APROXIMACION NUMERICA DE SISTEMA DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado

Tamaño: px
Comenzar la demostración a partir de la página:

Download "APROXIMACION NUMERICA DE SISTEMA DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado"

Transcripción

1 Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación APROXIMACION NUMERICA DE SISTEMA DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo Torres Aguirre ALGORITMO DE NEWTON-RAPHSON GENERALIZADO Sol: 1) Aplicar algoritmo de Newton-Raphson generalizado al sistema de ecuaciones no lineales, tomando como vector de inicio =, efectuando 4 iteraciones. Determine el error cometido en norma infinito ( ). 5 3 = = 10 Para solucionar el sistema de ecuaciones no lineales que se nos ha dado, debemos tener presente los siguientes conceptos: Algoritmo de N-R Generalizado: Se define como la extensión del algoritmo de N-R (unidimensional) a 2 o más dimensiones. La formula es en nuestro caso (en 2 dimensiones) es; Con: (, ) = (, ) : Vector que contiene las variables que están en el sistema de ecuaciones no lineales, es el caso de nuestro problema; =. = = = : Es la forma de expresar diferencia entre las iteraciones con el vector. (, ) : Es la forma de expresar las 2 ecuaciones en una matriz de 2 filas y 1 columna, evaluando la matriz en (, ). En nuestro caso: (, ) = = 0 (, ) = = 0 (, ) = (, ) 5 = (, ) Siendo y valores numéricos (, ) : Es la expresión del Jacobiano de evaluado en (, ), es decir, es la derivada parcial de cada función con respecto a cada variable involucradas.

2 ,, (,,, : Es la expresión utilizada para calcular errores. Las Normas más utilizadas son la Norma-1, Norma-2 y Norma-infinito. max,, max,, Siendo det : radio espectral de la matriz A Algunas propiedades importantes para algunas demostraciones son: a 0 0. b,,,. c,,. d : Lema de Schwartz Con algunos conceptos importantes ya vistos, podemos resolver nuestro problema. Una buena forma de comenzar, es graficando,,., : 5 3 2, : ,. Graficar las funciones solo sirve para dar una idea de los puntos de intersección, por lo que no es recomendable hacerlo en una prueba.

3 El algoritmo de N-R generalizado es muy sensible a la elección del punto de inicio, pues esta elección hará converger al método a un punto de intersección más lejana o más cercana. Entonces, se tiene: Punto de inicio: = Vector: (, ) = (, ) = (, ) Jacobiano: (, ) = Diferencia entre iteraciones: = = Al reemplazar estos datos en la formula de N-R Generalizado bidimensional, es decir; Entonces se tiene;, =, = Para n=0 y = = = = = = 1 = 1 = El resultado servirá para seguir iterando. Para n=1 y = = 6 1 = = 1 = = 1 = = = =. =

4 El resultado de la segunda iteración indica que se empieza a estabilizar. Para n2 y El resultado de la tercera iteración varía muy poco con respecto a la segunda, se estabiliza aun más. Para n3 y El resultado de nuestra cuarta iteración nos lleva a pensar que el resultado final que nos dará el algoritmo después de n iteraciones será el punto de intersección, una explicación a esto es el punto de inicio elegido (, en el caso de otro punto, puede que el algoritmo converja con mayor o menor velocidad a, o a uno de los otro 3 puntos de intersección. Lo más probable es que si se elije un punto que toque alguna de las dos funciones y que esté cerca de la intersección entre estas, el algoritmo converja más rápidamente a esa intersección.

5 Ahora para calcular el error cometido, necesitamos encontrar la solución exacta al problema por medio de métodos numéricos, por lo que se debe reducir el problema de 2 a 1 dimensión. Se debe despejar una de las variables de una de las ecuaciones, y reemplazar ésta en la otra ecuación, es decir; Si tenemos 5 3 = 2 y Eligiendo la ecuación y despejando la variable y, se tiene; = Ahora esta variable la reemplazamos en la otra ecuación, quedando; / La derivada de esta función es Ahora aplicaremos N-R unidimensional, tomando como punto de inicio =0.4, que es un punto cercano al que se obtuvo después de la cuarta iteración por medio del algoritmo de N-R generalizado. En este caso lo natural era tomar como punto de inicio el =1 (según el enunciado del problema), pero si elegimos este punto, el algoritmo de N-R unidimensional convergerá al punto de intersección más cercano, es decir, a (aproximadamente = y , con =0.4 = Entonces la solución exacta es Por lo que el error cometido en norma-infinita es;

6 Sol: 2 Aplicar algoritmo de N-R N generalizado al sistema de ecuaciones no lineales, tomando como vector de inicio x₀ (0.5 1) t, efectuando 5 iteraciones. Determine el error cometido en norma-infinito ( ) y norma-1 ( ₁). cos(x) + e y = x sen(5x) + xy = y El problema nos entrega los siguientes datos; Grafico de la ecuación f (xn, yn): cos (xn)+e y = xn y g (xn, yn): sen (5xn)+ xnyn = yn. En la imagen se muestran 2 puntos de intersección. F(xn,yn )= f(xn,yn ) g(xn,yn ) = cos (xn) + e y - xn sen (5xn)+ xnyn - yn (F(xn,yn ))= δf(xn,yn )/δx δf(xn,yn )/δy = -sen (xn)-1 e y δg(xn,yn )/δx δg(xn,yn )/δy 5cos (5xn)+ yn xn - 1 Entonces, se puede armar el algoritmo; -sen (xn)-1 e y xn = cos (xn) + e y - xn 5cos (5xn)+ yn xn - 1 yn sen (5xn)+ xnyn - yn Para n=0 y x₀= (x0 y0) t = (0.5 1) t -sen (xn)-1 5cos (5xn) + yn e y xn = cos (xn) + e y - xn xn - 1 yn sen (5xn) + xnyn - yn x0 = y

7 = = Para n=1 y =.. ( ) 1 5 cos5 1 = cos Para n=2 y = = = = = = = = cos5 1 = cos Para n=3 y = = = = = = = = cos5 1 = cos = = = = = = =

8 Para n=4 y = cos5 1 = cos = = = = = = = = La solución exacta se puede obtener de la misma forma que el ejercicio 1). Si tenemos cos) = 5) = Eligiendo la ecuación 5) = y despejando la variable y, se tiene; = ) Ahora esta variable la reemplazamos en la otra ecuación, quedando; cos) ) = ) = cos) ) = 0 La derivada de esta función es ) = ) ) ))) 1 ) Ahora aplicaremos N-R unidimensional = ) ), tomando como punto de inicio ) =0.5, que es un punto cercano al que se obtuvo después de la quinta iteración = =0.5 = = = = = = cos ) ) ) ) 5 cos5 ) 1 ) 5 ) 1 ) 1

9 = ( ) = = = Entonces una de las soluciones es = = El error cometido en norma-infinita es; ( ) = = ) = El error cometido en norma-1 es; = = ) = = = = = ) Aplicar algoritmo de N-R generalizado al sistema de ecuaciones no lineales, tomando como vector de inicio =, efectuando 2 iteraciones. Determine el error cometido en norma infinito ( ), si la solución exacta es =... Sol: ( ) = 0 = () El problema nos entrega los siguientes datos; (, ): ( ) = 0 (, ): = ( ). "n". (, ) = (, ) = ( ) (, ) ( )

10 , F(,,, 1, cos )) 1 cos )) Entonces, se puede armar el algoritmo; 1 cos 1 = cos Para n=0 y = = ( cos )) Para n=1 y =.. 1 = ) cos )) ) = = = 1 = = 1 = = = = = = = = = = = El error cometido en norma-infinita es; = = = 0 = 0 El resultado nos indica que es la solución del problema, este punto se encuentra en el segundo cuadrante

11 Obs: En ocasiones puede que el resultado no es el que se espera, pues en este ejercicio, la solución más cercana al punto de inicio se encuentra en el cuarto cuadrante y no en el segundo. Puede que el punto de inicio este muy cercano a la solución, pero cabe la posibilidad que haga converger al algoritmo a una solución distinta. Todo depende de la complejidad del problema. También la mala elección del punto de inicio, puede hacer que el algoritmo no converja. 4) Aplicar algoritmo de N-R generalizado al sistema de ecuaciones no lineales, tomando como vector de inicio x₀= ( ) t, efectuando 6 iteraciones. Determine el error cometido en norma infinito ( 1) si la solución exacta α₀= ( ) t. x 3-2 xy+ y = cos (x) x 5 + e y = sen (y). Sol: El problema nos entrega los siguientes datos; Grafico de la ecuación f (xn, yn): x 3 n - 2 xnyn+ yn = cos (xn) y g (xn, yn): x 5 n+ e y = sen (yn). En la imagen se muestran 4 puntos de intersección. F(xn,yn )= f(xn,yn ) = x 3 n - 2 xnyn+ yn - cos (xn) g(xn,yn ) x 5 n+ e y - sen (yn) (F(xn,yn ))= δf(xn,yn )/δ x δf(xn,yn )/δy = 3x 2 n - 2yn +sen (xn) -2xn +1 δg(xn,yn )/δx δg(xn,yn )/δy 5 x 4 n e y - cos (yn) Entonces, se puede armar el algoritmo; -sen (xn)-1 e y xn = cos (xn) + e y - xn 5cos (5xn)+ yn xn - 1 yn sen (5xn)+ xnyn - yn Entonces, se puede armar el algoritmo;

12 ( 2 cos ( ( Para n=0 y ( (.. Para n1 y.. 2 cos ( ( = 0.5 = = = ( (.. Para n2 y ( cos ( ( = = = ( = = = cos ( (......

13 Para n=3 y = Para n=4 y = ( ) Para n=5 y = ( ) El error cometido en norma-1 es;.. = = = = = = ( ).. = = = = = = = = ( ).. = = = 2 cos ) ) 2 cos ) ) 2 cos ) ) = = = = = = = = ) = = ( ) = = =

14 Sol: 5) Aplicar algoritmo de N-R generalizado al sistema de ecuaciones no lineales, tomando como vector de inicio =, efectuando 6 iteraciones. Determine el error cometido en normainfinito ( ) y norma-1( ), si una de las soluciones es = = 10 El problema nos entrega los siguientes datos; 9 2 = cos () (, ): 7 = 10 (, ): cos ( ). 2. = (, ) = (, ) (, ) = cos ( ) (, ) (, ) = (, ) (, ) 3 7 = 2 (, ) 9 2 ( ) Entonces, se puede armar el algoritmo; ( ) 7 3 = cos ( ) Para n=0 y = = = = = 1 = = 1

15 = = Para n=1 y = = = = = = = = Para n=2 y = El error cometido en norma-infinita es; = = = = = = = = = = ) = El error cometido en norma-1 es; = = ) = = = = =

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

Cuadratura de Newton-Cotes

Cuadratura de Newton-Cotes Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION

Más detalles

ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES. Ayudante: Rodrigo Torres Aguirre Ejercicios:

ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES. Ayudante: Rodrigo Torres Aguirre Ejercicios: Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación MÉTODOS ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES Profesor: Jaime Álvarez Maldonado Ayudante:

Más detalles

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales:

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: MAT 1105 F PRACTICA Nº 2 FECHAS DE ENTREGA: Tercer parcial Martes 14 de julio de 2009 Hrs. 16:30 a 18:00 Aula 5 (Geología) Viernes 17 de julio de 2009 Hrs. 16:30 a 18:00 Aula 31 1. Resuelva el siguiente

Más detalles

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1

Para verificar que el sistema converge se deberán cumplir con las siguientes condiciones en las formulas con derivadas parciales: + 1 MAT 5 B Sistemas de ecuaciones no lineales EJERCICIOS RESUELTOS. Resuelva el siguiente sistema de ecuaciones no lineales, utilizando el método de punto fijo multivariable: x cos x x SOLUCIÓN x 8 x +. +

Más detalles

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,,

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,, Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

METODOS NUMERICOS. Curso

METODOS NUMERICOS. Curso Boletín 1 de prácticas. 1. Localizar las raíces de la ecuación F (x) = 0, para los siguientes casos: (a) F (x) = x + e x. (b) F (x) = 0.5 x + 0.2 sen(x). (c) F (x) = x tg(x). (d) F (x) = x 5 3. (e) F (x)

Más detalles

RESOLUCIÓN DE SISTEMAS NO LINEALES -- Método de Newton-Raphson

RESOLUCIÓN DE SISTEMAS NO LINEALES -- Método de Newton-Raphson RESOLUCIÓN DE SISTEMAS NO LINEALES -- Método de Newton-Raphson. El método de Newton para la resolución de una ecuación f(x)=0. Sea f(x) una función continuamente diferenciable dos veces en el intervalo

Más detalles

Despejando, se tienen las siguientes ecuaciones de la forma : a) b)

Despejando, se tienen las siguientes ecuaciones de la forma : a) b) MAT 1105 F PRACTICA Nº 1 FECHAS DE ENTREGA: Tercer parcial Martes 14 de julio de 2009 Hrs. 16:30 a 18:00 Aula 5 (Geología) Viernes 17 de julio de 2009 Hrs. 16:30 a 18:00 Aula 31 1. De la siguiente ecuación:

Más detalles

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices:

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: 5 2 1 1 0 3 1 0 3 3 1 6. 3 1 6 5 2 1 2.- Dada la matriz A = 10 7 8 7 5 6, 8 6 10 hallar

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-6-4-M--00-0 CURSO: Matemática aplicada JORNADA: SEMESTRE: Matutina do. Semestre AÑO: 0 TIPO DE EXAMEN: Examen

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método

Más detalles

Resolución de ecuaciones no lineales y Método de Bisección

Resolución de ecuaciones no lineales y Método de Bisección Resolución de ecuaciones no lineales y Método de Bisección Recordemos algunas ecuaciones 1) Resolver [ ] [ ] Sol: 2) Resolver la siguiente ecuación literal para la variable ; Sol: 3) Resolver Solución:

Más detalles

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19

Optimización. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Optimización Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Optimización 1 / 19 Introducción Problema general de optimización (minimización) Dado f : Ω R

Más detalles

Parte 5. Métodos iterativos para la resolución de sistemas de ecuaciones no lineales

Parte 5. Métodos iterativos para la resolución de sistemas de ecuaciones no lineales Parte 5. Métodos iterativos para la resolución de sistemas de ecuaciones no lineales Gustavo Montero Escuela Técnica Superior de Ingenieros Industriales Universidad de Las Palmas de Gran Canaria Curso

Más detalles

Resolución de Ecuaciones No Lineales

Resolución de Ecuaciones No Lineales Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Contenido 1 Introducción Introducción 2 Localización de Raíces Localización de Raíces 3 Métodos Iterativos

Más detalles

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo

(a) (0.5 puntos) Compruebe que esta ecuación tiene exactamente una solución en el intervalo UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERÍA. INSTITUTO DE CIENCIAS BÁSICAS. Cálculo Numérico, Control 1. Semestre Otoño 007 Problema 1. Se desea encontrar una raíz de la función f(x) = cos (x) x.

Más detalles

REPASO DE ÁLGEBRA MATRICIAL

REPASO DE ÁLGEBRA MATRICIAL REPASO DE ÁLGEBRA MATRICIAL 1. Porqué necesitamos matrices? Qué son las matrices? Dónde está la matriz en este cuadro? (que por cierto fué hecho por Alberto Durero en 1514 y se llama Melancolía ) Las matrices

Más detalles

CURSO DE METODOS NUMERICOS Año Académico Curso Tercero de Matemáticas EXAMEN FINAL FEBRERO

CURSO DE METODOS NUMERICOS Año Académico Curso Tercero de Matemáticas EXAMEN FINAL FEBRERO Año Académico 2000-2001 Curso Tercero de Matemáticas EXAMEN FINAL FEBRERO 1. Dá el enunciado y demuestra el teorema de convergencia del método del punto fijo. (2 puntos) 2. Resuelve el siguiente sistema

Más detalles

Exploración matemática

Exploración matemática Exploración matemática El método de Newton-Raphson Motivos - Para este proyecto elegí investigar y analizar el método de Newton-Raphson, en el cual se utiliza el análisis para hallar el valor aproximado

Más detalles

Despejando, se tienen las siguientes ecuaciones de la forma : a) b)

Despejando, se tienen las siguientes ecuaciones de la forma : a) b) MAT 115 B EJERCICIOS RESUELTOS 1. De la siguiente ecuación: Despejando, se tienen las siguientes ecuaciones de la forma : a) b) Calcule la raíz por el método de punto fijo, tomando en cuenta el criterio

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones ETS Minas: Métodos Matemáticos Ejercicios Tema Métodos iterativos para sistemas de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Resolución de sistemas de ecuaciones lineales

Resolución de sistemas de ecuaciones lineales Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-116-1-M-1-00-2017 CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 116 TIPO DE EXAMEN: FECHA DE EXAMEN: 15 de febrero

Más detalles

Solución de ecuaciones algebraicas y trascendentes: Método de Newton Raphson

Solución de ecuaciones algebraicas y trascendentes: Método de Newton Raphson Solución de ecuaciones algebraicas y trascendentes: Método de Newton Raphson Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán * 2011 Resumen Introducción.

Más detalles

Cálculo Numérico. Curso Ejercicios: Preliminares I

Cálculo Numérico. Curso Ejercicios: Preliminares I Cálculo Numérico. Curso 07-08. Ejercicios: Preliminares I 1. (a) Compruebe que la inversa de una matriz, L, triangular inferior de orden n puede calcularse como sigue: Para j = 1,,..., n e i = j, j + 1,...,

Más detalles

FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS EXAMENFINALDEANÁLISIS NUMÉRICO SEMESTRE

FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS EXAMENFINALDEANÁLISIS NUMÉRICO SEMESTRE EXAMENFINALDEANÁLISIS NUMÉRICO SEMESTRE 014- Estudiante: Calificación: INSTRUCCIONES: Este examen es la demostración de su capacidad de trabajo y comprensión de la asignatura, es un documento oficial de

Más detalles

MÉTODOS NUMÉRICOS - ALGUNAS INSTRUCCIONES EN DERIVE

MÉTODOS NUMÉRICOS - ALGUNAS INSTRUCCIONES EN DERIVE MÉTODOS NUMÉRICOS - ALGUNAS INSTRUCCIONES EN DERIVE Las siguientes instrucciones corresponden, en su mayoría, a funciones definidas por el profesor Julio C. Morales, como complemento a las utilidades del

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES EL PROBLEMA DE OBTENER LOS CEROS O RAÍCES DE UNA ECUACIÓN ALGEBRAICA O TRASCENDENTE, ES UNO DE LOS REQUERIDOS MAS FRECUENTEMENTE, DEBIDO A ELLO

Más detalles

MÉTODOS NUMÉRICOS. Curso o. B Resolución de ecuaciones I (ecuaciones generales f (x) = 0)

MÉTODOS NUMÉRICOS. Curso o. B Resolución de ecuaciones I (ecuaciones generales f (x) = 0) MÉTODOS NUMÉRICOS. Curso 06-07. 1 o. B Resolución de ecuaciones I (ecuaciones generales f (x = 0 1. Utiliza el método de bisección para calcular con una precisión de 10 las soluciones de x 3 7x + 14x 6

Más detalles

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.

Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones

Más detalles

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011

Método de Newton. Cálculo numérico. Notas de clase. 25 de abril, 2011 Método de Newton Cálculo numérico. Notas de clase. 25 de abril, 2011 La resolución de sistemas de ecuaciones algebraicas no lineales de la forma F(x) = 0, F : R n R n, (1) en donde F es una función continua

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 4 Métodos iterativos para sistemas de ecuaciones

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 4 Métodos iterativos para sistemas de ecuaciones ETS Minas: Métodos Matemáticos Soluciones Tema Métodos iterativos para sistemas de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

1. Método de bisección

1. Método de bisección Cálculo Infinitesimal y Numérico. E.T.S. de Ingeniería Informática. Universidad de Sevilla 1 Tema 1: resolución de ecuaciones. Ejercicios y Problemas Nota: Abreviación usual en estos ejercicios: C.D.E.

Más detalles

Resolverlo mediante el método de Gauss con aritmética exacta y sin pivoteo.

Resolverlo mediante el método de Gauss con aritmética exacta y sin pivoteo. Asignatura Cálculo Numérico Página de Sistemas Lineales lineales (Gauss con variantes y estudio iterativo) Examen Diciembre 000 Ejercicio. Dado el sistema lineal 4x+ y+ z = 9 x+ 4y z = 5, x+ y z = 9 (a)

Más detalles

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior

Cálculo infinitesimal Grado en Matemáticas Curso 20014/15 Clave de soluciones n o 6. Derivadas de orden superior Cálculo infinitesimal Grado en Matemáticas Curso 2004/5 Clave de soluciones n o 6 Derivadas de orden superior 70. Hallar los polinomios de Taylor del grado indicado y en el punto indicado para las siguientes

Más detalles

Relación de ejercicios 5

Relación de ejercicios 5 Relación de ejercicios 5 Ecuaciones Diferenciales y Cálculo Numérico Grado en Ingeniería de Tecnologías de Telecomunicación Mayo de 2017 Ejercicio 51 Halla un intervalo, para el cero más próximo al origen,

Más detalles

Algoritmo de la gradiente descendente

Algoritmo de la gradiente descendente Universidad TELESUP Ingeniería de Sistemas Ciclo 2017-I Algoritmo de la gradiente descendente Gradiente descendente es un algoritmo que nos permite resolver el problema de minimización de una función genérica

Más detalles

Sistema de Ecuaciones No Lineales

Sistema de Ecuaciones No Lineales Sistema de Ecuaciones No Lineales Contenido Sistemas de Ecuaciones No Lineales Método de Newton de Primer Orden Método de Newton de Segundo Orden Fórmulas Recursivas Sistemas de Ecuaciones No Lineales

Más detalles

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 37 CONTENIDO

Más detalles

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Programa en MATLAB

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Programa en MATLAB Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica Programa en MATLAB Asignatura: Análisis Numérico Docente: M.C. Julio César Gallo Sanchez Alumno: José Armando Lara Ramos 4 o Semestre Febrero

Más detalles

Análisis Matemático I

Análisis Matemático I Análisis Matemático I Funciones Implícitas Francisco Montalvo Curso 2011/12 Índice 1. Teorema de existencia de Funciones Implícitas 1 1.1. Punto fijo.............................. 1 1.2. Planteamiento............................

Más detalles

Repaso de Cálculo

Repaso de Cálculo Repaso de Cálculo Repaso de Cálculo Repaso de Cálculo Repaso de Cálculo Repaso de Cálculo Repaso de Cálculo Repaso de Cálculo Repaso de Cálculo Repaso de Cálculo Repaso de Cálculo MÉTODO DE BISECCIÓN Si

Más detalles

Auxiliar 1: Métodos Numéricos

Auxiliar 1: Métodos Numéricos Facultad de Ciencias Físicas y Matemáticas Departamento de Física Semestre 2008-1 FI1A2- Sistemas Newtonianos Profesor Hugo Arellano S. Auxiliares: César Casanova M., Juan González B., Daniela Opitz O.

Más detalles

Sistema de Ecuaciones Lineales

Sistema de Ecuaciones Lineales Pantoja Carhuavilca Métodos Computacionales Agenda Ejemplos Ejemplos Aplicaciones de los Sistemas La solución de sistemas lineales de ecuaciones lineales es un tema clásico de las matemáticas, rico en

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos Ampliación de Matemáticas y Métodos Numéricos Relación de ejercicios. Introducción a los Métodos Numéricos Ej. El problema del cálculo del punto de corte de dos rectas con pendiente similar es un problema

Más detalles

Métodos Numéricos en Ecuaciones Diferenciales Ordinarias

Métodos Numéricos en Ecuaciones Diferenciales Ordinarias Tema 4 Métodos Numéricos en Ecuaciones Diferenciales Ordinarias 4.1 Introducción Estudiaremos en este Tema algunos métodos numéricos para resolver problemas de valor inicial en ecuaciones diferenciales

Más detalles

Métodos Numéricos Cap 4: Solución de Sistemas de Ecuaciones lineales y no lineales 1/15

Métodos Numéricos Cap 4: Solución de Sistemas de Ecuaciones lineales y no lineales 1/15 Métodos Numéricos Cap 4: Solución de Sistemas de Ecuaciones lineales y no lineales 1/15 Representación matricial para sistemas de ecuaciones Resolución de Sistemas de ecuaciones lineales y no lineales

Más detalles

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008 UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas Matemáticas Manuel Fernández García-Hierro Badajoz, Febrero 2008 Capítulo X Integración numérica Introducción La integral definida I(f) = b a f(x)

Más detalles

ALN - Curso 2007 Gradiente Conjugado

ALN - Curso 2007 Gradiente Conjugado ALN - Curso 27 Gradiente Conjugado Cecilia González Pérez Junio 27 Métodos Iterativos Pueden ser: Métodos estacionarios Métodos no estacionarios Métodos no estacionarios hacen uso de información, evaluada

Más detalles

OCW-V.Muto Métodos de interpolación Cap. XI CAPITULO XI. METODOS DE INTERPOLACION 1. EL METODO DE INTERPOLACION DE LA POSICION FALSA

OCW-V.Muto Métodos de interpolación Cap. XI CAPITULO XI. METODOS DE INTERPOLACION 1. EL METODO DE INTERPOLACION DE LA POSICION FALSA CAPITULO XI. METODOS DE INTERPOLACION 1. EL METODO DE INTERPOLACION DE LA POSICION FALSA Los métodos de interpolación que vamos a discutir en el resto de este capítulo son muy útiles para determinar los

Más detalles

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE SUS PROCEDIMIENTOS PROHIBIDO EL USO DE CELULARES U OTROS EQUIPOS DE COMUNICACION

Más detalles

Sistemas de ecuaciones no lineales

Sistemas de ecuaciones no lineales Práctica 6 Sistemas de ecuaciones no lineales En esta práctica revisaremos algunos métodos básicos para la resolución numérica de sistemas de ecuaciones no lineales 61 Método iterativo del punto fijo Partimos

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b 0,el procedimiento de la

METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b 0,el procedimiento de la METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b,el procedimiento de la bisección genera una sucesión (s n ) n convergente siendo s n a n b n ytal 2 que si lim s n s se cumple que f s y n s n

Más detalles

Ejercicios resueltos de Examenes anteriores

Ejercicios resueltos de Examenes anteriores FACULTAD DE CIENCIAS EXACTAS DPTO. DE MATEMÁTICAS UNIVERSIDAD ANDRÉS BELLO Álgebra Lineal FMM Ejercicios resueltos de Examenes anteriores. (a) Sea A ( ) 2. Calcule las matrices P y J tal que A P JP 8 5.

Más detalles

Ceros de Funciones: Multivariable

Ceros de Funciones: Multivariable Ceros de Funciones: Multivariable Prof. Marlliny Monsalve 1 1 Postgrado en Ciencias de la Computación Universidad Central de Venezuela Análisis Numérico May 19, 2015 Prof. Monsalve (UCV) Ceros Multivariable

Más detalles

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.

El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex. El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas ITESM Métodos Iterativos para Resolver Sistemas Lineales Álgebra Lineal - p. 1/30 En esta lectura veremos

Más detalles

Práctica 4: Sistemas de ecuaciones no lineales.

Práctica 4: Sistemas de ecuaciones no lineales. Práctica 4: Sistemas de ecuaciones no lineales. 1 Introducción. Sea un conjunto de ecuaciones de la forma: f i (x 1, x 2,..., x N ) = 0, i = 1, 2,...N (1) o en notación matricial: f(x) = 0 (2) cuya solución

Más detalles

Prácticas de Métodos Numéricos Prof. Tomás Martín

Prácticas de Métodos Numéricos Prof. Tomás Martín %%Control 1. Lecciones A-B Tomás Martín Hernández Iniciada: 16 de febrero de 2009 10:49 Preguntas: 5 Prácticas de Métodos Numéricos Prof. Tomás Martín 1. (Puntos: 0,5) Importante: El separador decimal

Más detalles

Métodos Numéricos: Ejercicios Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Ejercicios Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Ejercicios Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 2008, versión

Más detalles

SISTEMA DE ECUACIONES LINEALES Y NO LINEALES

SISTEMA DE ECUACIONES LINEALES Y NO LINEALES TEMA N o SISTEMA DE ECUACIONES LINEALES Y NO LINEALES SISTEMA DE ECUACIONES LINEALES Los metodos de resolucion de sistemas de ecuaciones lineales se dividen en dos grupos: a) MÉTODOS EXACTOS. Son algoritmos

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 7

Análisis Numérico para Ingeniería. Clase Nro. 7 Análisis Numérico para Ingeniería Clase Nro. 7 Sistemas de Ecuaciones No Lineales Temas a tratar: Método de Bisección. Método de Punto Fijo. Método de Punto Fijo Sistemático. Método de Newton-Raphson.

Más detalles

SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS. Hernández Cruz G. Berenice.

SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS. Hernández Cruz G. Berenice. SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS Hernández Cruz G. Berenice. SOLUCIÓN A LA ECUACIÓN EN DIFERENCIAS FINITAS La solución de diferencias finitas es ocupada en los análisis numéricos, por ejemplo:

Más detalles

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.

x 2 y si x 3y 2 si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares. FIUBA 07-05-11 Análisis Matemático II Parcial - Tema 1 1. Sea f(x, y) = { x y si x 3y si x = 3y Describir el conjunto de los puntos de discontinuidad de f en coordenadas polares.. Sea G(x, y) = (u(x, y),

Más detalles

TALLERES DE METODOS NUMERICOS SOLUCION NUMERICA DE ECUACIONES NO LINEALES

TALLERES DE METODOS NUMERICOS SOLUCION NUMERICA DE ECUACIONES NO LINEALES TALLERES DE METODOS NUMERICOS SOLUCION NUMERICA DE ECUACIONES NO LINEALES. Usar un procedimiento iterativo para calcular una aproimación a la menor raíz positiva de la ecuación : sen π = 0 Calcular tres

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales 1 El sistema de ecuaciones lineales Sistema de ecuaciones lineales puede ser escrito en forma matricial como, donde: es llamada matriz de los coeficientes (reales) del sistema es el vector de las incógnitas

Más detalles

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35

Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Interpolación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Contenidos 1 Introducción 2 Interpolación de Taylor Cálculo del polinomio

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Departamento de Matemáticas ITESM Álgebra Lineal - p. 1/16 En esta lectura veremos el proceso para obtener la factorización QR de una matriz. Esta factorización es utilizada para

Más detalles

Lic. Guillermo Mario, Chuquipoma Pacheco.

Lic. Guillermo Mario, Chuquipoma Pacheco. UNSAAC Lic. Guillermo Mario, Chuquipoma Pacheco mariochuqui@hotmail.com www.mariochuqui.jimdo.com Métodos Numéricos con MatLab Lic. Guillermo Mario Chuquipoma Pacheco 2010 Aproximación a raíces de ecuaciones

Más detalles

Laboratorio Nº 3. Trigonometría. Contenido: Principal, Resolución Numérica y Gráficos & Tablas. Universidad Diego Portales Facultad de Ingeniería

Laboratorio Nº 3. Trigonometría. Contenido: Principal, Resolución Numérica y Gráficos & Tablas. Universidad Diego Portales Facultad de Ingeniería Universidad Diego Portales Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Álgebra Laboratorio Nº 3 Trigonometría Contenido: Gráficos de funciones trigonométricas Período y ceros de funciones

Más detalles

CAPÍTULO. 7 Métodos numéricos

CAPÍTULO. 7 Métodos numéricos CAPÍTULO 7 Métodos numéricos 7.4 Método de Runge-Kutta En las secciones previas se resolvió el PVI y 0 D f.x; y/, con y.x 0 / D y 0 utilizando aproximaciones lineal y cuadrática de la solución y.x/. Observamos

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones Eje temático: Álgebra y funciones Contenidos: Sistemas de ecuaciones Nivel: 2 Medio Sistemas de ecuaciones 1. Sistemas de ecuaciones lineales En distintos problemas de matemáticas nos vemos enfrentados

Más detalles

Métodos Numéricos Grado en Informática Tema 6: Análisis Numérico Matricial II

Métodos Numéricos Grado en Informática Tema 6: Análisis Numérico Matricial II Métodos Numéricos Grado en Informática Tema 6: Análisis Numérico Matricial II Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 / 84 Contenido

Más detalles

MATEMÁTICA TICA SUPERIOR APLICADA

MATEMÁTICA TICA SUPERIOR APLICADA MATEMÁTICA TICA SUPERIOR APLICADA Solución n Numérica de Sistemas de Ecuaciones No Lineales en Ingeniería a Química Universidad Tecnológica Nacional Facultad Regional Rosario Dr. Alejandro S. M. Santa

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES EL PROBLEMA DE OBTENER LOS CEROS O RAÍCES DE UNA ECUACIÓN ALGEBRAICA O TRASCENDENTE, ES UNO DE LOS REQUERIDOS MAS FRECUENTEMENTE, DEBIDO A ELLO

Más detalles

Método de potencia directo e inverso

Método de potencia directo e inverso Clase No. 12: Método de potencia directo e inverso MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 26.09.2011 1 / 20 Método de la potencia Este método puede encontrar el eigenvalor más grande

Más detalles

a) Plantear un sistema de ecuaciones para calcular los coeficientes de f y resolverlo usando la descomposición LU de la matriz del sistema.

a) Plantear un sistema de ecuaciones para calcular los coeficientes de f y resolverlo usando la descomposición LU de la matriz del sistema. E.T.S. de Álgebra Numérica 30 de junio de 2006 Se quiere encontrar una función de la forma f(x) = ax 3 + bx + c que pase por los puntos (1, 4), ( 2, 23) y (2, 21). a) Plantear un sistema de ecuaciones

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico, necesitás repasar algunas cuestiones como: ) graficar

Más detalles

Aproximaciones y Error

Aproximaciones y Error Aproximaciones y Error Oldemar Rodríguez R. UCR 14 de septiembre de 2014 Oldemar Rodríguez R. (UCR) Aproximaciones y Error 14 de septiembre de 2014 1 / 30 Outline 1 Aritmética punto flotante 2 Problemas

Más detalles

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones

Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Métodos Clásicos de Optimización para Problemas No-Lineales sin Restricciones Dr. Gonzalo Hernández Oliva UChile - Departamento de Ingeniería Matemática 07 de Mayo 2006 Abstract En este apunte veremos

Más detalles

Análisis Matemático 2

Análisis Matemático 2 Análisis Matemático 2 Una resolución de ejercicios con hipervínculos a videos on-line Autor: Martín Maulhardt Revisión: Fernando Acero y Ricardo Sirne Análisis Matemático II y II A Facultad de Ingeniería

Más detalles

OCW-V.Muto Análisis de los errores Cap. II CAPITULO II. ANALISIS DE LOS ERRORES 1. ESQUEMA DE RESOLUCION NUMERICA DE UN PROBLEMA

OCW-V.Muto Análisis de los errores Cap. II CAPITULO II. ANALISIS DE LOS ERRORES 1. ESQUEMA DE RESOLUCION NUMERICA DE UN PROBLEMA CAPITULO II. ANALISIS DE LOS ERRORES 1. ESQUEMA DE RESOLUCION NUMERICA DE UN PROBLEMA Si se desea resolver un problema físico B, lo primero que se suele hacer es traducirlo al lenguaje matemático para

Más detalles

A = a 21 1 a 23 0 a Estudiar si los métodos de Jacobi y Gauss-Seidel para A convergen o divergen simultáneamente. (1.5p).

A = a 21 1 a 23 0 a Estudiar si los métodos de Jacobi y Gauss-Seidel para A convergen o divergen simultáneamente. (1.5p). 1 PROBLEMA.1 Convergencia de esquemas iterativos para una matriz tridiagonal. Se considera una matriz tridiagonal de 3x3 del tipo siguiente: 1 a 12 A = a 21 1 a 23 a 32 1 Se pide: 1. Estudiar si los métodos

Más detalles

3 RAÍCES REALES DE ECUACIONES NO-LINEALES. 3.1 Método de la bisección

3 RAÍCES REALES DE ECUACIONES NO-LINEALES. 3.1 Método de la bisección 3 RAÍCES REALES DE ECUACIONES NO-LINEALES Sea f: R R. Dada la ecuación f(x) = 0, se debe encontrar un valor real r tal que f(r) = 0. Entonces r es una raíz real de la ecuación Si no es posible obtener

Más detalles

Paso 3: Ahora por cada variable del sistema de ecuaciones (x,y,z) vamos a calcular su

Paso 3: Ahora por cada variable del sistema de ecuaciones (x,y,z) vamos a calcular su Regla de Cramer la resolución de Sistemas de Ecuaciones Lineales de 3x3 26-octubre-2013 Elaboró: Ing. Edwing Daniel Chay Morales 1 El método de Cramer emplea el uso de determinantes para obtener la solución

Más detalles

Distribuciones Bidimensionales.

Distribuciones Bidimensionales. Distribuciones Bidimensionales. 1.- Variables Estadísticas Bidimensionales. Las variables estadísticas bidimensionales se representan por el par (X, Y) donde, X es una variable unidimensional, e Y es otra

Más detalles

Contenido. Sistemas de ecuaciones no lineales. Enunciado del problema. Ejemplos. Ejemplos. Presentación geométrica. Normas CNM-425

Contenido. Sistemas de ecuaciones no lineales. Enunciado del problema. Ejemplos. Ejemplos. Presentación geométrica. Normas CNM-425 Contenido Análisis Numérico Sistemas de ecuaciones no lineales 1 Introducción CNM-45 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Método de Newton Copyleft

Más detalles

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1)

CÁLCULO NUMÉRICO I (Tema 2 - Relación 1) CÁLCULO NUMÉRICO I (Tema - Relación 1) 1 Cuáles de los siguientes algoritmos son finitos? a) Cálculo del producto de dos números enteros. b) Cálculo de la división de dos números enteros. c) Cálculo de

Más detalles

Elementos de Cálculo Numérico

Elementos de Cálculo Numérico Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico Primer cuatrimestre 2006 Práctica N 2: Condicionamiento de una matriz. Descomposición

Más detalles

Métodos iterativos para resolver sistemas de ecuaciones lineales

Métodos iterativos para resolver sistemas de ecuaciones lineales Clase No. 8 (Parte 1): MAT 251 Métodos iterativos para resolver sistemas de ecuaciones lineales Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador

7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Septiembre

Más detalles

Métodos Numéricos Cap 4: Solución de Sistemas de Ecuaciones lineales y no lineales 1/15

Métodos Numéricos Cap 4: Solución de Sistemas de Ecuaciones lineales y no lineales 1/15 Métodos Numéricos Cap 4: Solución de Sistemas de Ecuaciones lineales y no lineales 1/15 Representación matricial para sistemas de ecuaciones Resolución de Sistemas de ecuaciones lineales y no lineales

Más detalles

- sen(x) cos(x) cos(x) sen(x)

- sen(x) cos(x) cos(x) sen(x) EXAMEN DE MATEMATICAS II ª EVALUACIÓN Apellidos: Nombre: Curso: º Grupo: A Día: 7-X-4 CURSO 4- Opción A.- a) [ punto] Si A y B son dos matrices cuadradas y del mismo orden, es cierta en general la relación

Más detalles