Preguntas de test (20%)
|
|
|
- Salvador Redondo Vargas
- hace 7 años
- Vistas:
Transcripción
1 LÓGICA y MATEMÁTICA DISCRETA. (60 27/10/2015 Aellidos y Nombre:... Indicaciones: Tres rimeras letras del rimer aellido: No abandonar el examen durante los rimeros 30 minutos. En las reguntas de test, ara cada regunta sólo una de las tres afirmaciones es cierta. Debe resonderse a), b) o c) en el recuadro corresondiente o bien dejar el recuadro en blanco. Calificación de cada regunta de test: acierto: 1; fallo: -1/2; blanco: 0. Cada definición se untuará sobre 1 unto. Cada ejercicio se untuará sobre 3 untos. No está ermitido el uso de calculadoras ni móviles. Tiemo total ara el examen: 2h Preguntas de test (20%) Si la variable roosicional formaliza el enunciado tú sabes ortografía y q tú escribes bien en Whatsa, entonces la formalización del enunciado no escribes bien en Whatsa y sin embargo sabes ortografía es: a) q b) q c) q C El conjunto de fórmulas { x (P(x) Q(x)), F} es insatisfactible si F es: a) x (P(x) Q(x)). b) x ( P(x) Q(x)). c) x P(x) x Q(x). A El árbol estructural de la fórmula q r s es: a) q r s b) q r s c) q r s ( q) r s q r s q r s q r s q r s q r s q C La fórmula x Q(x) x P(x) es equivalente a la fórmula: a) x Q(x) x P(x) b) x (Q(x) P(x)) c) x Q(x) x P(x) C Tomando como dominio D = {ersonas} y como redicados V(x) = x es varón y I(x, y) = x es igual a y, la formalización del enunciado Todos los varones son iguales es: a) x y (V(x) V(y) I(x, y)) b) x y (V(x) V(y) I(x, y)) c) x y (I(x, y) V(x) V(y) ) B La estructura deductiva q, r r verifica que: a) es incorrecta y V() = V(r) = 0, V(q) = 1 es un contraejemlo. b) es incorrecta y V() = V(q) = V(r) = 0 es un contraejemlo. c) es correcta. A
2 Definiciones (10%) 1. Definir modelo de una fórmula F en la lógica de redicados. Se dice que la interretación I es modelo de una fórmula F si F toma valor de verdad 1 bajo esta interretación. 2. Definir estructura deductiva correcta. Una estructura deductiva P 1, P 2,, P n Q es correcta si los modelos comunes a todas las remisas son modelos de la conclusión. Es decir, todo modelo del conjunto = { P 1, P 2,, P n } es también modelo de Q. Ejercicios (30%) 1. Determinar, utilizando el método del tableau, si la fórmula F = ( q) q es tautología, contradicción o contingente. (( q) q ) ( q) q q q q Como el tableau de F es cerrado, la fórmula F es contradicción y, or tanto, F es tautología. 2. Demostrar la equivalencia (q ) ( q) q usando las equivalencias roosicionales elementales dadas, indicando en cada aso las que se han utilizado. (q ) ( q) (q ) ( q) (q ) ( q) (1) (2) (3) ((q ) ) ((q ) q)) (3) (q ( )) (( q) q)) (4) (q ) ( (q q)) ( q) q (5) (6) (7) (1) (A B) A B, A B A B (2) A A (3) Distributiva: A (B C) (A B) (A C) (4) Asociativa, Conmutativa (5) A A, Asociativa (6) A, A A A (7) A A Otra forma: (q ) ( q) (q ) ( q) (q ) ( q) ( q) ( q) (1) (2) (3) (4) (q ( q)) q (4) (5) (1) (A B) A B, A B A B (2) A A (3) Conmutativa (4) Asociativa (5) Absorción (5)
3 3. Dadas la fórmula F = x (P(x) Q(x) R(x)) y la interretación I con dominio D = {d 1, d 2, d 3 } y funciones booleanas P, Q y R, arcialmente definidas, se ide comletar su definición ara que la interretación I sea: a) un modelo de la fórmula F: P( d1) 0 Q( d1) 0 R( d1) 0 P: P( d2) 0 Q: Q( d2) 1 R: R( d2) 1 P( d3) 1 Q( d3) 0 R( d3) 1 b) un modelo de la fórmula F distinto del dado en el aartado a): c) un no modelo de F: P( d1) 0 Q( d1) 0 R( d1) 0 P: P( d2) 1 Q: Q( d2) 1 R: R( d2) 1 P( d3) 1 Q( d3) 1 R( d3) 1 P( d1) 0 Q( d1) 1 R( d1) 0 P: P( d2) 1 Q: Q( d2) 1 R: R( d2) 1 P( d3) 1 Q( d3) 1 R( d3) 1 4. Probar mediante reglas de inferencia que la siguiente estructura deductiva es correcta P 1 = x R(x), P 2 = x (P(x) R(x)), P 3 = x (P(x) Q(x)) Q = x Q(x) Por imlicación directa: 1. x R(x) equivalencia en P R(a) eliminación existencial en P(a) or P 2, 2 y Modus Tollens. 4. Q(a) or P 3, 3 y Silogismo disyuntivo. 5. x Q(x) = Q or 4 e Introducción de cuantificador existencial. Otras formas: Por imlicación directa: 1. x R(x) equivalencia en P x P(x) or P 2, 1 y Modus Tollens. 3. x Q(x) = Q or P 3, 2 y Silogismo disyuntivo. Por reducción al absurdo: Q = x Q(x) 1. x Q(x) equivalencia en Q. 2. x P(x) or P 3, 1 y Silogismo disyuntivo. 3. x R(x) or P 2, 2 y Modus Ponens. 4. x R(x) x R(x) or 3, P 1 y la regla A, B A B
4 Problema 1 (20%): Demostrar, mediante reglas de inferencia, que la siguiente estructura deductiva es correcta: t q, q t r s, s (r w), w t ( r ) Hacemos la demostración or reducción al absurdo. Entonces, incororamos la negación de la conclusión Q = s al conjunto de remisas y debemos llegar a contradicción: P 1 = t q P 2 = q t r s P 3 = s (r w) P 4 = w Q = (t ( r )) t ( r ) t (r ) 1. t ( r ) de Q y la equivalencia (A B) A B 2. t de 1 y la regla A B A 3. ( r ) de 1 y la regla A B B 4. r de 3 y Ley de De Morgan 5. r de 4 y la regla A B A 6. de 4 y la regla A B B 7. q de 2, P 1 y la regla Modus Ponens 8. q de 6, 7 y la regla Silogismo Disyuntivo 9. q t de 8 y la regla A A B 10. r s de 9, P 2 y la regla Modus Ponens 11. s de 10 y la regla A B B 12. (r w) de 11, P 3 y la regla Modus Ponens 13. r w de 12 y Ley de De Morgan 14. r de 10 y la regla A B A 15. w de 13, 14 y la regla Silogismo Disyuntivo 16. de 15, P 4 y la regla Modus Ponens 17. de 16, 6 y la regla A, B A B 18. de 17 y la equivalencia A A Por tanto, la estructura deductiva es correcta.
5 Problema 2 (20%): a) Analizar la corrección de la siguiente estructura deductiva: P 1 = x (E(x) L(x)), P 2 = x L(x), P 3 = E(a) x (A(x, a) L(x)) Q = x ( E(x) A(x, a)) Para analizar su corrección usamos el método del tableau. Si el tableau del conjunto {P 1, P 2, P 3, Q} es cerrado, la estructura deductiva es correcta. P 1 = x (E(x) L(x)) 2 P 2 = x L(x) 3 P 3 = E(a) x (A(x, a) L(x)) 1 Q = x ( E(x) A(x, a)) F 1 = x ( E(x) A(x, a)) L (b) Eliminación existencial x = b en P 2 E (a) F 2 = x (A(x, a) L(x)) 4 A(b, a) L(b) Instanciando x = b en F 2 A(b, a) L(b) 5 ( E(b) A(b, a)) Instanciando x = b en F 1 6 E(b) E (b) A(b, a)) Instanciando x = b en P 1 7 E(b) L(b) E(b) L(b) Como efectivamente el tableau es cerrado, la estructura deductiva es correcta.
6 b) Exresar en lenguaje natural las fórmulas F 1 = E(a) x (A(x, a) L(x)) y F 2 = x ( E(x) A(x, a)) si se considera la interretación I siguiente: D = {ersonas} a = Pedro E(x) = x es estudiante de informática, L(x) = a x le gusta la lógica, A(x, y) = x es amigo de y F 1 : Pedro es estudiante de informática y a todos los amigos de Pedro les gusta la lógica. F 2 : Hay una ersona que ni estudia informática ni es amiga de Pedro.
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Métodos de Demostración Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Métodos de Demostración Matemáticas Discretas - p. 1/13 Introducción En esta sección
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Axiomas y reglas de inferencia Reglas de la impliación, conjunción y disyunción 3 Reglas derivadas
Lógica Proposicional. Sergio Stive Solano Sabié. Marzo de 2012
Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Lógica Proposicional Sergio Stive Solano Sabié Marzo de 2012 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
Demostración Automática. Tema 2. Procesamiento del conocimiento con la Lógica Matemática
Demostración Automática de Teoremas Tema 2. Procesamiento del conocimiento con la Lógica Matemática Temas Introducción Sistemas de axiomas Teoría de la demostración. Sistema de Kleene Deducción natural
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón.
Resumen de las clases teóricas del turno tarde a cargo de la Prof. Alcón. 0.1. Elementos de lógica Una proposición es una oración declamativa a la cual se le puede asignar un valor verdad: verdadera (V)
Lógica Proposicional. Sergio Stive Solano Sabié. Abril de 2013
Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Lógica Proposicional Sergio Stive Solano Sabié Abril de 2013 Proposiciones Definición 1.1 Una proposición (o declaración) es una oración declarativa
TEMA I INTRODUCCIÓN A LA LÓGICA
TEMA I INTRODUCCIÓN A LA LÓGICA Policarpo Abascal Fuentes TEMA I Introducción a la lógica p. 1/6 TEMA 1 1. INTRODUCCIÓN A LA LÓGICA 1.1 INTRODUCCIÓN 1.2 LÓGICA PROPOSICIONAL 1.2.1 Conexiones lógicas 1.2.2
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Sintaxis y semántica Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lenguajes de primer orden 1 La lógica
Estructuras Discretas. Teoremas. Técnicas de demostración. Reglas de Inferencia. Reglas de Inferencia Ley de Combinación.
Estructuras Discretas Teoremas Técnicas de demostración Claudio Lobos, Jocelyn Simmonds clobos,[email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 15 Definición: teorema
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Axiomática
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Francisco Bueno Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Teoría de Primer Orden 1 Formalmente,
LOGICA MATEMATICA. Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías:
LOGICA MATEMATICA Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías: 1 ) q p q p ( q ) p ( Definición ) q p ( Doble Negación ) p q ( Conmutatividad ) (
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas
LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Fórmulas elementales 1 Teniendo en cuenta las definiciones:
p q p q p (p q) V V V V V F F F F V V F F F V F
3.2 Reglas de inferencia lógica Otra forma de transformación de las proposiciones lógicas son las reglas de separación, también conocidas como razonamientos válidos elementales, leyes del pensamiento,
Ampliación Matemática Discreta. Justo Peralta López
Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Definición semántica de las proposiciones 3 Diagrama de valores de certeza 4 Evaluación de fórmulas.
ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- V V V V F F F V F F F V
Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Tablas de Verdad: p q p q p p V V V V F V F F F V F V F F F F p q p q V V V V F V F V V F F F p q p q V V V V F F F V V F F V p q p q
I. LÓGICA PROPOSICIONAL A) Deducción natural
I. LÓGICA PROPOSICIONAL A) Deducción natural Regla de supuestos (S) A A Reglas primitivas Modus ponens (MP) Δ A Γ, Δ B Doble negación (DN) Γ A Γ A Modus tollens (MT) Δ B Γ, Δ A Prueba condicional (PC)
Lógica de Predicados
Lógica de redicados Lógica de predicados Lógica de predicados Cálculo de predicados Reglas de inferencia Deducción proposicional Demostración condicional Demostración indirecta Valores de certeza y Tautología
Apéndice 1 Reglas y leyes lógicas
1 Apéndice 1 Reglas y leyes lógicas 1. Reglas lógicas Tal como ya se ha visto, una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada en cada caso para
Matemáticas Discretas Lógica
Coordinación de Ciencias Computacionales - INAOE Matemáticas Discretas Lógica Cursos Propedéuticos 2010 Ciencias Computacionales INAOE Lógica undamentos de Lógica Cálculo proposicional Cálculo de predicados
Rudimentos 2: Lógica Matemática Profesor Ricardo Santander Baeza
Rudimentos 2: Lógica Matemática Profesor Ricardo Santander Baeza El capitulo Rudimentos sobre Lógica Matemática está destinado esencialmente a desarrollar técnicas, que permitan validar o refutar fórmulas
Matemáticas Dicretas LÓGICA MATEMÁTICA
Matemáticas Dicretas LÓGICA MATEMÁTICA Esta pagina fue diseñada como un auxiliar y herramienta para aquellos que esten interesados en reforzar y tener mas conocimientos sobre las matematicas discretas.
Inteligencia en Redes de Comunicaciones - 04 Razonamiento lógico
El objetivo del Tema 4 es presentar una panorámica general sobre cómo se pueden realizar razonamientos lógicos en un sistema software. 1 Esta es la tabla de contenidos del tema: se estudia la programación
Cuantificadores y Métodos de Demostración
Cuantificadores y Métodos de Demostración 1. Cuantificadores... 1 1.1. Cuantificador Existencial... 2 1.2. Cuantificador Universal... 3 2. Métodos de Demostración... 4 1. Cuantificadores Hasta ahora habíamos
El conectivo XOR y la diferencia simétrica de conjuntos
El conectivo OR y la diferencia simétrica de conjuntos Memo Garro Enero 2018 Resumen Definimos la diferencia simétrica usual de conjuntos mediante el conectivo OR Y. También conocido comunmente como disyunción
Lógica Primer Orden: Deducción (Natural)
LÓGICA - 1º Grado en Ingeniería Informática Facultad de Informática Universidad Politécnica de Madrid Lógica Primer Orden: Deducción (Natural) Andrei Paun [email protected] http://web3.fi.upm.es/aulavirtual/
REGLAS Y LEYES LOGICAS
LOGICA II REGLAS Y LEYES LOGICAS Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente ciertos enunciados a partir de otros.
2.1. Introducción Lógica: Campo del conocimiento relacionado con el estudio y el análisis de los métodos de razonamiento. El razonamiento lógico es es
Tema 2. Introducción a la lógica 1. Introducción 2. Lógica de proposiciones 1. Definiciones 2. Sintaxis 3. Semántica Bibliografía Matemática discreta y lógica. Grassman y Tremblay. 1997. Prentice Hall.
03. Introducción a los circuitos lógicos
03. Introducción a los circuitos lógicos 1. LÓGICA DE PROPOSICIONES...2 PROPOSICIÓN...2 CONECTORES U OPERADORES LÓGICOS...2 Tablas de...2 Tautología...2 Contradicción...2 2. ÁLGEBRA DE BOOLE...3 AXIOMAS
SOBRE LOGICA MATEMATICA. Sandra M. Perilla-Monroy. Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia.
SOBRE LOGICA MATEMATICA Sandra M. Perilla-Monroy Departamento de Ciencias Básicas, Universidad Santo Tomás, Bogotá, Colombia. Resumen. [email protected] Carrera 9 No 51-11 Bogotá Colombia
Asignatura de: Matemática Discreta. ucontinental.edu.pe 1
Asignatura : Matemática Discreta CALENDARIZACIÓN DE CONTENIDOS Modalidad Presencial 017-0 la Asignatura: Al término la asignatura, el estudiante será capaz analizar y resolver problemas estructuras discretas
Material educativo. Uso no comercial 1.4 MÉTODOS DE DEMOSTRACIÓN Método directo o Método de la hipótesis auxiliar
1.4 MÉTODOS DE DEMOSTRACIÓN Designamos en esta forma las estrategias o esquemas más generales que identificamos en los procesos deductivos. Estos modelos están fundamentados lógicamente en teoremas o reglas
Proposiciones. Estructuras Discretas. Lógica de proposiciones y de predicados. Tablas de Verdad. Operadores Lógicos.
Estructuras Discretas Proposiciones Lógica de proposiciones y de predicados Claudio Lobos [email protected] Universidad Técnica Federico Santa María Estructuras Discretas INF 152 Definición: proposición
Introducción a la Lógica Proposicional Seminario de Matemáticas
Introducción a la Lógica Proposicional Seminario de Matemáticas Julio Ariel Hurtado Alegría [email protected] 8 de mayo de 2015 Julio A. Hurtado A. Departamento de Sistemas 1 / 34 Agenda Motivación
CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960
universidad de san carlos Facultad de Ingeniería Escuela de Ciencias Departamento de Matemática clave-960-1-m-2-00-2012 CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 Datos de la clave
LICENCIATURA EN MATEMÁTICA. Práctico N 1 Lenguaje de la lógica. proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 /
Práctico N 1 Lenguaje de la lógica LICENCIATURA EN MATEMÁTICA proposicional VICTOR GALARZA ROJAS 1 5 / 0 5 / 2 0 1 0 PRÁCTICO N 1 1. Fundamentación: fundamentar la expresión Por lo tanto del siguiente
Introducción a la Lógica
Tema 0 Introducción a la Lógica En cualquier disciplina científica se necesita distinguir entre argumentos válidos y no válidos. Para ello, se utilizan, a menudo sin saberlo, las reglas de la lógica. Aquí
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es
Fundamentos de Lógica y Teoría de Conjuntos
Índice general 1. Lógica y Teoría de conjuntos 3 1.1. Introducción a la Lógica............................ 3 1.1.1. Repaso histórico (Ref. Grimaldi pág. 187).............. 3 1.1.2. Conceptos básicos (Ref.
CENTRO FORMATIVO DE ANTIOQUIA CEFA MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 11 LA DEMOSTRACIÓN
ALGUNAS REGLAS DE INFERENCIA LÓGICA PERÍODO I FECHA 18 de enero de 2018 NIVEL MEDIA TÉCNICA CENTRO FORMATIVO DE ANTIOQUIA CEFA MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS GRADO 11 LA DEMOSTRACIÓN Podemos
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración
Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 2: Lógica de Predicados y Métodos de Demostración Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos:
2. Los símbolos de la lógica proposicional.
Bloque I: El Saber Filosófico. Tema 4: La Lógica Formal. 1. Las proposiciones y sus tipos. Una proposición es una oración enunciativa, es decir, una oración que afirma o niega algo y que puede ser verdadera
EJERCICIOS DE EXAMEN DE LÓGICA FORMAL con algunas soluciones CURSO Febrero
EJERCICIOS DE EXAMEN DE LÓGICA FORMAL con algunas soluciones CURSO 2005-2006 Febrero 1. (i) Dada la fórmula x=x Contéstese a las siguientes preguntas justificando brevemente las respuestas en los espacios
1.4 Inferencia Lógica
Una Introducción a las Matemáticas Discretas y Teoría de Grafos 1.4 Inferencia Lógica En la Sección anterior reconocimos al Álgebra de Proposiciones como un conjunto de herramientas que nos permiten verificar
CONCEPTO DE LÓGICA MATEMÁTICA
CONCEPTO DE LÓGICA MATEMÁTICA La Lógica estudia la forma del razonamiento. La Lógica Matemática es la discilina que trata de métodos de razonamiento. En un nivel elemental, la Lógica roorciona reglas y
Introducción a la Matemática Discreta
Introducción a la Matemática Discreta Lógica proposicional y Álgebras de Boole Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 25 Introducción a la Matemática Discreta Temario Tema 1.
Tema 2: Teoría de la Demostración
Tema 2: Teoría de la Demostración Conceptos: Estructura deductiva Teoría de la Demostración Sistemas axiomáticos: Kleene Fórmulas válidas Teorema de la Deducción Introducción a la T. de la Demostración
Lógica Proposicional
Lógica Proposicional La lógica se define como la ciencia del razonamiento, o como el estudio de los métodos y principios usados para distinguir el razonamiento correcto del incorrecto. La lógica, está
2. Si P; Q; R son verdaderas y S; T son falsas, determine el valor de verdad de la proposición: [P =) (R =) T )] () [(:P ^ S) =) (Q =) :T )]
Instituto Tecnológico de Costa Rica Escuela de Matemática I semestre 2012 Cálculo Diferencial e Integral. Prof. Juan José fallas. 1 Leyes de la lógica y reglas de inferencia 2 Ejercicios 1 Leyes de la
Axiomas y Teoremas APÉNDICE A. Teoremas del Cálculo Proposicional. Índice del Capítulo
APÉNDICE A Axiomas y Teoremas Índice del Capítulo A.1. Teoremas del Cálculo Proposicional..................... 217 A.2. Teoremas del Cálculo de Predicados..................... 220 A.3. Cuantificación Existencial...........................
Tema 2: Métodos de Deducción para la Lógica Proposicional
Tema 2: Métodos de Deducción para la Lógica Proposicional Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Métodos de Deducción
Taller Matemático. Lógica. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid
Taller Matemático Lógica Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid 1. Lógica 14 amigos aportan la misma cantidad de dinero, sobre un fondo
Sistemas deductivos. Lógica Computacional. Curso 2005/2006. Departamento de Matemática Aplicada Universidad de Málaga
Sistemas deductivos Lógica Computacional Departamento de Matemática plicada Universidad de Málaga Curso 2005/2006 Contenido 1 Sistema axiomático de Lukasiewicz Sistema proposicional Extensión a predicados
Tema 2: Métodos de Deducción para la Lógica Proposicional
Tema 2: Métodos de Deducción para la Lógica Proposicional Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2006 07 LC, 2006 07 Métodos de Deducción
APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN
LOGICA (FCE-UBA) APENDICE REGLAS Y LEYES DE LA LOGICA DE PRIMER ORDEN Una regla lógica, o regla de inferencia (deductiva), es una forma válida de razonamiento que es empleada para inferir deductivamente
TEMA 1: LÓGICA. p p Operador conjunción. Se lee y y se representa por. Su tabla de verdad es: p q p q
TEMA 1: LÓGICA. Definición. La lógica es la ciencia que estudia el razonamiento formalmente válido. Para ello tiene un simbolismo que evita las imprecisiones del lenguaje humano y permite comprobar la
1.1.1 Conectivos lógicos, formas proposicionales y tablas de verdad.
Tema 1 Lógica. 1.1 Cálculo proposicional. Definición 1.1 Una proposición es una frase o sentencia declarativa que es verdadera o falsa pero no ambas cosas a la vez. Los dos posibles valores de verdad que
Soluciones del examen de Lógica informática (Grupo 1) del 10 de Junio de José A. Alonso Jiménez
Soluciones del examen de Lógica informática (Grupo 1) del 10 de Junio de 2008 José A. Alonso Jiménez Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad
CIENCIAS FORMALES CIENCIAS FÁCTICAS
UNA CLASIFICACIÓN DE LAS CIENCIAS CIENCIAS FORMALES CIENCIAS FÁCTICAS CIENCIAS FORMALES MATEMÁTICA LÓGICA CIENCIAS FÁCTICAS FÍSICA BIOLOGÍA QUÍMICA CIENCIAS SOCIALES OTRAS CIENCIAS FORMALES VOCABULARIO
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MÓDULO 6- CÁLCULO DE PREDICADOS Y LÓGICA DE PRIMER ORDEN Referencias: Inteligencia Artificial Russell and Norvig Cap.6. Artificial Intellingence Nils Nilsson Ch.4
Lógica. Matemática discreta. Matemática discreta. Lógica
Lógica Matemática discreta Lógica: rama de las matemáticas instrumento para representar el lenguaje natural proporciona un mecanismo de deducción 2 y de predicados Razonamientos Cálculo proposicional Cálculo
Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid
LÓGICA FORMAL Lógica Proposicional: Teorema de Efectividad Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lógica Proposicional 1 La lógica proposicional
Guía de estudio Algunos aspectos de lógica matemática Unidad A: Clases 1 y 2
Guía de estudio Algunos aspectos de lógica matemática Unidad A: Clases 1 y 2 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa *. 1. Lógica
MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES.
MATERIAL DE APOYO PARA EL PRIMER CURSO DE MATEMÁTICAS COMPUTACIONALES. Ing. HUGO HUMBERTO MORALES PEÑA MAESTRÍA EN ENSEÑANZA DE LAS MATEMÁTICAS Línea de Matemáticas Computacionales UNIVERSIDAD TECNOLÓGICA
Ejercicios de lógica
1. Sistemas formales. Ejercicios de lógica 1. Considere el siguiente sistema formal: Símbolos: M, I, U. Expresiones: cualquier cadena en los símbolos. Axioma: UMUIUU Regla de inferencia: xmyiz xumyuizuu
Clase 5 1. Lógica proposicional. Razonamientos
Clase 5 1 Lógica proposicional Razonamientos Clase 5 2 LOGICA - INTRODUCCION!OBJETIVO Uno de los fundamentales objetivos ha sido el estudio de las DEDUCCIONES, RAZONAMIENTOS O ARGUMENTOS LOGICA DEDUCTIVA
Nombre y Apellido. Beatriz Depetris. Lucas Romano
INSTITUTO DE DESARROLLO ECONÓMICO E INNOVACIÓN Año: 2018 PROGRAMA DE LA ASIGNATURA: Elementos de Lógica y Matemática Discreta (MA008) CÓDIGO: MA008 AÑO DE UBICACIÓN EN EL PLAN DE ESTUDIOS: 1 año FECHA
Lógica Matemática. M.C. Mireya Tovar Vidal
Lógica Matemática M.C. Mireya Tovar Vidal Contenido Proposicional Definición Sintaxis Proposición Conectivos lógicos Semántica Primer orden cuantificadores Finalidad de la unidad Traducir enunciados sencillos
UNIDAD I: LÓGICA MATEMÁTICA
UNIDAD I: LÓGICA MATEMÁTICA 1.1. Introducción La Lógica Matemática es la rama de las Matemáticas que nos permite comprender sobre la validez o no de razonamientos y demostraciones que se realizan. La lógica
Autora: Jeanneth Galeano Peñaloza. 3 de febrero de Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 1/ 50
Autora: Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá 3 de febrero de 2013 1/ 50 Parte I 2/ 50 Proposiciones Considere las siguientes frases Guarde
Introducción a la lógica proposicional
Introducción a la lógica proposicional Fernando Soler Toscano [email protected] 1. Lógica proposicional 1.1. El lenguaje de la lógica proposicional Fórmulas. El lenguaje de la lógica proposicional está compuesto
ALGEBRA DE BOOLE George Boole C. E. Shannon E. V. Hungtington [6]
ALGEBRA DE BOOLE El álgebra booleana, como cualquier otro sistema matemático deductivo, puede definirse con un conjunto de elementos, un conjunto de operadores y un número de axiomas no probados o postulados.
LOGICA Y ALGEBRA DISCRETA
LOGICA Y ALGEBRA DISCRETA Franco D. Menendez LABIA FACET - UNT Contenido de la Materia UNIDAD TEMÁTICA 2: DECISION EN EL LENGUAJE FORMAL Sistemas Axiomáticos. Noción General. Decisión Por Formas Normales.
Tema 9: Cálculo Deductivo
Facultad de Informática Grado en Ingeniería Informática Lógica PARTE 2: LÓGICA DE PRIMER ORDEN Tema 9: Cálculo Deductivo Profesor: Javier Bajo [email protected] Madrid, España 24/10/2012 Introducción a la
Fundamentos de Lógica de Predicados
Chater 1 Fundamentos de Lógica de Predicados Profesor. Carlos Barrón Romero Los temas de Lógica tiene como objetivo: 1. Comrender los rinciios básicos de la lógica de redicados. Reaso. Proosiciones, reresentación
Prueba de control Soluciones
FACULTAD DE MATEMÁTICAS Lenguaje y método matemáticos 30 de septiembre de 011 Prueba de control Soluciones Nombre: 1 Experimente con casos concretos y proponga respuestas para las siguientes preguntas.
MATERIA: Lógica Matemática CÓDIGO: UMAT130 CRÉDITOS: 3. PERIODO LECTIVO: Invierno PRE-REQUISITO: Ninguno. 2. OBJETIVOS (Course Objectives Goal))
UNIVERSIDAD DE ESPECIALIDADES ESPÍRITU SANTO FACULTAD DE SISTEMAS, TELECOMUNICACIONES Y ELECTRÓNICA PROGRAMA ANALÍTICO (SUBJECT DESCRIPTION) MATERIA: Lógica Matemática CÓDIGO: UMAT130 CRÉDITOS: 3 PERIODO
PROGRAMA ACADÉMICO DE FORMACIÓN GENERAL LÓGICO MATEMÁTICA GUÌA 2009
UNIVERSIDAD SEÑOR DE SIPÁN 1 PROGRAMA ACADÉMICO DE FORMACIÓN GENERAL CURSO: LÓGICO MATEMÁTICA GUÌA 2009 1 www.uss.edu.pe 1 LÓGICO MATEMÁTICA PRESENTACIÓN Bienvenidos al curso de Lógico Matemática, la presente
EJERCICIOS DE EXAMEN DE LÓGICA FORMAL con algunas soluciones Curso
EJERCICIOS DE EXAMEN DE LÓGICA FORMAL con algunas soluciones Curso 2004-2005 Junio. 1. Sea A la fórmula y x (x + y = e), donde e es una constante. Sea M la estructura, para el lenguaje en que está escrita
MATEMÁTICAS BÁSICAS. 23 de febrero de Universidad Nacional de Colombia MATEMÁTICAS BÁSICAS
23 de febrero de 2009 Parte I Lógica Proposiciones Considere las siguientes frases Páseme el lápiz. 2 + 3 = 5 1 2 + 1 3 = 2 5 Qué hora es? En Bogotá todos los días llueve Yo estoy mintiendo Maradona fue
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
Capítulo 4. Lógica matemática. Continuar
Capítulo 4. Lógica matemática Continuar Introducción La lógica estudia la forma del razonamiento, es una disciplina que por medio de reglas y técnicas determina si un teorema es falso o verdadero, además
Lógica Proposicional. Cátedra de Matemática
Lógica Proposicional Cátedra de Matemática Abril 2017 Qué es la lógica proposicional? Es la disciplina que estudia métodos de análisis y razonamiento; utilizando el lenguaje de las matemáticas como un
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
DETERMINACIÓN DE UN CONJUNTO
CONJUNTO UNIVERSAL U A Gráficamente, al conjunto universal se lo representa mediante un rectángulo. Cualquier otro conjunto A es representado por una región cerrada, dentro del rectángulo, A este tipo
Qué es la lógica? Lógica matemática. Introducción. La lógica de proposiciones (enunciados) El lenguaje de la lógica
Qué es la lógica? El la ciencia de los rinciios de la validez formal de los razonamientos. Dicho de otra forma, trata de establecer unas leyes que, si las seguimos, siemre razonaremos bien. Hay que diferenciar
Algebras booleanas. B2) Leyes Distributivas. Cada operación es distributiva con respecto a la otra:
Algebras booleanas AXIOMAS DEL ALGEBRA DE BOOLE Sea B un conjunto en el cual se han definido dos operaciones binarias, + y * (En algunos casos se definen en términos de y respectivamente), y una operación
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
LÓGICA. 1. Qué es un silogismo Irregular? 2. Qué es un entimema? 3. Da un ejemplo de entimema. 4. Qué es un epiquerema?
LÓGICA 1. Qué es un silogismo Irregular? 2. Qué es un entimema? 3. Da un ejemplo de entimema 4. Qué es un epiquerema? 5. Da un ejemplo de un epiquerema 6. Qué es un Poli silogismo? 7. Da un ejemplo de
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 en FOL Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM en FOL Matemáticas Discretas - p. 1/23 En esta lectura veremos principalmente cómo se construyen argumentos
Matemáticas Discretas TC1003
Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,
