Diferenciales de Orden Superior

Documentos relacionados
Funciones de Clase C 1

Teoremas de Convergencia

Continuidad. 5.1 Continuidad en un punto

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Espacios topológicos. 3.1 Espacio topológico

Apéndice sobre ecuaciones diferenciales lineales

Teorema del valor medio

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Índice general 1. El Espacio Normado 2. La Diferencial de Fréchet 3. Teoremas de Taylor

Teoremas de convergencia y derivación bajo el signo integral

Funciones integrables en R n

Funciones convexas Definición de función convexa. Tema 10

Sobre funciones reales de variable real. Composición de funciones. Función inversa

Conjuntos, relaciones y funciones Susana Puddu

CÁLCULO DIFERENCIAL Muestras de examen

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Espacios vectoriales reales.

Grupos libres. Presentaciones.

Por ser f continua y R compacto, existen x 0, y 0 en R tales que f(x 0 ) = sup{f(t) : t R} y f(y 0 ) = inf{f(t) : t R}

Análisis Matemático I: La integral de Riemann

r j ϕ j (v i ) = r i, ϕ(v i ) = v = n a ij ϕ j(v) ϕ i (v) =

Espacio de Funciones Medibles

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02

Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple

May 4, 2012 CAPÍTULO 5: OPTIMIZACIÓN

Reglas de l Hôpital Teorema del Valor Medio Generalizado. Tema 7

1. Teorema Fundamental del Cálculo

Gráficas de funciones sobre variedades

Demostraciones a Teoremas de Límites

TEMA 8.- NORMAS DE MATRICES Y

Axiomas de separación

Estructuras Algebraicas

1. Construcción de la Integral

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana 2 [1/24] Derivadas. August 16, Derivadas

Integrales múltiples

Una topología de los números naturales*

Espacios conexos. Capítulo Conexidad

Lección 2: Funciones vectoriales: límite y. continuidad. Diferenciabilidad de campos

CONTENIDOS. 1. Procesos Estocásticos y de Markov. 2. Cadenas de Markov en Tiempo Discreto (CMTD) 3. Comportamiento de Transición de las CMTD

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

b) Sea una relación de equivalencia en A y una operación en A. Decimos que y son compatibles si a b a c b c y c a c b para todo a, b, c A

ECUACIONES EN DERIVADAS PARCIALES Tópicos previos

Semana05[1/14] Relaciones. 28 de marzo de Relaciones

Notas sobre el teorema minimax

1. Convergencia en medida

Límites de funciones de varias variables.

Cálculo II. Tijani Pakhrou

Teoría de la Probabilidad Tema 2: Teorema de Extensión

1. DIFERENCIABILIDAD EN VARIAS VARIABLES

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Cardinalidad. Teorema 0.3 Todo conjunto infinito contiene un subconjunto infinito numerable.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

Resumen sobre mecánica analítica

Transformaciones lineales y matrices

Teorema del valor medio

Conjuntos Medibles. Preliminares

Tema 2 Datos multivariantes

SESIÓN 6 INTERPRETACION GEOMETRICA DE LA DERIVADA, REGLA GENERAL PARA DERIVACIÓN, REGLAS PARA DERIVAR FUNCIONES ALGEBRAICAS.

Esta expresión polinómica puede expresarse como una expresión matricial de la forma; a 11 a 12 a 1n x 1 x 2 q(x 1, x 2,, x n ) = (x 1, x 2,, x n )

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 1: Aplicaciones Lineales EPN, verano 2012

Introducción a la Teoría Analítica de Números

Algebra lineal y conjuntos convexos

Derivadas de Orden superior

Problema 1. Calcula las derivadas parciales de las siguientes funciones: (d) f(x, y) = arctan x + y. (e) f(x, y) = cos(3x) sin(3y),

Sistemas de Ecuaciones Lineales y Matrices

Introducción a la topología

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

Álgebra Lineal VII: Independencia Lineal.

TEMA2. SUCESIONES DE NÚMEROS REALES Y COMPLEJOS

Límite superior y límite inferior de una sucesión

Anillo de polinomios con coeficientes en un cuerpo

La Distancia de un Punto a una Recta y de un Punto a un Plano, y un Teorema de Pitágoras en Tres Dimensiones

Funciones reales de variable real

4. " $#%&' (#) para todo $#* (desigualdad triangular).

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

Álgebras de Boole. Definición 1 Un álgebra de Boole es un conjunto parcialmente ordenado (B, ) que verifica las siguientes condiciones:

NÚCLEOS DEFINIDOS POSITIVOS, REGULARIDAD, PERTURBACIONES Y APLICACIONES.

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES

1. Producto escalar. Propiedades Norma de un vector. Espacio normado. 1.2.Ortogonalidad. Ángulos. 1.4.Producto escalar en V 3.

Derivadas parciales Derivadas direccionales Derivadas parciales de orden superior. Derivadas parciales y direccionales

Métodos directos para resolver sistemas de ecuaciones lineales

1. PRODUCTO ESCALAR. ESPACIO EUCLÍDEO

1. Usando la definición correspondiente demostrar que la función. z = f(x, y) = 3x xy 2

CÁLCULO II. Grado M+I. Sucesiones y series de funciones. Sucesiones y series de funciones 1 / 27. Grado M+I () CÁLCULO II

Variables aleatorias

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

Proyecciones. Producto escalar de vectores. Aplicaciones

ƒ : {(1, 4), (2, 5), (3, 6), (4, 7)}.

Reglas de derivación Sumas, productos y cocientes. Tema 4

Grupos y Subgrupos El concepto de grupo Sea G un conjunto no vacío y sea G G G

Dependencia e independencia lineal

Límites y Continuidad de funciones de varias variables

Matriz asociada a una transformación lineal respecto a un par de bases

Tema 5: Sistemas de ecuaciones lineales.

En este capítulo extenderemos la conocida ecuación. g(b) f = f g g, g(a)

Unidad 5. La derivada. 5.2 La derivada de una función

Transcripción:

Capítulo 10 Diferenciales de Orden Superior En este capítulo extenderemos a las funciones definidas sobre espacios normados el concepto de función r-veces diferenciable y de clase C r y obtendremos las correspondientes reglas de cálculo. En el caso de espacios de dimensión finita, veremos la relación entre dichos conceptos y las derivadas parciales de orden r. Para el desarrollo de este capítulo se ha seguido fundamentalmente el libro de Flett [12] y, en menor medida, el de Avez [2]. La diferencial de orden r en un punto Definición 10.1 Sea f : A E F una aplicación entre espacios normados, a A o y r un número natural mayor que 1. Inductivamente, diremos que f es r-veces diferenciable en a si la aplicación D r 1 f es diferenciable en a. Escribiremos entonces D r f(a) = D(D r 1 f)(a). Para r = 2, la definición anterior expresa que f es 2-veces diferenciable en a si la aplicación Df : x Df(x) es diferenciable en a. (Para ello será preciso pues que, previamente, la aplicación Df esté definida en algún entorno de a). La derivada segunda de la aplicación f en a o sea la diferencial en a de la aplicación Df debe ser, como siempre, una aplicación lineal, pero en este caso, un tanto especial, concretamente (10.1) D 2 f(a) L (E, L (E, F )). 97

98 Diferenciales de Orden Superior 10.1 De 10.1 se deduce que la aplicación (h, k) (D 2 f(a)h)k es bilineal, lo que indica que la aplicación lineal D 2 f(a) se comporta como una aplicación bilineal de E E en F, una aplicación bilineal que además es continua, pues (D 2 f(a)h)k) D 2 f(a) h k. Con frecuencia se dirá incluso que D 2 f(a) es una aplicación bilineal y escribiremos D 2 f(a)(h, k) en lugar de ((D 2 f(a)h)k. Análogas consideraciones cabe hacer para una función r-veces diferenciable en un punto a. D r f(a) será ahora un elemento del espacio L (E, (E,..., L (E, F )..., )). (Por comodidad denotaremos a este espacio por L r (E, F )). Como antes, se puede considerar a D r f(a) como una aplicación r-lineal continua de E E {}}{. r.. E en F, y se tiene D r f(a)(h 1,..., h r ) D r f(a) h 1 h r. Relación con las derivadas parciales La proposición siguiente, aunque formulada en el marco general de los Espacios Normados, será esencial para establecer, en dimensión finita, la relación entre derivadas de orden superior y derivadas parciales de orden superior. Proposición 10.2 Sea f : A E F una aplicación r-veces diferenciable en un punto a A o. Entonces se verifica la siguiente fórmula D r f(a)(h 1,..., h r ) = D h1 (D h2... D hr f)(a). Demostración. Por inducción. Para r = 1 la fórmula ya es conocida. Supongamos como hipótesis de inducción que la fórmula es cierta en cada punto en que f sea (r-1)-veces diferenciable. Entonces D r f(a)(h 1,..., h r ) = ( D(D r 1 f)(a)h 1 ) (h2,..., h r ) = D h1 (D r 1 f)(a)(h 2,..., h r )

10.3 Diferenciales de Orden Superior 99 (10.2) = ( lim t 0 D r 1 f(a + th 1 ) D r 1 ) f(a) (h 2,..., h r ) t D r 1 f(a + th 1 )(h 2,..., h r ) D r 1 f(a)(h 2,..., h r ) (10.3) = lim t 0 t D h2 (... D hr f)(a + th 1 ) D h2 (... D hr f)(a) = lim t 0 t = D h1 (D h2... D hr f)(a). Para demostrar la igualdad entre las expresiones 10.2 y 10.3, observemos que las igualdades anteriores a éstas expresan que D r D r 1 f(a + th 1 ) D r 1 f(a) f(a)h 1 = lim, t 0 t es decir que, si denotemos por entonces φ t = Dr 1 f(a + th 1 ) D r 1 f(a), t φ t D r f(a)h 1 ε, si t < δ. De lo anterior se deduce, teniendo en cuenta que φ t D r f(a)h 1 L r 1 (E, F ), que (φ t D r f(a)h 1 )(h 2,..., h r ) ε h 2... h r, si t < δ, lo que significa que D r f(a)(h 1,..., h r ) = lim t 0 φ t (h 2,..., h r ) D r 1 f(a + th 1 )(h 2,..., h r ) D r 1 f(a)(h 2,..., h r ) = lim, t 0 t lo que prueba la igualdad entre 10.2 y 10.3. Corolario 10.3 En las condiciones anteriores, si E = R n, y por e i denotamos al vector de R n que tiene un 1 en la coordenada i-ésima y un 0 en todas las demás, entonces D r f(a)(e j1,..., e jr ) = r f x j1... x jr (a).

100 Diferenciales de Orden Superior 10.3 Demostración. Cuando E = R n, de la fórmula de la proposición anterior se deduce que D r f(a)(e j1,..., e jr ) = D ej1 (D ej2... D ej r f)(a) = r f x j1... x jr (a). 10.4 De lo anterior vamos a deducir que, en dimensión finita, la aplicación D r f(a), debido a su carácter r-lineal, queda determinada por sus derivadas parciales de orden r: De manera general, una aplicación T de L r (E, F ), si E es un espacio de dimensión n, queda determinada por los n r puntos de F, a j1...j r = T (e j1,..., e jr ), donde {e i }, i = 1, 2,.., n, es una base de E. En efecto, sean h j = (h 1 j, h2 j,..., hn j ), j = 1, 2,.., r, vectores arbitrarios de Rn. Entonces T (h 1,..., h r ) = 1 j 1,...,j r n h j 1 1... h jr r a j1...j r. Además, es fácil comprobar (aunque pesado) que la aplicación de L r (E, F ) en F nr Φ: T L r (E, F ) (a j1...jr) 1 j1,...,jr n F nr es un isomorfismo de espacios vectoriales. Del corolario anterior se deduce que, si T es la aplicación D r f(a), entonces a j1...j r = r f x j1... x jr (a), luego D r f(a)(h 1,..., h r ) = 1 j 1,...,j r n 1... h j r f r r (a), x j1... x jr h j 1 fórmula que para r = 2 se escribe así D 2 f(a)(h, k) = 1 i,j n 2 f h i k j (a). x i x j De la relación que hemos establecido entre diferenciales de orden r y derivadas parciales de orden r, se deduce Corolario 10.5 Para una función f : A R n R p son equivalentes:

10.7 Diferenciales de Orden Superior 101 (i) f es r-veces diferenciable en un punto a o A. (ii) f es (r-1)-veces diferenciable en un entorno del punto a y todas las derivadas parciales de orden r-1 son diferenciables en a. Demostración. Escribamos la aplicación D r 1 f como composición de las aplicaciones ( r 1 ) f(x) x x j1... x jr 1 1 j 1,...,j r 1 n D r 1 f(x). La primera aplicación es diferenciable en a si y sólo si lo son las derivadas parciales de orden r 1 de f. En cuanto a la segunda, se trata de la aplicación Φ 1 de F nr 1 en L r 1 (E, F ) que construíamos antes, y que por ser lineal entre espacios de dimensión finita, es diferenciable en todo punto. De todo ello es fácil deducir ya que los enunciados (i) y (ii) son equivalentes. Definición 10.6 Sean E y F espacios normados y U un conjunto abierto de E. Una aplicación f : U E F se dice de clase C r sobre el subconjunto A de U, lo que denotaremos por f C r (A), si es r-veces diferenciable en cada punto x de A y la aplicación x D r f(x) es continua en A. La aplicación se dirá de clase C si es de clase C r para todo r. Aunque no se especifique, una función f C r (A) se supondrá definida en algún abierto que contiene a A. Proposición 10.7 Sea f : U R n R p con U abierto. Entonces f C r (U) si y sólo si todas las derivadas parciales de orden r son continuas en U. Demostración. Veamos por inducción sobre r que si todas las derivadas parciales de orden r son continuas entonces la función es de clase C r. Para r = 1 esto ya ha sido probado. Supondremos cierto para r 1. De la hipótesis resulta que cada derivada parcial de orden r 1 de la función f es una función de clase C 1 (observar que, abreviadamente, cada derivada parcial de orden r puede obtenerse mediante la fórmula r f = ( r 1 f)). En particular cada derivada parcial de orden r 1 es una aplicación continua, luego, por hipótesis de inducción, f es de clase C r 1. Consideremos la descomposición ( r 1 ) f(x) x x j1... x jr 1 1 j 1,...,j r 1 n D r 1 f(x).

102 Diferenciales de Orden Superior 10.7 Por hipótesis, la primera de las aplicaciones en el diagrama anterior es de clase C 1. En cuanto a la segunda, se trata del isomorfismo vectorial Φ, luego (en dimensión finita) también de clase C 1. Se deduce pues que la aplicación D r 1 f es de clase C 1, por ser composición de dos aplicaciones de clase C 1, y por tanto f es de clase C r. Recíprocamente, si f es de clase C r, entonces el diagrama ( ) x D r f(x) r f(x) x j1... x jr 1, 1 j 1,...,j r n nos permite deducir que las derivadas parciales de orden r son continuas. Reglas de derivación A efectos de cálculo, las derivadas de orden superior se comportan como las de primer orden. Nos será más útil ver esto en el caso general de funciones definidas entre espacios normados. Proposición 10.8 Si f y g son funciones r-veces diferenciables en un punto a (de clase C r ), entonces la función λf + µg es también r-veces diferenciable en a (de clase C r ) y se tiene que D r (λf + µg)(a) = λd r f(a) + µd r g(a). Demostración. Por inducción. Para r = 1 ya se ha demostrado. Supuesta cierta la proposición para r-1, supongamos que f y g son r-veces diferenciable en a. Entonces, por hipótesis de inducción, la función D r 1 (λf + µg) está definida en un entorno de a y se tiene que D r 1 (λf + µg) = λd r 1 f + µd r 1 g. Se deduce pues que D r 1 (λf + µg) es diferenciable en a y que D [ D r 1 (λf + µg) ] (a) = D [ λd r 1 f + µd r 1 g ] (a) = λd r f(a) + µd r g(a). El resultado siguiente es un caso particular de la regla de la cadena para derivadas de orden superior, que hemos de establecer antes del teorema general.

10.10 Diferenciales de Orden Superior 103 Lema 10.9 Sean E, F y G espacios normados, f : A E F una aplicación r-veces diferenciable en un punto a A o (de clase C r en A) y T una aplicación lineal y continua de F en G. Entonces la aplicación T f es r-veces diferenciable en a (de clase C r en A) y se verifica que D r (T f)(a)(h 1,..., h r ) = T [ D r f(a)(h 1,..., h r ) ]. Demostración. Por inducción sobre r. El caso r = 1 resulta directamente de la aplicación de la regla de la cadena. Supongamos que f es r-veces diferenciable en a (de clase C r en A) con r > 1. Entonces D(T f)(x) = T Df(x), lo que nos dice que la aplicación D(T f) es la composición de las aplicaciones x Df(x) T 1 T Df(x). Es fácil de comprobar que T 1 es una aplicación lineal y continua. Resulta entonces que D(T f) = T 1 Df, por lo que, aplicando la hipótesis de inducción, se deduce que D(T f) es (r-1)-veces diferenciable en a (de clase C r 1 en A). Para demostrar la fórmula procedamos también por inducción. Para r = 1 ya es conocida. Suponiendo que es cierta también para r 1, se tiene: D r (T f)(a)(h 1,..., h r ) = D r 1 (D(T f))(a)(h 1,..., h r ) = D r 1 (T 1 Df)(a)(h 1,..., h r ) = ( D r 1 (T 1 Df)(a)(h 1,..., h r 1 ) ) h r = T 1 ( D r f(a)(h 1,..., h r 1 ) ) h r = ( T D r f(a)(h 1,..., h r 1 ) ) h r = T [ D r f(a)(h 1,..., h r ) ]. Corolario 10.10 Una función f = (f 1, f 2,..., f p ) de A E en F 1... F p es r-veces diferenciable en un punto a A o (de clase C r en A) si y sólo si cada f i es diferenciable en a (de clase C r en A). Se tiene entonces que (10.4) D r f(a)(h 1,..., h r ) = ( D r f 1 (a)(h 1,..., h r ),..., D r f p (a)(h 1,..., h r ) ).

104 Diferenciales de Orden Superior 10.10 Demostración. Si f es r-veces diferenciable en a (de clase C r en A), entonces, por la proposición anterior, f i = π i f (π i es la proyección i-ésima) es r-veces diferenciable en a (de clase C r en A). El recíproco y la fórmula 10.4 se siguen de las dos proposiciones anteriores sin más que tener en cuenta que f = I i f i, donde I i es la inmersión canónica z (0,..., z,..., 0). Proposición 10.11 Sean f : A E F, a A, o B f(a), f(a) B o y g : B F G. Si f es r-veces diferenciable en a (de clase C r en A) y g es r-veces diferenciable en f(a) (de clase C r en B), entonces la aplicación u = g f es r-veces diferenciable en a (de clase C r en A). Demostración. Por inducción sobre r. Para r = 1 ya ha sido demostrado. Supongamos que la regla de la cadena es válida para funciones (r-1)-veces diferenciable (de clase C r 1 ), entonces si r > 1 las funciones f y g son diferenciables en algún entorno de a y f(a) respectivamente, y se tiene que Dh(x) = Dg(f(x)) Df(x). Consideremos la siguiente descomposición de Dh, x (Dg(f(x)), Df(x)) Dg(f(x)) Df(x). Las dos aplicaciones de que consta el diagrama anterior son (r-1)-veces diferenciable en a (de clase C r 1 ). La segunda por tratarse de una aplicación bilineal y continua y la primera porque sus dos funciones coordenadas son, teniendo en cuenta la hipótesis de inducción, (r-1)-veces diferenciables en a (de clase C r 1 ), luego, de nuevo por hipótesis de inducción, se tiene que Dh es (r-1)-veces diferenciables en a (de clase C r 1 ). Proposición 10.12 Sean f, g : A E R aplicaciones r-veces diferenciables en un punto a (de clase C r en A), entonces su producto, h = f g, es también r-veces diferenciable en a (de clase C r en A). Demostración. Basta descomponer h como x (f(x), g(x)) f(x) g(x) y aplicar la proposición anterior. Proposición 10.13 Sean f, g : A E R aplicaciones r-veces diferenciables en un punto a (de clase C r en A). Si g(a) 0 (g no se anula en ningún punto de A), entonces la aplicación h = f/g es r-veces diferenciable en a (de clase C r en A).

10.17 Diferenciales de Orden Superior 105 Con ayuda de los resultados anteriores, es fácil probar ahora las siguientes generalizaciones del corolario 10.5 y la proposición 10.7. Proposición 10.14 Para una función f : A R n R p y los números naturales 1 k < r, son equivalentes: (i) f es r-veces diferenciable en un punto a o A. (ii) f es k-veces diferenciable en un entorno del punto a y todas las derivadas parciales de orden k son (r k)-veces diferenciables en a. Proposición 10.15 Para una función f : U R n R p (U abierto) y los números naturales 1 k r, son equivalentes: (i) f es de clase C r sobre U. (ii) Todas las derivadas parciales de orden k de f son de clase C r k sobre U. (Por convenio, una función de clase C 0 es una función continua). Permutación en el orden de derivación Anteriormente abordamos el problema de la permutabilidad de las derivadas y establecimos el clásico teorema de Schwartz. En esta sección vamos a continuar con aquel asunto, viendo, en primer lugar, una consecuencia de dicho teorema (más precisamente de su generalización 9.3). Proposición 10.16 Sea U un abierto de R n y f : U R p una aplicación de clase C r sobre U, entonces las derivadas parciales de orden r de f son independientes del orden en que se realicen las derivaciones. Demostración. Es consecuencia directa de la proposición 10.7 y el corolario 9.3. La condición de la proposición anterior es muy fuerte. En lo que sigue vamos a demostrar que se consigue el mismo efecto suponiendo sólo que la aplicación sea r-veces diferenciable. Proposición 10.17 Sea f : A R n R p una función 2-veces derivable en un punto a, entonces 2 f x i x j (a) = 2 f x j x i (a).

106 Diferenciales de Orden Superior 10.17 Demostración. Puesto que sólo han de intervenir dos coordenadas y basta hacer el estudio para cada función coordenada, se puede suponer, sin pérdida de generalidad, que f es una función escalar de las variables x e y. Ya vimos en la proposición 9.1 que 2 f x y (x 0, y 0 ) = lim x x 0 2 f y x (x 0, y 0 ) = lim y y 0 ( ( ) f(x, y) f(x 0, y) f(x, y 0 ) + f(x 0, y 0 ) lim y y 0 (x x 0 )(y y 0 ) ) f(x, y) f(x 0, y) f(x, y 0 ) + f(x 0, y 0 ) lim. x x 0 (x x 0 )(y y 0 ) Pero desafortunadamente las condiciones de esta proposición no permiten deducir, como entonces, la existencia del límite doble. Sea, no obstante G(x, y) = f(x, y) f(x 0, y) f(x, y 0 ) + f(x 0, y 0 ) y procedamos como en 9.1. Obtenemos entonces G(x, y) (x x 0 )(y y 0 ) 2 f x y (x 0, y 0 ) = 1 x x 0 ( f y (x, ξ y) f y (x 0, ξ y ) 2 f x y (x 0, y 0 )(x x 0 ) ) (10.5) = 1 x x 0 ( f y (x, ξ y) f y (x 0, y 0 ) 2 f x y (x 0, y 0 )(x x 0 ) 2 f y 2 (x 0, y 0 )(ξ y y 0 ) ) 1 x x 0 ( f y (x 0, ξ y ) f y (x 0, y 0 ) 2 f y 2 (x 0, y 0 )(ξ y y 0 ) ). Nuestra intención, al considerar la igualdad 10.5, es la de utilizar el hecho de que la función f/ y es derivable en (x 0, y 0 ) (ya que f es 2-veces derivable en (x 0, y 0 )). Así, dado ε > 0, si x x 0 y y y 0 son suficientemente pequeños, podemos escribir, teniendo eso en cuenta, que G(x, y) (x x 0 )(y y 0 ) 2 f x y (x 0, y 0 ) ε (x x 0, ξ y y 0 ) + (0, ξ y y 0 ) x x 0 2ε (x x 0, y y 0 ). x x 0

10.19 Diferenciales de Orden Superior 107 De igual forma obtendríamos G(x, y) (x x 0 )(y y 0 ) 2 f y x (x 0, y 0 ) 2ε (x x 0, y y 0 ). y y 0 De todo ello podemos deducir entonces que para x x 0 y y y 0 suficientemente pequeños 2 f x y (x 0, y 0 ) 2 f y x (x 0, y 0 ) 2ε (x x 0, y y 0 ) +2ε (x x 0, y y 0 ). x x 0 y y 0 En particular, tomando x x 0 = y y 0, se tiene que 2 f x y (x 0, y 0 ) 2 f y x (x 0, y 0 ) 4ε 2 f x y (x 0, y 0 ) = 2 f y x (x 0, y 0 ). [Hemos utilizado la norma producto (x, y) = max( x, y )]. La proposición anterior admite la siguiente generalización: Proposición 10.18 Si f : A R n R p es una función r-veces derivable en un punto a, entonces las derivadas parciales de orden r en el punto a sólo dependen del número de veces que se deriva respecto de cada variable, es decir son independientes del orden de derivación. Demostración. Es idéntica a la del corolario 9.3, sólo hay que tener en cuenta que cada derivada parcial de orden r 2 de la función f es una función 2- veces diferenciable en a. Corolario 10.19 Si f : A R n R p es una función r-veces derivable en un punto a, entonces su derivada de orden r en el punto a es una aplicación r- lineal simétrica, es decir, cualquiera que sea la permutación σ de {1, 2,..., r} se verifica D r f(a)(h 1,..., h r ) = D r f(a)(h σ(1),..., h σ(r) ). Demostración. Basta tener en cuenta la proposición anterior en la fórmula que relaciona las derivadas de orden r de una función en un punto con sus derivadas parciales de ese mismo orden. En efecto, sea σ una permutación de {1, 2,..., r}. Entonces: D r f(a)(h σ(1),..., h σ(r) ) = = 1 j 1,...,j r n 1 j 1,...,j r n h j 1 σ(1)... hj r h k 1 σ(r) r f (a) x j1... x jr 1... r f hk r r (a), x j1... x jr

108 Diferenciales de Orden Superior 10.19 donde {k 1,..., k r } es una permutación de {j 1,..., j r }. De la proposición anterior se deriva entonces que D r f(a)(h σ(1),..., h σ(r) ) = 1 k 1,...,k r n 1... r f hk r r (a) x k1... x kr h k 1 = D r f(a)(h 1,..., h r ). Ejercicios 10A Estudiar si las funciones siguientes son r-veces diferenciables o de clase C r (r = 1, 2,...): 1. f(x, y) = x4 x 2 + y 2 ; f(0, 0) = 0 2. f(x, y) = (x y)2 x y 3. f(x, y) = x2 y 2 x 2 + y 2 ; f(0, 0) = 0 4. f(x, y) = x 4 + y 4. 10B Probar que la función f(x, y) = x 2 (x y) 2 sen 1 ; f(x, x) = 0 x y es 2-veces diferenciable en (0,0), pero no es de clase C 1 en ningún entorno de (0,0). 10C En este ejercicio g será una función escalar de clase C. Se pide calcular, en términos de g y/o sus derivadas parciales, las derivadas parciales de primer y segundo orden de la función h en cada uno de los casos siguientes: 1. h(x, y) = g(x + g(x.y)) 2. h(x, y, z) = zg(x, y) g(xz, y) 3. h(x, y) = g(y, g(x, y)) 4. h(x, y, z) = g(z, g(x, y)) 4. h(x) = g(x, sen x) 6. h(x) = g(x, g(x, x)) 10D Probar que la función es de clase C y obtener h(x, y, z) = x 2 y 2 +x 2 z 2 +y 2 z 2 0 2 h (1, 0, 0). x y e t2 dt

10H Diferenciales de Orden Superior 109 10E Denotemos por r = r(x, y, z) = x 2 + y 2 + z 2 y sea f una función de R en R de clase C 2. Probar que si r 0 entonces 1. H f(r) = rf (r). 2. f(r) = f (r) + n 1 f (r) r Ver el ejercicio 9B para las definiciones de H y 10F Demostrar (a) Si h(x, y) = g(ax ± by), entonces (b) Si h(x, y) = xg(ax + by), entonces (c) Si h(x, y) = xg(y/x), entonces 1/a 2 2 h x 2 = 1/b2 2 h y 2 1/a 2 2 h x 2 2/ab 2 h x y + 1/b2 2 h y 2 = 0. x 2 2 h x 2 + 2xy 2 h x y + y2 2 h y 2 = 0. 10G Una función escalar f de varias variables se dice homogénea de grado p si f(tx) = t p f(x) para todo t > 0. (a) Probar que si f es una función homogénea de grado p, sus derivadas parciales de orden r < p (si existen) son funciones homogéneas de grado p r. (b) Si f es una función homogénea y diferenciable, sea g(t, x) = f(tx) = t p f(x). Probar que g t (x) = ptp 1 f(x) = f x i (tx). x i Deducir de esto que H f = pf (c) Demostrar que las funciones homogéneas diferenciables (de grado p) son justamente las que verifican la condición H f = pf. Indicación. Considerar la función g(t, x) = 1/t p f(tx) y probar que la condición H f = pf implica que g t (t, x) = 0, aplicar entonces el resultado del ejercicio 5G 10H Probar que una función f : R n R p es de clase C si y sólo si sus derivadas parciales de cualquier orden son funciones localmente acotadas.

110 Diferenciales de Orden Superior 10I 10I Sean E, F, G espacios normados, f : A E F 2-veces diferenciable en a A, o B f(a) y g : B F G 2-veces diferenciable en f(a) B. o Probar la fórmula D 2 (g f)(a)(u, v) = Dg(f(a))D 2 f(a)(u, v) + D 2 g(f(a)) ( Df(a)u, Df(a)v ) 10J Sea g una función escalar de dos variables y clase C, y definamos a partir de g la función de una variable h(x) = g(x, x). Demostrar que h es una función de clase C y que su derivada n-ésima viene dada por la fórmula: h (n) (x) = n k=0 ( ) n n g k x k (x, x) yn k