Métodos iterativos para resolver sistemas de ecuaciones lineales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos iterativos para resolver sistemas de ecuaciones lineales"

Transcripción

1 Clase No. 8 (Parte 1): MAT 251 Métodos iterativos para resolver sistemas de ecuaciones lineales Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato alram@ cimat.mx web: alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT A.C. joaquin@ cimat.mx Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

2 Matrices estrictamente diagonal dominante Proposición Sea A una matriz estrictamente diagonal dominante. Entonces la matriz es invertible. Por contradicción, supongamos que es singular. Entonces podemos hallar x = 0 tal que Ax = 0. Supongamos que Entonces x k = max 1 i n x i. n n a kj x j = 0 = a kk x k = a kj x j j=1 n n a kk x k a kj x j = a kk j=1 j =i lo cual es una contradicción. j=1 j =i j=1 j =i a kj x j x k n a kj j=1 j =i Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

3 Normas para vectores Definición de norma vectorial Una norma en R n es una función : R n R que tiene las propiedades: 1 x 0 x R n, 2 x = 0 si y sólo si x = 0, 3 αx = α x x R n, α R, 4 x + y x + y x, y R n. Ejemplos: Para x = (x 1, x 2,..., x n ) x 2 = n x 2 i (Norma l 2 ) x 1 = i=1 n x i (Norma l 1 ) i=1 x = max 1 i n x i (Norma l ) Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

4 Normas para matrices Definición de norma matricial Una norma en R n n es una función : R n n R que tiene las propiedades para todo A, B R n n y α R: 1 A 0 y A = 0 si y sólo si A = 0, 2 αa = α A, 3 A + B A + B, 4 AB A B. Ejemplos: Para A = [a ij ], 1/2 n n A F = a 2 ij i=1 j=1 (Norma de Frobenius) n A = max 1 i n j=1 a ij (Norma l ) A = max x =0 Ax x (Norma natural) Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

5 Introducción a los métodos iterativos Una separación de A es una descomposición A = Q P, con Q una matriz no singular. Una separación puede producir un método iterativo: b = Ax = Qx Px = x = Q 1 (Px + b) = Mx + c Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

6 Introducción a los métodos iterativos Una separación de A es una descomposición A = Q P, con Q una matriz no singular. Una separación puede producir un método iterativo: b = Ax = Qx Px = x = Q 1 (Px + b) = Mx + c Queremos un método en el que demos un vector inicial x 0 y generemos una sucesión mediante x t = Mx t 1 + c (1) tal que x t x, donde x es la solución del sistema Ax = b. En el proceso iterativo, como la matriz M y el vector c no cambian, se dice que el método es estacionario. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

7 Introducción a los métodos iterativos Tenemos que la solución x de Ax = b satisface Restando (2) de (1) se obtiene x = Mx + c (2) x t x = M(x t 1 x ) = x t x M x t 1 x Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

8 Introducción a los métodos iterativos Tenemos que la solución x de Ax = b satisface Restando (2) de (1) se obtiene x = Mx + c (2) x t x = M(x t 1 x ) = x t x M x t 1 x Proposición Si M < 1, entonces la sucesión {x t }, con x t = Mx t 1 + c, converge para cualquier x 0. x t x M x t 1 x < x t 1 x Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

9 Un comentario sobre las normas en R n En general, no conocemos x. Por ello, un criterio para terminar de iterar el algoritmo es cuando se cumpla x t x t x t < tol o Ax t b 1 + b < tol Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

10 Un comentario sobre las normas en R n En general, no conocemos x. Por ello, un criterio para terminar de iterar el algoritmo es cuando se cumpla x t x t x t < tol o Ax t b 1 + b < tol Proposición Si a y b son dos normas en R n, entonces existen constantes α, β R tales que para todo x R n α x a x b β x a En general, cuando dos normas cumplen las desigualdades anteriores se dice que son equivalentes. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

11 Un comentario sobre las normas en R n En general, no conocemos x. Por ello, un criterio para terminar de iterar el algoritmo es cuando se cumpla x t x t x t < tol o Ax t b 1 + b < tol Proposición Si a y b son dos normas en R n, entonces existen constantes α, β R tales que para todo x R n α x a x b β x a En general, cuando dos normas cumplen las desigualdades anteriores se dice que son equivalentes. Desde el punto de vista computacional, esto nos da la libertad de usar en los algoritmos una norma que no sea costosa de calcular y que no introduzca demasiados errores al calcularla. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

12 Método de Jacobi Queremos resolver Ax = b haciendo una separación de la matriz A = [a ij ] = Q P. Dado que x = Q 1 (Px + b), conviene elegir Q de modo que su inversa sea fácil de calcular. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

13 Método de Jacobi Queremos resolver Ax = b haciendo una separación de la matriz A = [a ij ] = Q P. Dado que x = Q 1 (Px + b), conviene elegir Q de modo que su inversa sea fácil de calcular. En el método de Jacobi se elige a a 22 a 1n 0 a 22 0 a 21 0 a 2n Q = , P = a nn a n1 a n2 0 Si b = (b 1,..., b n ), x t 1 = (x t 1 1, x t 1 2,..., x t 1 ), entonces para n i = 1, 2,..., n, la componente i-ésima de x t está dada por Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

14 Método de Jacobi Queremos resolver Ax = b haciendo una separación de la matriz A = [a ij ] = Q P. Dado que x = Q 1 (Px + b), conviene elegir Q de modo que su inversa sea fácil de calcular. En el método de Jacobi se elige a a 22 a 1n 0 a 22 0 a 21 0 a 2n Q = , P = a nn a n1 a n2 0 Si b = (b 1,..., b n ), x t 1 = (x t 1 1, x t 1 2,..., x t 1 ), entonces para n i = 1, 2,..., n, la componente i-ésima de x t está dada por x t i = 1 a ii b i n a ij x t 1 j j=1 j =i Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

15 Convergencia del método de Jacobi Note que M = Q 1 P = I Q 1 A donde I es la matriz identidad de tamaño n. Entonces Si para todo i tenemos que M = max 1 i n n a ij j=1 j =i a ii a ii > n a ij = M < 1 j=1 j =i y por tanto la sucesión es convergente. Proposición Si la matriz A es estrictamente diagonal dominante, entonces el método de Jacobi converge para cualquier vector inicial x 0. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

16 Ejemplo 1. Elegimos A = x 2000 = 3000, = b = Ax = Iniciamos con x 0 0 = Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

17 Ejemplo 1. t=1 t=3 t=5 t=7 t=9 t=11 x x x x x t=13 t=15 t=17 t=19 t=21 t=23 x x x x x Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

18 Otra condición suficiente. Decimos que v es un eigenvector de la matriz A si existe λ R tal que Av = λv, y llamamos a λ es un eigenvalor asociado a v. El radio espectral ρ(a) de una matriz A se define como ρ(a) = max{ λ : λ es eigenvalor de A} Proposición Sea A una matriz n n. Entonces ρ(a) A Además, A k 0 si y sólo si ρ(a) < 1. para cualquier norma natural. Proposición La sucesión x t = Mx t 1 + c converge para cualquier x 0 si ρ(m) < 1. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

19 Ejemplo 2. Consideremos las matrices de la forma A = Radio espectral Dimension Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

20 Ejemplo 2. Fijamos n = 100. Sea b = (0.5, 0, 0,..., 0, 0, 0.5). Entonces, inicializamos el método de Jacobi con el siguiente vector x 0 : 3 Resultado parcial Componente Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

21 Ejemplo Resultado parcial Resultado parcial Componente Componente Iteración 1 Iteración 10 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

22 Ejemplo Resultado parcial Resultado parcial Componente Componente Iteración 20 Iteración 50 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

23 Ejemplo 2: Iteración Resultado parcial A*x^t Componente Iteracion Error Iteracion Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

24 Ejemplo 2: Iteración Resultado parcial A*x^t Componente Iteracion Error Iteracion Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

25 Ejemplo 2: Iteración Resultado parcial A*x^t Componente Iteracion Error Iteracion Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

26 Ejemplo 2: Iteración Resultado parcial A*x^t Componente Iteracion Error Iteracion Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

27 Ejemplo 2: Iteración Resultado parcial A*x^t Componente Iteracion Error Iteracion Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

28 Ejemplo 2: Iteración Resultado parcial A*x^t Componente Iteracion Error Error Iteracion Iteracion Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 22

Métodos iterativos para resolver sistemas de ecuaciones lineales

Métodos iterativos para resolver sistemas de ecuaciones lineales Clase No. 9: MAT 251 Métodos iterativos para resolver sistemas de ecuaciones lineales Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/salram/met_num/ Dr. Joaquín

Más detalles

Matrices bandadas Cálculo de la inversa y determinante Normas vectoriales y matriciales

Matrices bandadas Cálculo de la inversa y determinante Normas vectoriales y matriciales Clase No. 8: MAT 251 Matrices bandadas Cálculo de la inversa y determinante Normas vectoriales y matriciales Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Repaso de algebra matricial

Repaso de algebra matricial Clase No. 3 (Parte 1): MAT 251 Repaso de algebra matricial Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín

Más detalles

Eigenvalores y eigenvectores. Método de la potencia

Eigenvalores y eigenvectores. Método de la potencia Clase No. 12: MAT 251 Eigenvalores y eigenvectores. Método de la potencia Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo

Más detalles

Dr. Alonso Ramírez Manzanares CIMAT A.C. cimat.mx web: alram/met_num/

Dr. Alonso Ramírez Manzanares CIMAT A.C.   cimat.mx web:   alram/met_num/ Clase No. 4 (Parte 2): MAT 251 Factorización LU Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT A.C. e-mail: joaquin@

Más detalles

Factorización QR Método iterativo de Jacobi

Factorización QR Método iterativo de Jacobi Clase No. 13: MAT 251 Factorización QR Método iterativo de Jacobi Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT

Más detalles

Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato cimat.mx web:

Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato   cimat.mx web: Clase No 12: MAT 251 Factorización QR Dr Alonso Ramírez Manzanares Depto de Matemáticas Univ de Guanajuato e-mail: alram@ cimatmx web: http://wwwcimatmx/alram/met_num/ Dr Joaquín Peña Acevedo CIMAT AC

Más detalles

MAT web:

MAT web: Clase No. 7: MAT 251 Matrices definidas positivas Matrices simétricas Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Método de potencia directo e inverso

Método de potencia directo e inverso Clase No. 12: Método de potencia directo e inverso MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 26.09.2011 1 / 20 Método de la potencia Este método puede encontrar el eigenvalor más grande

Más detalles

Cuadratura Gaussiana basada en polinomios ortogonales.

Cuadratura Gaussiana basada en polinomios ortogonales. Clase No. 20: MAT 251 Cuadratura Gaussiana basada en polinomios ortogonales. Dr. Alonso Ramírez Manzanares CIMAT, A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña

Más detalles

Dr. Alonso Ramírez Manzanares CIMAT A.C. cimat.mx web: alram/met_num/

Dr. Alonso Ramírez Manzanares CIMAT A.C.   cimat.mx web:  alram/met_num/ Clase No 4: MAT 251 Factorización LU Dr Alonso Ramírez Manzanares CIMAT AC e-mail: alram@ cimatmx web: http://wwwcimatmx/ alram/met_num/ Dr Joaquín Peña Acevedo CIMAT AC e-mail: joaquin@ cimatmx Joaquín

Más detalles

Problema de convolución y deconvolución Diferencias finitas para EDO

Problema de convolución y deconvolución Diferencias finitas para EDO Clase No. 24: Problema de convolución y deconvolución Diferencias finitas para EDO MAT 251 Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/alram/met_num/

Más detalles

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Métodos Iterativos Introducción Definición Métodos Iterativos Método de Jacobi Convergencia Método de Gauss

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Hermes Pantoja Carhuavilca 1 de

Más detalles

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16

Clase No. 13: Factorización QR MAT 251. Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) / 16 Clase No 13: Factorización QR MAT 251 Joaquín Peña (CIMAT) Métodos Numéricos (MAT 251) 03102011 1 / 16 Factorización QR Sea A R m n con m n La factorización QR de A es A = QR = [Q 1 Q 2 ] R1 = Q 0 1 R

Más detalles

Cálculo Numérico. Curso Ejercicios: Preliminares I

Cálculo Numérico. Curso Ejercicios: Preliminares I Cálculo Numérico. Curso 07-08. Ejercicios: Preliminares I 1. (a) Compruebe que la inversa de una matriz, L, triangular inferior de orden n puede calcularse como sigue: Para j = 1,,..., n e i = j, j + 1,...,

Más detalles

Formulación de Galerkin El método de los elementos finitos

Formulación de Galerkin El método de los elementos finitos Clase No. 28: MAT 251 Formulación de Galerkin El método de los elementos finitos Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

Método de mínimo cuadrados (continuación)

Método de mínimo cuadrados (continuación) Clase No. 10: Método de mínimo cuadrados (continuación) MAT 251 Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Métodos iterativos de solución de SEL

Métodos iterativos de solución de SEL Métodos iterativos de solución de SEL Método de Gauss-Seidel MAT-251 Dr. Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Joaquín Peña Acevedo

Más detalles

Introducción a EDP: Ecuaciones hiperbólicas y parabólicas

Introducción a EDP: Ecuaciones hiperbólicas y parabólicas Clase No. 27: MAT 251 Introducción a EDP: Ecuaciones hiperbólicas y parabólicas Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/

Más detalles

Parte 4. Métodos iterativos para la resolución de sistemas de ecuaciones lineales

Parte 4. Métodos iterativos para la resolución de sistemas de ecuaciones lineales Parte 4. Métodos iterativos para la resolución de sistemas de ecuaciones lineales Gustavo Montero Escuela Técnica Superior de Ingenieros Industriales Universidad de Las Palmas de Gran Canaria Curso 2006-2007

Más detalles

Gustavo Rodríguez Gómez. Agosto Dicembre 2011

Gustavo Rodríguez Gómez. Agosto Dicembre 2011 Computación Científica Gustavo Rodríguez Gómez INAOE Agosto Dicembre 2011 1 / 44 Capítulo III Descomposición de Matrices 2 / 44 1 Descomposición de Matrices Notación Matrices Operaciones con Matrices 2

Más detalles

Método de mínimos cuadrados (Continuación)

Método de mínimos cuadrados (Continuación) Clase No. 11: MAT 251 Método de mínimos cuadrados (Continuación) Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT

Más detalles

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

Métodos iterativos de solución de SEL

Métodos iterativos de solución de SEL Métodos iterativos de solución de SEL Método de Gauss-Seidel MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT A.C. e-mail: joaquin@cimat.mx

Más detalles

Parte 2. Métodos directos para la resolución de sistemas de ecuaciones lineales

Parte 2. Métodos directos para la resolución de sistemas de ecuaciones lineales Parte 2. Métodos directos para la resolución de sistemas de ecuaciones lineales Gustavo Montero Escuela Técnica Superior de Ingenieros Industriales University of Las Palmas de Gran Canaria Curso 2006-2007

Más detalles

1.2 Valores y vectores propios. Método de las potencias y Rayleigh.

1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 20 Prelininares. 1.2 Valores y vectores propios. Método de las potencias y Rayleigh. 1.2.1 Cálculo del Polinomio Caracterstico: ALGORITMO DE SOURIAU. ENTRADA: la matriz A 1 = A, p 1 = traza(a 1 ), n =

Más detalles

METODOS NUMERICOS. Curso

METODOS NUMERICOS. Curso Boletín 1 de prácticas. 1. Localizar las raíces de la ecuación F (x) = 0, para los siguientes casos: (a) F (x) = x + e x. (b) F (x) = 0.5 x + 0.2 sen(x). (c) F (x) = x tg(x). (d) F (x) = x 5 3. (e) F (x)

Más detalles

Matrices 3. Matrices. Verónica Briceño V. agosto 2012

Matrices 3. Matrices. Verónica Briceño V. agosto 2012 3 agosto 2012 En esta Presentación... En esta Presentación veremos: Matriz Inversa En esta Presentación... En esta Presentación veremos: Matriz Inversa Determinante En esta Presentación... En esta Presentación

Más detalles

Diferenciación numérica: Sistemas de ecuaciones lineales ordinarias Método de disparo Método predictor-corrector

Diferenciación numérica: Sistemas de ecuaciones lineales ordinarias Método de disparo Método predictor-corrector Clase No. 23: Diferenciación numérica: Sistemas de ecuaciones lineales ordinarias Método de disparo Método predictor-corrector MAT 251 Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato

Más detalles

Resolución de sistemas de ecuaciones lineales

Resolución de sistemas de ecuaciones lineales Tema 2 Resolución de sistemas de ecuaciones lineales 21 Métodos directos de resolución de sistemas de ecuaciones lineales 211 Resolución de sistemas triangulares Definición 211 Una matriz A se dice triangular

Más detalles

Diferenciación numérica: Método de Euler implícito Métodos tipo Runge-Kutta

Diferenciación numérica: Método de Euler implícito Métodos tipo Runge-Kutta Clase No. 24: Diferenciación numérica: Método de Euler implícito Métodos tipo Runge-Kutta MAT 251 Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/alram/met_num/

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

1.II.3. Sistemas de ecuaciones lineales: métodos iterativos.

1.II.3. Sistemas de ecuaciones lineales: métodos iterativos. 1.II.3. Sistemas de ecuaciones lineales: métodos iterativos. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2003 Referencias [1] Burden, R.

Más detalles

Cálculo numérico. Sistemas de ecuaciones lineales.

Cálculo numérico. Sistemas de ecuaciones lineales. José Luis Morales http://allman.rhon.itam.mx/ jmorales Departamento de Matemáticas. ITAM. 2010. Las raíces de x 2 bx + c = 0. r = b ± b 2 4c 2 b = 3.6778, c = 0.0020798 r 1 = 3.67723441190... r 2 = 0.00056558809...

Más detalles

Diferenciación numérica: Método de Euler explícito

Diferenciación numérica: Método de Euler explícito Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales

Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Métodos Numéricos: Resumen y ejemplos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de

Más detalles

Propagación de errores

Propagación de errores Clase No. 2: MAT 251 Propagación de errores Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/ Dr. Joaquín Peña Acevedo

Más detalles

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares

Clase. 1. Resolución de sistemas de ecuaciones lineales: preliminares Clase 1. Resolución de sistemas de ecuaciones lineales: preliminares 2. Método directo y exacto: Gauss 3. Método directo y exacto (II): descomposición LU 4. Métodos indirectos: Jacobi, Gauss-Seidel 2 Sistemas

Más detalles

Parte 3. Vectores y valores propios

Parte 3. Vectores y valores propios Parte 3. Vectores y valores propios Gustavo Montero Escuela Universitaria Politécnica Universidad de Las Palmas de Gran Canaria Curso 2004-2005 1 Introducción a los valores y vectores propios 2 3 4 5 Valores

Más detalles

2.2 Normas matriciales

2.2 Normas matriciales P Castillo Capítulo 2 13 22 Normas matriciales En el caso de las matrices cuadradas de orden n la estructura algebraica es mucho más rica que la de un espacio vectorial K n ; además de tener operaciones

Más detalles

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones

E.T.S. Minas: Métodos Matemáticos Ejercicios Tema 4 Métodos iterativos para sistemas de ecuaciones ETS Minas: Métodos Matemáticos Ejercicios Tema Métodos iterativos para sistemas de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS

EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS EJERCICIO COMPUTACIONAL N o 4. MÉTODOS ITERATIVOS Ángel Durán Departamento de Matemática Aplicada Universidad de Valladolid 23 de abril de 2011 Contenidos 1 Métodos iterativos para sistemas lineales Técnicas

Más detalles

a) Plantear un sistema de ecuaciones para calcular los coeficientes de f y resolverlo usando la descomposición LU de la matriz del sistema.

a) Plantear un sistema de ecuaciones para calcular los coeficientes de f y resolverlo usando la descomposición LU de la matriz del sistema. E.T.S. de Álgebra Numérica 30 de junio de 2006 Se quiere encontrar una función de la forma f(x) = ax 3 + bx + c que pase por los puntos (1, 4), ( 2, 23) y (2, 21). a) Plantear un sistema de ecuaciones

Más detalles

9. Normas y métodos iterativos de resolución de sistemas lineales.

9. Normas y métodos iterativos de resolución de sistemas lineales. 9. Normas y métodos iterativos de resolución de sistemas lineales. Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2010 Contents 9 Normas

Más detalles

Clase 7 Herramientas de Álgebra Lineal

Clase 7 Herramientas de Álgebra Lineal Clase 7 Herramientas de Álgebra Lineal 1 Formas cuadráticas La descomposición en valores singulares 3 Normas de matrices 4 Ejercicios Dada una matriz M R n n, la función escalar x T Mx, donde x R n, es

Más detalles

Sistema de ecuaciones lineales

Sistema de ecuaciones lineales 1 El sistema de ecuaciones lineales Sistema de ecuaciones lineales puede ser escrito en forma matricial como, donde: es llamada matriz de los coeficientes (reales) del sistema es el vector de las incógnitas

Más detalles

SISTEMA DE ECUACIONES LINEALES Y NO LINEALES

SISTEMA DE ECUACIONES LINEALES Y NO LINEALES TEMA N o SISTEMA DE ECUACIONES LINEALES Y NO LINEALES SISTEMA DE ECUACIONES LINEALES Los metodos de resolucion de sistemas de ecuaciones lineales se dividen en dos grupos: a) MÉTODOS EXACTOS. Son algoritmos

Más detalles

Sistema de Ecuaciones Lineales

Sistema de Ecuaciones Lineales Pantoja Carhuavilca Métodos Computacionales Agenda Ejemplos Ejemplos Aplicaciones de los Sistemas La solución de sistemas lineales de ecuaciones lineales es un tema clásico de las matemáticas, rico en

Más detalles

Teoría de la aproximación Métodos de Mínimos cuadrados

Teoría de la aproximación Métodos de Mínimos cuadrados Teoría de la aproximación Métodos de Mínimos cuadrados MAT-251 Dr. Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT

Más detalles

Métodos Numéricos Grado en Informática Tema 6: Análisis Numérico Matricial II

Métodos Numéricos Grado en Informática Tema 6: Análisis Numérico Matricial II Métodos Numéricos Grado en Informática Tema 6: Análisis Numérico Matricial II Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 / 84 Contenido

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numérico Hermes Pantoja Carhuavilca 1 de 37 CONTENIDO

Más detalles

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y

Ejercicios tipo test de las lecciones 1 y El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1, 2, 1) y Álgebra lineal y Geometría I Gloria Serrano Sotelo Departamento de MATEMÁTICAS Ejercicios tipo test de las lecciones 1 y 2. 1. El vector e = ( 1, 0, λ) está en el plano generado por los vectores u = (1,

Más detalles

Métodos para matrices especiales. Descomposición de Cholesky

Métodos para matrices especiales. Descomposición de Cholesky Métodos para matrices especiales. Descomposición de Cholesky MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Joaquín Peña Acevedo CIMAT A.C. e-mail: joaquin@cimat.mx

Más detalles

Elementos de Cálculo Numérico

Elementos de Cálculo Numérico Universidad de Buenos Aires - Facultad de Ciencias Exactas y Naturales - Depto. de Matemática Elementos de Cálculo Numérico Primer cuatrimestre 2006 Práctica N 2: Condicionamiento de una matriz. Descomposición

Más detalles

Métodos Multigrid. Universidad Nacional Autónoma de México. Laboratorio de Cómputo Científico. Jorge Zavaleta Sánchez. presenta

Métodos Multigrid. Universidad Nacional Autónoma de México. Laboratorio de Cómputo Científico. Jorge Zavaleta Sánchez. presenta Universidad Nacional Autónoma de México Laboratorio de Cómputo Científico Métodos Multigrid presenta Jorge Zavaleta Sánchez México D.F., a 20 de Agosto de 2009. (UNAM) Agosto, 2009 1 / 40 Problemas Modelo

Más detalles

Sistema de Ecuaciones Lineales - Métodos Iterativos -

Sistema de Ecuaciones Lineales - Métodos Iterativos - Sistema de Ecuaciones Lineales - Métodos Iterativos - Contenido Métodos Iterativos Método de Jacobi Método de Gauss-Seidel Fórmulas Recursivas Métodos Iterativos Los métodos iterativos son aquellos que

Más detalles

Métodos Estadísticos Multivariados

Métodos Estadísticos Multivariados Métodos Estadísticos Multivariados Victor Muñiz ITESM Victor Muñiz (ITESM) Métodos Estadísticos Multivariados Agosto-Diciembre 2011 1 / 34 Álgebra matricial y vectores aleatorios Una matriz es un arreglo

Más detalles

Al considerar varios polígonos regulares inscritos resulta: perímetro del cuadrado < π. perímetro del 96 gono < π

Al considerar varios polígonos regulares inscritos resulta: perímetro del cuadrado < π. perímetro del 96 gono < π AMPLIACIÓN DE MATEMÁTICAS INTRODUCCIÓN Método Constructivo: Conjunto de instrucciones que permiten calcular la solución de un problema, bien en un número finito de pasos, bien en un proceso de paso al

Más detalles

ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES. Ayudante: Rodrigo Torres Aguirre Ejercicios:

ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES. Ayudante: Rodrigo Torres Aguirre Ejercicios: Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación MÉTODOS ITERATIVOS Y DIRECTOS PARA SISTEMAS LINEALES Profesor: Jaime Álvarez Maldonado Ayudante:

Más detalles

1 Matrices y Sistemas lineales de ecuaciones

1 Matrices y Sistemas lineales de ecuaciones Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 1 Matrices y Sistemas lineales de ecuaciones Sea M n m = M n m (R) el espacio vectorial de las matrices reales con n ilas y m columnas.

Más detalles

Sistemas de ecuaciones lineales. Matrices

Sistemas de ecuaciones lineales. Matrices Dpto de MATEMÁTICA APLICADA A LOS RECURSOS NATURALES Sección departamental en la ETSI de Montes Algebra Sistemas de ecuaciones lineales Matrices Sistemas lineales Solución de un sistema lineal Sistemas

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 5: Valores y vectores propios Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso

Más detalles

Métodos iterativos para sistemas de ecuaciones lineales

Métodos iterativos para sistemas de ecuaciones lineales Tema 2 Métodos iterativos para sistemas de ecuaciones lineales RESUMEN TEÓRICO 21 Resolución de sistemas de ecuaciones lineales Consideremos el sistema de n-ecuaciones con n-incógnitas: a 11 x 1 + a 12

Más detalles

METODOS NUMERICOS TALLER 3, SEMESTRE

METODOS NUMERICOS TALLER 3, SEMESTRE y y METODOS NUMERICOS 67 TALLER SEMESTRE Tema: Método de Newton para resolver FX)= Métodos iterativos de Jacobi Gauss-Seidel y relajación Se recomienda realizar los ejercicios propuestos en el teto guía

Más detalles

Métodos numéricos para sistemas de ecuaciones. (Prácticas)

Métodos numéricos para sistemas de ecuaciones. (Prácticas) Métodos numéricos para sistemas de ecuaciones (Prácticas) Métodos iterativos UNIVERSIDAD POLITÉCNICA DE VALENCIA 1 Índice general 3. Métodos iterativos 3 3.1. Métodos iterativos básicos....................

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 4 Métodos iterativos para sistemas de ecuaciones

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 4 Métodos iterativos para sistemas de ecuaciones ETS Minas: Métodos Matemáticos Soluciones Tema Métodos iterativos para sistemas de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Diferenciación numérica: Sistemas de ecuaciones lineales ordinarias Método predictor-corrector Método de disparo

Diferenciación numérica: Sistemas de ecuaciones lineales ordinarias Método predictor-corrector Método de disparo Clase No. 25: Diferenciación numérica: Sistemas de ecuaciones lineales ordinarias Método predictor-corrector Método de disparo MAT 251 Dr. Alonso Ramírez Manzanares CIMAT A.C. e-mail: alram@ cimat.mx web:

Más detalles

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012

Métodos de factorización para resolver sistemas de ecuaciones lineales. 22 de agosto, 2012 Cálculo numérico Métodos de factorización para resolver sistemas de ecuaciones lineales 22 de agosto, 2012 1 Factorización LU Considera el siguiente ejemplo de factorización LU de una matriz en un sistema

Más detalles

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República

ALN. Repaso matrices. In. Co. Facultad de Ingeniería Universidad de la República ALN Repaso matrices In. Co. Facultad de Ingeniería Universidad de la República Definiciones básicas - Vectores Definiciones básicas - Vectores Construcciones Producto interno: ( x, y n i x y i i ' α Producto

Más detalles

Propiedades de matrices simétricas definidas positivas:

Propiedades de matrices simétricas definidas positivas: Propiedades de matrices simétricas definidas positivas: Propiedades de matrices simétricas definidas positivas: Sea A =[a ij ] 2 R n n. La matriz A es simétrica si A = A >. La matriz A es definida positiva

Más detalles

Últimas notas de SVD

Últimas notas de SVD Últimas notas de SVD MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello CIMAT A.C. e-mail: botello@cimat.mx Relación entre los valores singulares

Más detalles

Métodos Numéricos: Ejercicios resueltos

Métodos Numéricos: Ejercicios resueltos Métodos Numéricos: Ejercicios resueltos Tema 6: Resolución aproximada de sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica

Más detalles

Carmen Torres Blanc, Gloria Sánchez Torrubia DMATIC, ETSIInf, U.P.M. Álgebra Lineal. 1 TEMA 1.1: MATRICES Y SISTEMAS DE ECUACIONES LINEALES

Carmen Torres Blanc, Gloria Sánchez Torrubia DMATIC, ETSIInf, U.P.M. Álgebra Lineal. 1 TEMA 1.1: MATRICES Y SISTEMAS DE ECUACIONES LINEALES Carmen Torres Blanc, Gloria Sánchez Torrubia DMATIC, ETSIInf, UPM Álgebra Lineal TEMA : MATRICES Y SISTEMAS DE ECUACIONES LINEALES Definición de cuerpo conmutativo Definición Un Cuerpo Conmutativo es un

Más detalles

Matrices y determinantes (Curso )

Matrices y determinantes (Curso ) ÁLGEBRA Práctica 3 Matrices y determinantes (Curso 2008 2009) 1. En el conjunto de las matrices n n de elementos reales, demostrar que el producto de matrices triangulares inferiores es otra matriz triangular

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 6

Análisis Numérico para Ingeniería. Clase Nro. 6 Análisis Numérico para Ingeniería Clase Nro. 6 Sistemas de Ecuaciones Lineales Temas a tratar: Normas Vectoriales y Matriciales. Análisis de Sensibilidad de Sistemas Lineales. Número de Condición. Estimación

Más detalles

Parte 5. Métodos iterativos para la resolución de sistemas de ecuaciones no lineales

Parte 5. Métodos iterativos para la resolución de sistemas de ecuaciones no lineales Parte 5. Métodos iterativos para la resolución de sistemas de ecuaciones no lineales Gustavo Montero Escuela Técnica Superior de Ingenieros Industriales Universidad de Las Palmas de Gran Canaria Curso

Más detalles

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen

Más detalles

Ejercicios. CÁLCULO NUMÉRICO II Curso 2009/2010. Departamento de Ecuaciones Diferenciales y Análisis Numérico

Ejercicios. CÁLCULO NUMÉRICO II Curso 2009/2010. Departamento de Ecuaciones Diferenciales y Análisis Numérico Departamento de Ecuaciones Diferenciales y Análisis Numérico CÁLCULO NUMÉRICO II Curso 009/00 Ejercicios. Probar las siguientes desigualdades entre números: a Desigualdad de Young: Si a, b 0, y p, q >

Más detalles

Departamento de Ecuaciones Diferenciales y Análisis Numérico. CÁLCULO NUMÉRICO I (Tema 3 - Relación 2)

Departamento de Ecuaciones Diferenciales y Análisis Numérico. CÁLCULO NUMÉRICO I (Tema 3 - Relación 2) CÁLCULO NUMÉRICO I (Tema - Relación 2) 5 Resolver mediante el método de Gauss los siguientes sistemas de ecuaciones. 2x 2 + x = 0 2x + 2x 2 + x + 2x = 2 x x 2 + x = 7 6x + x 2 6x 5x = 6. x + x 2 x = x

Más detalles

Prácticas de Matemáticas II: Álgebra lineal

Prácticas de Matemáticas II: Álgebra lineal Prácticas de Matemáticas II: Álgebra lineal Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Prácticas de Matemáticas II: Álgebra lineal

Más detalles

Podemos pues formular los dos problemas anteriores en términos de matrices.

Podemos pues formular los dos problemas anteriores en términos de matrices. Tema 5 Diagonalización 51 Introducción Valores y vectores propios 511 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V de dimensión

Más detalles

Errores por la representación de punto flotante y propagación de errores

Errores por la representación de punto flotante y propagación de errores Clase No. 2: Errores por la representación de punto flotante y propagación de errores MAT 251 Dr. Alonso Ramírez Manzanares CIMAT, A.C. e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES 16 de Mayo de 2013 SISTEMAS DE ECUACIONES Departamento de Matemática Aplicada Facultad de Ingeniería Universidad Central de Venezuela Cálculo Numérico José Luis Quintero 1 Puntos a tratar 1. Sistemas fáciles

Más detalles

ALN - Curso 2007 Gradiente Conjugado

ALN - Curso 2007 Gradiente Conjugado ALN - Curso 27 Gradiente Conjugado Cecilia González Pérez Junio 27 Métodos Iterativos Pueden ser: Métodos estacionarios Métodos no estacionarios Métodos no estacionarios hacen uso de información, evaluada

Más detalles

Estadística III Repaso de Algebra Lineal

Estadística III Repaso de Algebra Lineal Repaso de Algebra Lineal Vectores Un vector columna de dimensión n 1 es una serie de números dispuestos como sigue: x 1 x 2 x =. x n Un vector fila de dimensión 1 p es una serie de números dispuestos como

Más detalles

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices:

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: 5 2 1 1 0 3 1 0 3 3 1 6. 3 1 6 5 2 1 2.- Dada la matriz A = 10 7 8 7 5 6, 8 6 10 hallar

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Tareas adicionales Algunos de estos problemas compuso Gustavo Antonio Sandoval Angeles (como parte de su servicio social). Estos problemas son más difíciles o más laboriosos

Más detalles

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2

AP = A p 1 p 2 p n = Ap 1 Ap 2. λ 1 p 21 λ 2 p 22 λ n p 2n. .. = λ 1 p 1 λ 2 p 2 Capítulo 6 Diagonalización 6 Valores y vectores propios 6 Planteamiento del problema Problema general de diagonalización Dado un operador lineal f sobre un espacio vectorial V, nos planteamos el problema

Más detalles

Matemática 2 MAT022. Clase 6 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Determinante de una matriz

Matemática 2 MAT022. Clase 6 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María. Determinante de una matriz Matemática 2 MAT022 Clase 6 (Complementos) Departamento de Matemática Universidad Técnica Federico Santa María Tabla de Contenidos 1 Determinante de una matriz Sea A la matriz de orden 2 2 con coeficientes

Más detalles