SOLUCIONARI Unitat 4
|
|
|
- Pablo Crespo Ortiz
- hace 7 años
- Vistas:
Transcripción
1 SOLUCIONARI Unitat 4 Comencem Quants nombres de tres ifres diferents podem escriure amb els deu dígits? Cal que tinguis en compte que els grups 00, 0, per eemple, no són nombres de tres ifres. Amb els 0 dígits es poden escriure agrupacions de ifres, de les quals n i a 9 8 que comencen per 0. Per tant, només es poden escriure nombres de ifres. Quants resultats diferents pots obtenir quan llances, de manera consecutiva, quatre monedes enlaire? Per a cada moneda i a dos resultats possibles. Per a les quatre monedes, els resultats possibles són: Eercicis. Forma totes les paraules possibles, tinguin o no sentit, amb les lletres de la paraula PERA. Quantes n i a? Hi a P 4 4! 4 paraules possibles. Són les següents: AEPR, AERP, APER, APRE, AREP, ARPE, EAPR, EARP, EPAR, EPRA, ERAP, ERPA, PAER, PARE, PEAR, PERA, PRAE, PREA, RAEP, RAPE, REAP, REPA, RPAE, RPEA.. Quantes apostes diferents es poden fer a la travessa jugant al ple al quinze? I si es fien empats i victòries de l equip local? Com que cal escriure resultats amb els tres símbols, X,, es tracta de variacions amb repetició: VR, Si es fien resultats ( empats i victòries), només queden caselles lliures, per tant: VR,. En una festa acudeien 0 joves i tots es donen la mà en saludar-se. Quantes encaiades de mans s i an produït? Cada encaiada de mà equival a la tria de persones entre 0, per tant: VR 0, 0 9 C 0, P! encaiades 4. Quants nombres diferents de nou ifres es poden escriure amb tres cinc, dos uns i quatre sisos. Quants comencen per cinc? Es tracta de nombres com ara Són permutacions amb repetició, per tant, de nombres de nou ifres que es puguin escriure amb tres cincs, dos uns i quatre sisos n i 9!,, a: P !! 4! Hi a 60 : 9 40 nombres que comencen per cadascuna de les nou ifres. Si els nombres tenen tres cincs, i aura nombres que començaran per.. Quantes diagonals té un eptàgon regular? De cadascun dels vèrtes surten 4 diagonals, però em de tenir en compte que la meitat són coincidents. Per tant, el nombre de diagonals que té un eptàgon regular és 4 4 diagonals. 6. Resol l equació següent: V, VR, 6 0 Recorda que només pot ser un nombre natural. V, VR, 6 0 ( ) ( ) Només és solució de l equació proposada.. Per fer l alineació d un equip de futbol necessitem jugadors i en tenim. Quantes alineacions es poden fer si cada jugador pot ocupar qualsevol posició? I si Matemàtiques. Batillerat
2 d ells només poden jugar de porter i 6 de defensa? C, 0 4 alineacions diferents Si vuit jugadors ja estan fiats ( porters i 6 defenses), en queden 4 dels quals cal triarne cinc: C 4, 00 alineacions diferents. 8. Quants nombres de quatre ifres es poden escriure amb les 9 ifres significatives, tenint en compte que an de ser diferents? I si es poden repetir ifres? Si les ifres són diferents: V 9, nombres Si les ifres es poden repetir: VR 9, nombres 9. Calcula els nombres combinatoris següents: , 0,,, ; ; ! 0!!! 8!! ! 6 4 8! 8! 0. Simplifica aquestes fraccions: 0! a)! 8! 0! 0 9 4! 8!! b)!!! 4 4!! 0! c)! 48! 0! 0 49! 48! 000! d )! 99! 000! ! 99! Compara els nombres combinatoris 00 i. Simplifica les fraccions corres- 9 ponents abans de realitzar-ne els càlculs ! !! ! 400. Són iguals. 9! 9!. Simplifica aquestes epressions fraccionàries: m! (n )! a) n! (m )! m! (n )! n! (m )! n (m ) (a )! (b )! b) a! (b )! (a )! (b )! a a! (b )! b (b ) (m )! a! c) (m )! (a )! (m )! a! m (m ) (m )! (a )! a! (b )! 8! d ) 9! b! 6!! (b )! 8! (b ) (b ) 9! b! 6! 9! 0! e)! 4!! 0!! 4! ,9 0 Matemàtiques. Batillerat
3 (m n )! (n )! f ) (n )! (m n)! (m n )! (n )! n (n ) (n )! (m n)! m n. Resol les equacions: 4 4 a) b) 4 8 c) 6 d ) 4 0, ja que a de ser un nombre natural. En els apartats b) i d) la solució també és. 4. Troba el valor de en aquestes igualtats: a) b) c) d ) S a aplicat la segona propietat dels nombres combinatoris a cada apartat.. Desenvolupa les potències següents: a) ( ) ( ) 4 () 0 () () () 4 () b) ( y) ( y) 6 ( ) 6 ( ) y ( ) 4 y ( ) y ( ) y 4 ( ) y y y 4 y 40 y y 4 8 y y 6 a b c) 4 a b 4 a a b 4 a b 4 a b 4 b 4 4 a 4 a b a b ab b Matemàtiques. Batillerat
4 d ) Calcula el quart terme del desenvolupament de: ( ) Quart terme:! 9 () !!. a) Determina el terme central en el des- envolupament 8. El terme central és el cinquè: 8 8 8! ! 4! b) Troba el coeficient de la potència en el desenvolupament anterior. 8 8 és el terme que ocupa el lloc. El producte de les potències: ! Coeficient: 6!! 8. Escriu l epressió de ( b). ( b) ( b) b b Acabem. Quants nombres de tres ifres diferents es poden formar amb els dígits,,, 4,? Quants són parells? Quants són senars? V, 4 60 nombres de ifres diferents seran imparells, és a dir, la ifra de les unitats serà, o. La resta: tindran o 4 com a ifra de les unitats.. De quantes maneres es poden escollir fites en un dòmino complet? Triar fites entre 8: V 8, C 8, P maneres diferents. Considerem un pla on i a 0 rectes de manera que dues qualssevol d aquestes rectes no són paral. leles i tres qualssevol no són concurrents. Quants punts d intersecció determinen? Cada dues rectes determinen un punt d intersecció: 0 9 C 0, 4 punts 4. Es disposa de 6 jugadors de futbol i se n an de seleccionar, però de manera que dos d ells no estiguin en el matei grup. De quantes maneres es pot fer? Si dos jugadors no poden estar en el matei grup és com si en descontéssim un dels set- 4 ze. Són C, C, grups diferents.. Llancem un dau 4 vegades. Quants resultats diferents podem obtenir? Es poden obtenir 6 resultats cada vegada. Són VR 6, Matemàtiques. Batillerat
5 6!! 0! 90! 6. Calcula:,,,. Simplifica 4!!! 88! prèviament les fraccions. 6! !! 4 0! 0!! 46 90! ! Cal tenir en compte que, a partir de 4!, a la calculadora científica els factorials apareien en forma de notació científica. 9. Quants nombres parells de quatre ifres i a que siguin més grans que el número 6? De a 9 999, i a 000 nombres parells. De 00 a 999, i a 0 nombres parells. De 6 a 699 i a 4 nombres parells. En total i a 9 nombres parells.. Simplifica les epressions següents: (n )! a) (n )! (n )! (n )! n (n ) (n )! b) (n )! (n )! n (n ) (n ) (n )! (n r )! c) (n r )! (n r )! (n r) (n r ) (n r )! 8. En una cursa i a participants de l equip A i 0 de l equip B. Si tots ells creuen la línia d arribada, determina de quantes maneres diferents o poden fer si: a) Els dos primers són de l equip A. Els dos de l equip A poden arribar primers de C, maneres diferents. Per a cadascuna d aquestes arribades, els restants i poden arribar de P! maneres diferents. En total:!,4 0, aproimadament. b) Dos dels tres primers són de l equip A. P 4 C, 4!,8 0, aproimadament. c) Com a mínim un dels tres primers és de l equip A. P 4 4! 6,0 0, aproimadament. 0. Escriu tots els nombres combinatoris d ordre. Calcula ls i suma ls. Comprova que la suma és. ; ; ; ; 0 4 ; ; 6 ; La suma: 8.. Amb els dígits,,, 4, i 6, quants nombres de quatre ifres diferents es poden formar? Calcula n la suma. V 6, nombres. Cada ifra ocupa 60 : 6 60 vegades un lloc determinat. La suma de les unitats és: 60 ( 4 6) 60 igual que la suma de les desenes, les centenes i les unitats de mil. La suma total és: Suposem ordenats en successió creient tots els nombres de quatre ifres diferents que es poden formar amb els dígits 6,, 8 i 9. Quin lloc ocupa en aquesta successió el número 896? Es poden formar P 4 4! 4 nombres. N i a 4 : 4 6 que comencen per 6. Dels mil n i a que tenen el 6 o el 8 a les centenes. Total: 6 0 nombres inferiors a 896 Matemàtiques. Batillerat
6 . En un campionat de bàsquet a doble volta es juguen un total de 90 partits. Quants equips i participen? Anomenem al nombre d equips: V, ( ) Només pot ser solució 0 equips. 4. Desenvolupa la potència ( y). ( y) ( ) ( ) 6 (y) 0 ( ) (y) ( ) 4 (y) ( ) (y) 4 ( ) (y) 4 (y) 6 (y) y 6 y 60 4 y 80 y 4 84 y 4 y 6 y. Calcula el coeficient de en el desenvolupament de ( ). El coeficient de és el terme del desenvolupament: Coeficient: Determina el coeficient de 4 en el desenvolupament de ( ) 0. De la mateia manera que a l eercici anterior: 0 ( ) 0 () Coeficient: () Resol les equacions: 4 a) ( ) ( ) ( ) : 4! ( )( )( )( 4) :! 4! 4! ( 4) 4 4 En simplificar s a tingut en compte que a de ser diferent de 0,,, i. b)!!( )!!!! ( )! ( )! ( ) ( ) ( )! 6( )! ( ) ( )! ( )! ( )! ( )! ( ) ( ) ( ) 6 ( )( ) ( ) 6 ( ) ( ) ( ) Troba els valors de, y i z sabent que el segon terme del desenvolupament de ( y) z és de, el tercer és 90 i el quart, 0. z Segon terme: z y Matemàtiques. Batillerat
7 z Tercer terme: z y 90 z Quart terme: z y 0 No es poden resoldre aquestes equacions. Però, tenint en compte que z a de ser un nombre natural i que els resultats són nombres naturals, es pot deduir en la primera equació que i, per tant, z i y, valors que confirmen les altres dues igualtats. 9. En el desenvolupament de, escriu el coeficient de. Un terme: ( ) Terme en ( ) Igualant eponents: ( ) Coeficient: () Calcula ( ) ( ). ( ) ( ) 0 0 ja que els termes que ocupen llocs parells són negatius. ( ) ( ) 0 0 Matemàtiques. Batillerat
SOLUCIONARI Unitat 5
SOLUCIONARI Unitat 5 Comencem Escriu tres equacions que no tinguin solució en el conjunt. Resposta oberta. Per exemple: a) x b) 5x 0 c) x Estableix tres equacions que no tinguin solució en el conjunt.
SOLUCIONS DE LES ACTIVITATS D APRENENTATGE
SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 3 Activitat Completa els productes següents. a) 0 = 5... e) 0 = 5... b)... = 5 3 f) 25 =... 5 c) 5 =... g) 55 = 5... d) 30 = 5... h) 40 =...... a) 0 = 5 0 e)
UNITAT 3: SISTEMES D EQUACIONS
UNITAT 3: SISTEMES D EQUACIONS 1. EQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITES L equació x + y = 3 és una equació de primer grau amb dues incògnites : x i y. Per calcular les solucions escollim un valor
DE FORMA ALGEBRAICA CERTES SITUACIONS
EXPRESSAR OBJECTIU DE FORMA ALGEBRAICA CERTES SITUACIONS NOM: CURS: DATA: LLENGUATGE NUMÈRIC I LLENGUATGE ALGEBRAIC El llenguatge en què intervenen nombres i signes d operacions l anomenem llenguatge numèric.
VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D
VECTORS I RECTES AL PLA Un vector és un segment orientat que és determinat per dos punts, A i B, i l'ordre d'aquests. El primer dels punts s'anomena origen i el segons es denomina extrem, i s'escriu AB.
TEMA 2: Múltiples i Divisors. Activitats. 25 NO és múltiple de 3 perquè no hi ha cap nombre que multiplicat per 3 ens doni 25
TEMA 2: Múltiples i Divisors Activitats Concepte de múltiple 6 és múltiple de 2 perquè 2 3 = 6 24 és múltiple de 8 perquè 8 3 = 24 25 NO és múltiple de 3 perquè no hi ha cap nombre que multiplicat per
Combinatòria. Variacions ordinàries.
MD- Combinatòria-1/9 Combinatòria. Amb la combinatòria volem donar un vocabulari i uns mètodes i tècniques que ens permetin i facilitin l'estudi i anàlisi de les diferents maneres d'agrupar objectes. Variacions
SOLUCIONARI Unitat 1. Exercicis. Comencem. 1. La gràfica velocitat-temps corresponent a dos mòbils és la que pots veure a la dreta (fig. 1.3).
SOLUCIONARI Unitat Comencem La funció f() és decreient en l interval (, ). Fes un raonament com el que em fet anteriorment per determinar on decrei amb més rapidesa, si ens movem prop de o si o fem prop
TEMA 2: Múltiples i Divisors
TEMA 2: Múltiples i Divisors 4tESO CB Concepte de múltiple 6 és múltiple de 2 perquè 2 3 = 6 24 és múltiple de 8 perquè 8 3 = 24 25 NO és múltiple de 3 perquè no hi ha cap nombre que multiplicat per 3
Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos
DE S L U S RE S I V I C LES Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos aquells exercicis que requereixen
c) C = (c ij ) de tres files i tres columnes per a) u r = (1, 2, 3, 4), c) u r = (1, 1, 1), v r = (2, 4, 8) i w r = (3, 9, 27)
SOLUCONAR Unitat 8 Comencem Cada 100 g de producte d un determinat aliment conté 0,06 g de vitamina A, 0,3 g de vitamina B i 0, g de calci. Anàlogament, un altre aliment conté 0,1 g de vitamina A, 0, g
TEMES TREBALLATS A 3r d'eso
TEMES TREBALLATS A r d'eso. Repàs de n d'eso. Nombres racionals. Equacions. Sistemes d'equacions de r grau. Funcions. Geometria en l'espai Recordeu que a part dels apunts teniu d'altres documents per preparar
10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament.
10 Àlgebra vectorial ÀLGEBR VECTORIL Índe P.1. P.. P.3. P.4. P.5. P.6. Vectors Suma i resta vectorial Producte d un escalar per un vector Vector unitari Producte escalar Producte vectorial P.1. Vectors
ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:
INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament
IES MARAGALL Barcelona
ASSOCIACIO DE BARCELONA PER A L ESTUDI I L APRENENTATGE DE LES MATEMATIQUES ` IES MARAGALL Barcelona FEM MATEMÀTIQUES 2005. SEGONA FASE. 9-IV-05 NIVELL 1. SISÈ D EP PROVA INDIVIDUAL 1. En Carles col. lecciona
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 7 PAU 2007
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 7 PAU 007 SÈRIE 3 Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals Ara bé, dins de cada pregunta podeu utilitzar
Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples:
2 PROGRESSIONS 9.1 Progressions aritmètiques Hi ha successions en que a partir del primer terme tots els altres es troben sumant una quantitat fixa al terme anterior, aquí hi ha alguns exemples: La successió
Proporcionalitat i percentatges
Proporcionalitat i percentatges Proporcions... 2 Propietats de les proporcions... 2 Càlul del quart proporcional... 3 Proporcionalitat directa... 3 Proporcionalitat inversa... 5 El tant per cent... 6 Coneixement
SOLUCIONS DE LES ACTIVITATS D APRENENTATGE
SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 55 Activitat 1 Dels nombres següents, indica quins són enters. a) 4 b) 0,25 c) 2 d) 3/5 e) 0 f) 1/2 g) 9 Els nombres enters són: 4, 2, 0 i 9. Activitat 2 Si la
Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES UNITAT 2 TEOREMA DE TALES.
Unitat 2 TEOREMA DE TALES. TEOREMA DE PITÀGORES. RAONS TRIGONOMÈTRIQUES 41 42 Matemàtiques, Ciència i Tecnologia 8. TRIGONOMETRIA UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser
Districte Universitari de Catalunya
Proves dʼaccés a la Universitat. Curs 2009-2010 Matemàtiques Sèrie 1 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què és el que voleu fer i per què. Cada qüestió val
3. Calcula la probabilitat d obtenir un 1 i una X entre els dos llançaments Tenint en compte el diagrama anterior
PROBLEMES DE PROBABILITAT. Escrivim en les cares d una dau tres uns, dues X i un 2. Llancem un dau, Quina és la probabilitat de treure un? I una X? I Un 2? Solució: Espai mostral E={,x,2} No són esdeveniments
Equacions i sistemes de segon grau
Equacions i sistemes de segon grau 3 Equacions de segon grau. Resolució. a) L àrea del pati d una escola és quadrada i fa 0,5 m. Per calcular el perímetre del pati seguei els passos següents: Escriu l
EXERCICIS MATEMÀTIQUES 1r BATXILLERAT
Treball d estiu/r Batillerat CT EXERCICIS MATEMÀTIQUES r BATXILLERAT. Aquells alumnes que tinguin la matèria de matemàtiques pendent, hauran de presentar els eercicis el dia de la prova de recuperació.
TEMA 4 : Programació lineal
TEMA 4 : Programació lineal 4.1. SISTEMES D INEQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITA La solució d aquest sistema és l intersecció de les regions que correspon a la solució de cadascuna de les inequacions
Activitats de repàs DIVISIBILITAT
Autor: Enric Seguró i Capa 1 CRITERIS DE DIVISIBILITAT Un nombre és divisible per 2 si acaba en 0 o parell (2,4,6,8). Ex: 10, 24, 62, 5.256, 90.070,... Un nombre és divisible per 3 si la suma de les seves
LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció exponencial
LA FUNCIÓ EXPONENCIAL I LA FUNCIÓ LOGARÍTMICA. FUNCIONS DEFINIDES A TROSSOS. Funció eponencial La funció eponencial és de la forma f () = a, on a > 0, a 1 El valor a s anomena base de la funció eponencial.
Llista 1. Probabilitat. (Amb solució)
Llista 1 Probabilitat (Amb solució 1 Descriu l espai mostral (Ω associat als següents experiments aleatoris: a Tirem dos daus distingibles i observem els números de les cares superiors b Tirem dos daus
Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i.
Oficina d Accés a la Universitat Pàgina 1 de 11 Sèrie 5 1. Siguin i les rectes de d equacions : 55 3 2 : 3 2 1 2 3 1 a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. b) Trobeu l
La recta. La paràbola
LA RECTA, LA PARÀBOLA I LA HIPÈRBOLA La recta Una recta és una funció de la forma y = m + n. m és el pendent de la recta i n és l ordenada a l origen. L ordenada a l origen ens indica el punt de tall amb
Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:
Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:
PAUTA D ESTIU MATEMÀ TIQUES 3R E.S.O. CURS
PAUTA D ESTIU MATEMÀ TIQUES R E.S.O. CURS 00- Continguts: ) Fraccions: suma, resta, producte, divisió, castells, operacions combinades i fracció generatriu. ) Álgebra: suma, resta, producte i operacions
1. Què tenen en comú aquestes dues rectes? Com són entre elles? 2. En què es diferencien aquestes dues rectes?
En la nostra vida diària trobem moltes situacions de relació entre dues variable que es poden interpretar mitjançant una funció de primer grau. La seva expressió algebraica és del tipus f(x)=mx+n. També
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2012
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 4 1 1 k 1.- Determineu el rang de la matriu A = 1 k 1 en funció del valor del paràmetre k. k 1 1 [2 punts] En ser la matriu
= 25 = 15 =3. FITXA 1: Nombres A.1. ESCRIU AMB XIFRES AQUESTS NOMBRES: A.2. ESCRIU EL NOM D'AQUESTES QUANTITATS: A.3. COMPLETA LA TAULA:
FITXA 1: Nombres A.1. ESCRIU AMB XIFRES AQUESTS NOMBRES: a) Cent mil dos-cents deu. b) Un milió cent mil dos-cents. c) Mil milions vuitanta mil vuit-cents. d) Nou-cents trenta mil vuitanta. e) Tres mil
EXERCICIS - SOLUCIONS
materials del curs de: MATEMÀTIQUES SISTEMES D EQUACIONS EXERCICIS - SOLUCIONS AUTOR: Xavier Vilardell Bascompte [email protected] www.elu.net CORRECCIÓ: Montse Ramos ÚLTIMA REVISIÓ: 1 d abril de 009 Aquests
FITXA 1: Lectura i descomposició de nombres
FITXA 1: Lectura i descomposició de nombres 1. ESCRIU AQUESTS NOMBRES: a) Tres mil dos-cents milions cent vuitanta mil. b) Sis-cents noranta mil noranta-set. c) Tres mil dos-cents milions cinc-cents cinquanta
Tema 2: GEOMETRIA ANALÍTICA AL PLA
Tema : GEOMETRIA ANALÍTICA AL PLA Vector El vector AB és el segment orientat amb origen al punt A i extrem al punt B b a A B Les projeccions del vector sobre els eixos són les components del vector: a
XIX OLIMPÍADA MATEMÀTICA FASE COMARCAL VALÈNCIA 19 D ABRIL DE 2008 PROVA DE VELOCITAT NIVELL A (1er. Cicle ESO)
1. GERRES Tenim 5 gerres i en cadascuna d'elles la quantitat de líquid que s'indica, que pot ser cafè, xocolata o llet. No sabem què conté cada gerra, però sí que sabem que hi ha el doble de cafè que de
Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS
Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS 2.1. Divisió de polinomis. Podem fer la divisió entre dos monomis, sempre que m > n. Si hem de fer una divisió de dos polinomis, anirem calculant les divisions
MATEMÀTIQUES. DOSSIER DE RECUPERACIÓ MATEMÀTIQUES 2n ESO. GRUP:2E. Nom i Cognoms (alumne):... Nom professor:...
zz Curs: Departament d Educació Generalitat de Catalunya MATEMÀTIQUES DOSSIER DE RECUPERACIÓ MATEMÀTIQUES 2n ESO. GRUP:2E CURS 20-20 INS.PUIG CASTELLAR DATA: Nom i Cognoms (alumne):... Nom professor:...
SOLUCIONS DE LES ACTIVITATS D APRENENTATGE
30 SOLUCIONS DE LES ACTIVITATS D APRENENTATGE Activitat 1 Completa la taula següent: Graus Minuts Segons 30º 30 x 60 = 1.800 1.800 x 60 = 108.000 45º 2.700 162.000 120º 7.200 432.000 270º 16.200 972.000
TEMA 4: Equacions exponencials i logarítmiques
TEMA 4: Equacions exponencials i logarítmiques 4.1. EXPONENCIALS Definim exponencial de base a i exponent n:. Propietats de les exponencials: (1). (2) (3) (4) 1 (5) 4.2. EQUACIONS EXPONENCIALS Anomenarem
EXERCICIS - SOLUCIONS
materials del curs de: MATEMÀTIQUES SISTEMES D EQUACIONS EXERCICIS - SOLUCIONS AUTOR: Xavier Vilardell Bascompte [email protected] ÚLTIMA REVISIÓ: 21 d abril de 2009 Aquests materials han estat realitzats
1. SISTEMA D EQUACIONS LINEALS
1. SISTEMA D EQUACIONS LINEALS 1.1 Equacions lineals Una equació lineal està composta de coeficients (nombres reals) acompanyats d incògnites (x, y, z,t..o ) s igualen a un terme independent, i les solucions
1. Indica si les següents expressions són equacions o identitats: a. b. c. d.
Dossier d equacions de primer grau 1. Indica si les següents expressions són equacions o identitats: Solucions: Equació / Identitat / Identitat / Identitat 2. Indica els elements d aquestes equacions (membres,
Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU
Unitat 2 EQUACIONS DE PRIMER GRAU 37 38 Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser capaç
Generalitat de Catalunya Departament d Ensenyament Institut Obert de Catalunya. Avaluació contínua. Cognoms. Centre: Trimestre: Tardor 11
Generalitat de Catalunya Departament d Ensenyament Institut Obert de Catalunya valuació contínua Qualificació prova TOTL Cognoms una lletra majúscula a cada casella: Nom: Centre: Trimestre: Tardor 11 M4
2 desembre 2015 Límits i número exercicis. 2.1 Límits i número
I. E. S. JÚLIA MINGUELL Matemàtiques 2n BAT. 2 desembre 205 Límits i número exercicis 2. Límits i número 4. Repàs de logaritmes i exponencials: troba totes les solucions de cadascuna de les següents equacions:
DOSSIER DE RECUPERACIÓ DE MATEMÀTIQUES DE 1R D ESO. 1R TRIMESTRE
DOSSIER DE RECUPERACIÓ DE MATEMÀTIQUES DE 1R D ESO. 1R TRIMESTRE 2013-14 Cal fer totes les operacions en full a part i s han de veure tots els procediments. Les dates d entrega seran les que apareguin
POLINOMIS i FRACCIONS ALGEBRAIQUES
POLINOMIS i FRACCIONS ALGEBRAIQUES. Polinomis: introducció.. Definició de polinomi.. Termes d un polinomi.. Grau d un polinomi.. Polinomi reduït..5 Polinomi ordenat..6 Polinomi complet..7 Polinomi oposat..8
PROVA D APTITUD PERSONAL ACCÉS ALS GRAUS EDUCACIÓ INFANTIL I EDUCACIÓ PRIMÀRIA
Nom i cognoms DNI / NIE PROVA D APTITUD PERSONAL ACCÉS ALS GRAUS EDUCACIÓ INFANTIL I EDUCACIÓ PRIMÀRIA COMPETÈNCIA LOGICOMATEMÀTICA 1. Està prohibit l ús de la calculadora o de qualsevol altre aparell
Resolucions de l autoavaluació del llibre de text
Pàg. 1 de 1 Tenim els vectors u(3,, 1), v ( 4, 0, 3) i w (3,, 0): a) Formen una base de Á 3? b) Troba m per tal que el vector (, 6, m) sigui perpendicular a u. c) Calcula u, ì v i ( u, v). a) Per tal que
1. Quines fraccions hi ha representades amb les zones blanques i les zones ombrejades dels dibuixos següents? Escriu-les.
1. Quines fraccions hi ha representades amb les zones blanques i les zones ombrejades dels dibuixos següents? Escriu-les. Blanques: Ombrejades: 2. Escriu les fraccions següents i assenyala-hi, en cada
DERIVADES. TÈCNIQUES DE DERIVACIÓ
UNITAT 7 DERIVADES. TÈCNIQUES DE DERIVACIÓ Pàgina 56 Tangents a una corba y f (x) 5 5 9 4 Troba, mirant la gràfica i les rectes traçades, f'(), f'(9) i f'(4). f'() 0; f'(9) ; f'(4) 4 Digues uns altres
Àmbit de les matemàtiques, de la ciència i de la tecnologia M14 Operacions numèriques UNITAT 2 LES FRACCIONS
M1 Operacions numèriques Unitat Les fraccions UNITAT LES FRACCIONS 1 M1 Operacions numèriques Unitat Les fraccions 1. Concepte de fracció La fracció es representa per dos nombres enters que s anomenen
SOLUCIONS GENER Pagina 1 de 9
Pagina 1 de 9 SOLUCIONS GENER 018 Solucions extretes del llibre: XVIII CONCURSO DE PRIMAVERA 014 Obtenible en http://www.concursoprimavera.es#libros NIVELL: Segon cicle de l ESO AUTORS: Col lectiu Concurso
Proves d accés a la Universitat per a més grans de 25 anys Convocatòria 2013
Pàgina 1 de 5 Sèrie 3 Opció A A1.- Digueu de quin tipus és la progressió numèrica següent i calculeu la suma dels seus termes La progressió és geomètrica de raó 2 ja que cada terme s obté multiplicant
MATEMÀTIQUES 4t d ESO FEINA DE RECUPERACIÓ CURS NOM DE L ALUMNE/A:. CURS I GRUP:
MATEMÀTIQUES 4t d ESO FEINA DE RECUPERACIÓ CURS 0-4 NOM DE L ALUMNE/A:. CURS I GRUP: Aquests eercicis que us presentem és la feina mínima que ens ha semblat adient per preparar amb garanties la prova de
La porció limitada per una línia poligonal tancada és un
PLA Si n és el nombre de costats del polígon: El nombre de diagonals és La suma dels seus angles és 180º ( n 2 ). La porció limitada per una línia poligonal tancada és un Entre les seves propietats destaquem
Una funció és una relació entre dues variables, de tal manera que al variar el valor d'una d'elles va variant el valor de l'altra.
UNITAT 7: FUNCIONS. Definició Una funció és una relació entre dues variables, de tal manera que al variar el valor d'una d'elles va variant el valor de l'altra. Eemple: Completa: f() g() - h() - - (-)
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2008 QÜESTIONS
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 4 Aquestes pautes no preveuen tots els casos que en la pràctica es poden presentar. Tampoc no pretenen donar totes les possibles
avaluació diagnòstica educació primària
curs 2016-2017 avaluació diagnòstica educació primària competència matemàtica Nom i cognoms Grup instruccions Aquesta prova consta de 5 activitats per fer en dues sessions diferents. En la primera sessió
PROVA DE MÍNIMS Cicle Superior CEIP TORRE LLAUDER PROVA D AVALUACIÓ DE MÍNIMS DE MATEMÀTIQUES C.S. ALUMNE/A:
PROVA D AVALUACIÓ DE MÍNIMS DE MATEMÀTIQUES C.S. ALUMNE/A: DATA: CURS: 1.- Escriu amb xifres els nombres següents: Setanta-dos mil cinc-cents catorze Tres-cents vuit mil dues-cents vint-i-quatre Set milions
SOLUCIONARI Unitat 2. Comencem. Exercicis
SOLUCIONARI Unitat Comencem Representa en paper mil limetrat la funció f() + 4. Traça amb la màima cura possible la recta tangent a la paràbola en el punt P(, ). Mesura amb un transportador l angle que
MÚLTIPLES I DIVISORS
MÚLTIPLES I DIVISORS DETERMINACIÓ DE MÚLTIPLES Múltiple d un nombre és el resultat de multiplicar aquest nombre per un altre nombre natural qualsevol. 2 x 0 = 0 2 x 1 = 2 2 x 2 = 4 2 x 3 = 6 2 x 4 = 8
FUNCIONS REALS. MATEMÀTIQUES-1
FUNCIONS REALS. 1. El concepte de funció. 2. Domini i recorregut d una funció. 3. Característiques generals d una funció. 4. Funcions definides a intervals. 5. Operacions amb funcions. 6. Les successions
Unitat 1. Nombres reals.
Unitat 1. Nombres reals. Conjunts numèrics: - N = Naturals - Z = Enters - Q = Racionals: Són els nombres que es poden expressar com a quocient de dos nombres enters. El conjunt dels nombres racionals,
operacions inverses índex base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari:
Potències i arrels Potències i arrels Potència operacions inverses Arrel exponent índex 7 = 7 7 7 = 4 4 = 7 base Per a unificar ambdues operacions, es defineix la potència d'exponent fraccionari: base
Tema 3: EQUACIONS I INEQUACIONS
Tema 3: EQUACIONS I INEQUACIONS Igualtats algebraiques Es poden diferenciar: identitats i equacions a) Identitats Són igualtats que sempre es compleixen, per qualsevol valor numèric que donem a les lletres.
= 1+ β, essent α i β paràmetres reals. a la recta r 2. i el pla Π d equació
Problema A Setembre 0 + y z = En l espai es té la recta r i el pla Π d equacions r x + mz = 0, on x y z = 0 m és un paràmetre real a) Un vector director de la recta r b) El valor de m per al qual la recta
XX 7 d abril de 2016 Nivell: 1r batx.
XX 7 d abril de 2016 Nivell: 1r bat. Qüestions de punts: 1. Si D = 6 2014 7 2015 8 2016, quin és el residu de la divisió de D entre 21? ) 0 B) 2 C) D) 7 E) 14 2. En la figura, el triangle és equilàter
XXII Cangur SCM 16 de març de 2017 Nivell: 2n batx.
XXII angur SM 16 de març de 2017 Nivell: 2n bat. Qüestions de 3 punts 20 17 1. Quin és el resultat de l operació 2 + 0 + 1 + 7? ) 20,17 ) 3,4 ) 34 D) 340 E) 201,7 2. L nna ha calculat la suma dels angles
Unitat 4. Fraccions algèbriques
Unitat 4. Fraccions algèbriques Curs d Anivellament de Matemàtiques Montserrat Corbera / Vladimir Zaiats [email protected] / [email protected] c 2012 Universitat de Vic Sagrada Família,
Prova d accés a la Universitat (2013) Matemàtiques II Model 1. (b) Suposant que a = 1, trobau totes les matrius X que satisfan AX + Id = A, on Id
UIB Prova d accés a la Universitat () Matemàtiques II Model Contestau de manera clara i raonada una de les dues opcions proposades. Es disposa de 9 minuts. Cada qüestió es puntua sobre punts. La qualificació
Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:
Dossier de sistemes d'equacions lineals. / Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: k b a k b a Coeficients de les incògnites:
I.E.S. Cirviànum Matemàtiques Segon Curs d E.S.O. EQUACIONS EQUACIONS DE PRIMER GRAU. Per resoldre equacions de primer grau cal seguir aquests passos:
DE PRIMER GRAU Per resoldre equacions de primer grau cal seguir aquests passos: Treure parèntesis Traslladar totes les a un cantó de l igual Agrupar ambdós costats de l igual (les i els nombres) Aïllar
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2010
Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 SÈRIE 1 Pregunta 1 3 1 lim = 3. Per tant, y = 3 és asímptota horitzontal de f. + 3 1 lim =. Per tant, = - és asímptota horitzontal
4.- Expressa en forma de potència única indicant el signe resultant.
Pàgina 1 de 8 EXERCICIS PER LA RECUPARACIÓ 1A Avaluació 1.- Calcula de dues maneres (TP i RP): a) 25 + (-1+7) (18 9 + 15)= TP= RP= 9 (-12 + 5 8 = TP= RP= 2.- Treu factor comú i calcula: a) 5.(-3) + (-7).
SOLUCIONARI Unitat 9. Comencem. Exercicis
SOLUCIONARI Unitat 9 Comencem Les edats de tres nens sumades de dues en dues donen 6, 8 i 12 anys, respectivament. Troba les edats de cada nen. + y = 6 El sistema és: x + z = 8 îy + z 2 Es pot resoldre
UNITAT DIDÀCTICA 10 L ÍMITS DE FUNCIONS. CONTINUÏTAT I BRANQUES INFINITES
7 UNITAT DIDÀCTICA 0 Refleiona i resol Aproimacions successives El valor de la funció f () = + 5 0 per a = 5 no es pot obtenir directament perquè el denominador es fa zero. L obtindrem per aproimacions
TREBALL D ESTIU MATEMÀTIQUES 3r ESO. ALTRES ALUMNES: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. b.
TREBALL D ESTIU MATEMÀTIQUES r ESO ESO 00 EAC mates Data: 18/05/018 Pàgina 1 de 6 OBSERVACIONS: ALUMNES SUSPESOS: Fer tot el treball obligatòriament ALTRES ALUMNES: Es recomana que realitzeu aquells apartats
1 Copia aquesta taula i completa-la: 2 Escriu en el teu quadern el nombre corresponent a les caselles marcades. Unitat 1. La taula dels nombres.
. La meva família La taula dels nombres Copia aquesta taula i completa-la: 898 Respon prenent com a referència el nombre 898: a) Què passa quan puges una fila amunt cap a la casella blava? b) Què passa
Exercicis de rectes en el pla
Equacions de la recta 1. Escriu les diferents equacions de la recta que passa pel punt P(3, 4) i que té com a vector director el vector v = ( 5, 2). 2. Per a la recta d equació director. 6 + y = 1, escriu
UNITAT 3 OPERACIONS AMB FRACCIONS
M Operacions numèriques Unitat Operacions amb fraccions UNITAT OPERACIONS AMB FRACCIONS M Operacions numèriques Unitat Operacions amb fraccions Què treballaràs? En acabar la unitat has de ser capaç de
Sector circular i Segment circular.
Tema: poligons, circumferència i cercle Activitats de consolidació Pàgina 1 de 8 1. Explica quines són les semblances i diferències entre: Línia poligonal i polígon. Circumferència i cercle. Sector circular
2n ESO A TREBALL D'ESTIU - MATEMÀTIQUES CURS
INS PERE BORRELL C. Escoles Pies, 46 17520 PUIGCERDÂ Tel. 972880275 Fax 972141049 Departament de Matemàtiques 2n ESO A TREBALL D'ESTIU - MATEMÀTIQUES CURS 2015-2016 Exercicis que cal fer per preparar la
Enigmes matemàtics. Títol: Josep Serentill. Autor: Nivell: Cicle superior de primària. Competències: Què treballarem?: El càlcul.
Títol: Autor: Enigmes matemàtics Josep Serentill Àrea: Matemàtiques Nivell: Cicle superior de primària Competències: 1. Fer una lectura comprensiva de les diferents situacions plantejades. 2. Ser capaç
Equacions i sistemes de primer grau
Equacions i sistemes de primer grau Equacions de primer grau amb una incògnita. Resolució 1. a) Llegeix atentament l endevinalla numèrica següent i resol-la començant amb tres nombres diferents: Pensa
Unitat didàctica 2. Polinomis i fraccions algebraiques
Unitat didàctica. Polinomis i fraccions algebraiques Refleiona L Andrea té una bona col lecció d espelmes que decoren la seva habitació. Totes les espelmes cilíndriques tenen la mateia alçària: cm. Epressa,
1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta
.- Elements d una recta..- Vector director d una recta..- Vector normal d una recta.3.- Pendent d una recta.- Equacions d una recta..- Equació ectorial, paramètrica i contínua..- Equació explícita.3.-
x = graduació del vi blanc y = graduació del vi negre
Problemes ( pàgina 44 del llibre de classe, Editorial Casals ) (21) Barregem 60 L de vi blanc amb 20 L de vi negre i obtenim un vi de 10 graus (10% d alcohol). Si, contràriament, barregem 20 L de blanc
Data de lliurament: divendres 8 d abril de 2016
INS JÚLIA MINGUELL Matemàtiques 2n BAT. 18 març 2016 Dossier recuperació (2a AVAL.) DOSSIER de RECUPERACIÓ: 2a AVALUACIÓ Data de lliurament: divendres 8 d abril de 2016 Condicions: i) El no lliurament
j Unitat 6. Rectes en el pla
MATEMÀTIQUES 9 4. Calcula a a sabent que a b, b b 4 i que l angle que formen els vectors a i b mesura 0º. b b 4 b 4 b a b a b cos a a cos 0º a cos 0º a a a 9. Els punts A(, ), B(, ) i C(, ) són tres vèrtexs
LÍMITS DE FUNCIONS. CONTINUÏTAT I BRANQUES INFINITES
LÍMITS DE FUNCIONS. CONTINUÏTAT I BRANQUES INFINITES Pàgina 7 REFLEIONA I RESOL Aproimacions successives Comprova que: f () = 6,5; f (,9) = 6,95; f (,99) = 6,995 Calcula f (,999); f (,9999); f (,99999);
Matemà ate tiques 2n d ESO
Matemàtiques 2n d ESO ELS NOMBRES NATURALS 1] Tradueix a numeració decimal aquests nombres egipcis: Pista: et pot ajudar aquest enllaç: http://static4.sobrehistoria.com/wp-content/uploads/2015/05/numeracion-egipcia-
