN-A] Sea la función f() = 2 +2 a) Calcular su dominio b) Obtener sus asíntotas c)
CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º Cuatrimestre 2017 SEGUNDO TURNO (22/11/2017) TEMA 1
SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 1 Ejercicio 1 ( puntos) Dada la función exponencial f(x) = x 1, determinar el conjunto de negatividad y positividad. Ya que la función
a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada
Matemáticas II - Curso - EJERCICIOS DE CÁLCULO DIFERENCIAL E INTEGRAL PROPUESTOS EN LAS PRUEBAS DE ACCESO COMUNIDAD DE MADRID (JUN ) Calcular la base y la altura del triángulo isósceles de perímetro 8
TEMA 4: APLICACIONES DE LAS DERIVADAS.
TEMA 4: APLICACIONES DE LAS DERIVADAS. 1.- REGLA DE L HôPITAL La regla de L hôpital sirve para resolver indeterminaciones del tipo. Para aplicar la regla de L'Hôpital hay que tener un límite de la forma
Universidad de Costa Rica. Proyecto MATEM SEGUNDO EXAMEN PARCIAL CÁLCULO
Universidad de Costa Rica Proyecto MATEM SEGUNDO EXAMEN PARCIAL CÁLCULO 7 de junio de 207 INSTRUCCIONES GENERALES: Lea cuidadosamente, cada instrucción y pregunta, antes de contestar. Utilice únicamente
TEMA 4 SEGUNDO TURNO (22/11/2017) Ejercicio 1 (2 puntos) Respuesta. Ejercicio 2 (3 puntos) Respuesta. Material de uso exclusivamente didáctico 1
SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 17 SEGUNDO TURNO (/11/17) TEMA 4 Ejercicio 1 ( puntos) Hallar las coordenadas del punto de la gráfica de la función h(x) = ln(x + x + 1) + 5x donde la pendiente
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A
Cálculo Diferencial en una variable
Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia
2. [2013] [ASTU] [JUN-B] Calcule lim (2-x)
[204] [EXTR] [JUN-B] a) Enuncie el teorema de Bolzano b) Aplique el teorema de Bolzano para probar que la ecuación cos = 2 - tiene soluciones positivas c) Tiene la ecuación cos = 2 - alguna solución negativa?
Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9
Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 000 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
APLICACIÓN DE LAS DERIVADAS 2º Bachillerato
Recta Tangente a una curva en uno de sus Puntos Si f(x) es derivable en x 0, la ecuación de la recta tangente a la gráfica de y=f(x) en x 0 es: Tipos: y y 0 = m (x-x 0 ) y f(x 0 ) = f (x 0 ) (x-x 0 ) 1)
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
( ) ( ) ( ) f h f h h h h. h 0 h h 0 h h 0 h h 0. f h f h h h h
Eamen de cálculo diferencial e integral /4/9 Opción A Ejercicio. (Puntuación máima: puntos) Sea la función f ( ) = 4 a. Estudiar su continuidad y derivabilidad. b. Dibujar su gráfica. c. Calcular el área
Derivadas e integrales
Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................
Nombre y Apellidos: x e 1 x 1 x f(x) = ln(x) x
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Nombre y Apellidos: Cálculo I Convocatoria de Diciembre de Diciembre de 008 DNI: (6.5 p.) ) Se considera la función f : R R definida
ANÁLISIS DE FUNCIONES
ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo
GRÁFICA DE FUNCIONES
GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.
REPRESENTACIÓN GRÁFICA DE CURVAS - II
REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción B Junio, Ejercicio, Opción A Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva,
Problemas Tema 3 Solución a problemas de Derivabilidad - Hoja 11 - Todos resueltos
Asignatura: Matemáticas II ºBachillerato página 1/10 Problemas Tema 3 Solución a problemas de Derivabilidad - Hoja 11 - Todos resueltos Hoja 11. Problema 1 1. Se tiene un alambre de 1 m de longitud y se
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la
1.- Sea la función f definida por f( x)
Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 07 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
4. Probar que la suma de dos funciones crecientes en su dominio es creciente en su dominio.
1. Definir función de A en B, conjunto imagen y gráfica de una función. 2. Definir función inyectiva. 3. Probar que una función lineal con pendiente negativa es decreciente. 4. Probar que la suma de dos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 1 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva,
Problemas Tema 2 Enunciados de problemas de Límite y Continuidad
página /2 Problemas Tema 2 Enunciados de problemas de Límite y Continuidad Hoja. Estudiar la continuidad y derivabilidad de la función f ()=. solución: continua en toda la recta real. Punto anguloso en
Derivadas e integrales
Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 1 Año 011 1.1. Modelo 011 - Opción A Problema 1.1.1 (3 puntos) Dado el sistema: λx
Tema 4: Representación de Funciones
Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva, Ejercicio 1, Opción A
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 2º BACHILLERATO
LÍMITES: OPERACIONES CON INFINITOS LÍMITES: RESOLUCIÓN DE INDETERMINACIONES DEL TIPO 1 Estas indeterminaciones están relacionadas con el número e se calculan de la siguiente forma: 1 DOMINIO E IMAGEN DE
1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:
RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
