Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Documentos relacionados
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.

Números complejos y Polinomios

ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios

Apéndice 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas. . Analizando el

4.1 Anillo de polinomios con coeficientes en un cuerpo

Ejercicios de Álgebra Básica. Curso 2016/17

Anexo: El anillo de polinomios K[x].

Capítulo 4: Polinomios

Capítulo 4: Polinomios

Principio de inducción y Sumatorias

AMPLIACIÓN DE MATEMÁTICAS DIVISIBILIDAD DE POLINOMIOS.

Anillo de polinomios con coeficientes en un cuerpo

AMPLIACIÓN DE MATEMÁTICAS

Anillo de Polinomios.

Departamento de Ingeniería Matemática - Universidad de Chile

Tema 1. Anillos e ideales. Operaciones. Divisibilidad

COMPLEMENTO DEL TEÓRICO

Ejercicios de Polinomios y Fracciones Algebráicas

Estructuras algebraicas

Semana 14. Carlos Hernandez. Helena de Oteyza. Alfredo.

GUÍA DE EJERCICIOS. Área Matemática - Polinomios

6.1. Anillos de polinomios.

Semana 07[1/21] Sumatorias. 12 de abril de Sumatorias

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017

EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones

x a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente.

6. Ortogonalidad. Universidad de Chile Conjuntos ortogonales y ortonormales. Ingeniería Matemática SEMANA 12: ORTOGONALIDAD

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

TRABAJO PRÁCTICO Nº 4: POLINOMIOS

IV Taller de Olimpiadas Matemáticas para Profesores 2014

Unidad 6. Raíces de polinomios. Objetivos. Al finalizar la unidad, el alumno:

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Semana02[1/23] Conjuntos. 9 de marzo de Conjuntos

El Teorema Fundamental del Álgebra

Q(x,t) = -2x 2 t 3 - xt x 5-3x 3 + 4x 2 +2x- 7 22/03/2016. División de polinomios. P(x) = -x 4 + 3x 2-5 R(x) = 5x 4-2x 3 + 3x

POLINOMIOS. (Versión Preliminar) Un polinomio en la variable x es una expresión de la forma. p(x) = a n x n + a n 1 x n

Semana 09[1/14] Cardinalidad. 25 de abril de Cardinalidad

Semana05[1/14] Relaciones. 28 de marzo de Relaciones

Álgebra I Práctica 7 - Polinomios

Factorización de Polinomios

Clase 4 Funciones polinomiales y racionales

5 DIVISIÓN DE POLINOMIOS. RAÍCES

Algoritmos en teoría de números

Semana03[1/17] Funciones. 16 de marzo de Funciones

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 8

POLINOMIOS. FACTORIZACIÓN

5 REPASO Y APOYO OBJETIVO 1

Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

Capítulo 4: Polinomios

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

Álgebra Básica Primera parte

Capítulo 4: Polinomios

Fracciones Algebraicas

4.1. Polinomios y teoría de ecuaciones

TEMA 5. FACTORIZACIÓN DE POLINOMIOS.

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES

Cociente. Resto Cómo procedimos? 3 x por 2

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

gr(p(x)) = n = deg(p(x)), cuando a n 0. El conjunto de todos los polinomios con coeficiente en K lo denotamos por K[x]

La trascendencia de e y π

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b

Dominios de factorización única

Álgebra I Práctica 5 - Polinomios

Álgebra I Práctica 5 - Polinomios

Departamento de Ingeniería Matemática - Universidad de Chile

S2: Polinomios complejos

Apéndice 5: Diagonalización de matrices

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Polinomios (lista de problemas para examen)

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

a + b 2 ab + a2 + b 2 Si aplicamos la desigualdad entre las medias aritmética y geométrica al miembro de la izquierda obtenemos 2 2ab + a2 + b =

Álgebra I Práctica 7 - Polinomios

Unidad 2 Polinomios PÁGINA 28 SOLUCIONES. Sacar factor común. a) b) Evaluar un polinomio en un punto.

TEÓRICO PRÁCTICO Nº 4: FUNCIÓN POLINÓMICA

Notas sobre polinomios

Conjuntos, relaciones y funciones Susana Puddu

Estructuras algebraicas

Reporte de Actividades 13

Semana04[1/17] Funciones. 21 de marzo de Funciones

Exámenes de álgebra básica de enero de Grupos 1 y 3.

FACTORIZACIÓN BÁSICA Y RAÍCES

Fundamentos matemáticos. Tema 1 Números reales. Polinomios

Álgebra I Práctica 5 - Polinomios

TEMA: 5 ÁLGEBRA 3º ESO

AMPLIACIÓN DE MATEMÁTICAS. DIVISIBILIDAD DE NÚMEROS ENTEROS. En el conjunto de los números enteros

La estructura de un cuerpo finito.

ÁLGEBRA MODERNA. Índice 1. El grupo de permutaciones y el grupo alternante 1

10. Series de potencias

Raíces de polinomios

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

Ejercicios Resueltos 1 / Algebra / 2008

Transcripción:

Semana 14 [1/19] 8 de junio de 2007

División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema de la División Sean p, d K[x] con d 0. Entonces existe un único par q, r K[x] tal que 1 p = q d + r 2 gr(r) < gr(d) Notación La ecuación (1), se llama división con resto de p por d. El polinomio q se llama cuociente. El polinomio r se llama resto. Cuando r(x) = 0, diremos que d divide a p, lo cual notaremos d p, al igual que en Æ \ {0}. Es decir, d p ( q K[x]) p = q d Para probar este teorema, usaremos un método de división similar al que conocemos en. Lo ejemplificaremos a partir de un ejemplo.

División Semana 14 [3/19] Teorema de la División: Ejemplo Calculemos la división entre p(x) = 3x 3 + 2x 2 y q(x) = x 4. 3x 3 +2x 2 : x 4 = Para obtener el cuociente, debemos preguntarnos por qué multiplicar el término de mayor exponente de x 4 para obtener el de 3x 3 + 2x 2: es decir, por qué multiplicar x para obtener 3x 3. La respuesta es 3x 2. Entonces 3x 3 +2x 2 : x 4 = 3x 2 (3x 3 12x 2 ) 12x 2 +2x 2 El término 3x 3 12x 2 corresponde a la multiplicación de 3x 2 por el divisor x 4, y aparece restándose para calcular el resto parcial correspondiente. El polinomio 12x 2 + 2x 2 es el resultado de calcular la resta entre el polinomio original y el término recién obtenido. El proceso continúa iterativamente: x debe ser multiplicado por 12x para obtener 12x 2, así que sumamos 12x al cuociente parcial 3x 2 que llevábamos. 3x 3 +2x 2 : x 4 = 3x 2 +12x (3x 3 12x 2 ) 12x 2 +2x 2 (12x 2 48x) 50x 2

División Semana 14 [4/19] Teorema de la División: Ejemplo En cada etapa vamos calculando un nuevo resto parcial, y detenemos el proceso cuando este resto tiene grado menor que el de x 4: 3x 3 +2x 2 : x 4 = 3x 2 +12x+50 (3x 3 12x 2 ) 12x 2 +2x 2 (12x 2 48x) 50x 2 (50x 200) 198 Obtenemos así que el cuociente de esta división es q(x) = 3x 2 + 12x + 50, y el resto es r(x) = 198. En términos del teorema de la división, podemos entonces escribir 3x 3 + 2x 2 = (x 4)(3x 2 + 12x + 50) + 198.

División Semana 14 [5/19] Teorema de la División Demostración (Teorema de la División). Primero probaremos la existencia de q y r. Veamos dos casos posibles: Si gr(d) > gr(p). Basta notar que p = 0 d + p. De donde q = 0 y r = p, satisfacen las condiciones del Teorema. Si gr(d) gr(p). Ocupamos el procedimiento de división ejemplificado anteriormente, obteniendo: p = q 1 d + r 1 r 1 = q 2 d + r 2 r 2 = q 3 d + r 3. r n = q n+1 d + r n+1, con gr(r n+1 ) < gr(d). Por qué gr(r n+1 ) < gr(d)? Porque el grado de los restos r i disminuye en al menos 1 en cada etapa y gr(d) 0 (pues d 0). Continúa...

División Semana 14 [6/19] Teorema de la División Continuación demostración. Reemplazamos ahora en la primera ecuación, las posteriores: p = q 1 d + r 1. = (q 1 + q 2 ) d + r 2 = (q 1 + q 2 + q 3 ) d + r 3 = (q 1 + q 2 + + q n+1 ) d + r n+1, con gr(r n+1 ) < gr(d). Basta entonces definir q = q 1 + q 2 + + q n+1, y r = r n+1. Estos polinomios satisfacen el Teorema de la División. Como ejercicio para el lector, queda formalizar esta demostración como una inducción en el grado de p. Resta ahora probar la unicidad de dichos polinomios. Supongamos que tenemos dos descomposiciones (y probemos que son la misma): p = q 1 d + r 1 = q 2 d + r 2. En donde gr(r 1 ) < gr(d) y gr(r 2 ) < gr(d). Reagrupando, obtenemos (q 1 q 2 ) d = r 2 r 1. Pero como gr(r 2 r 1 ) m«ax(gr(r 2 ), gr(r 1 )) < gr(d), entonces gr(d) > gr((q 1 q 2 ) d) = gr(q 1 q 2 ) + gr(d), lo cual sólo puede ocurrir si gr(q 1 q 2 ) =, o sea, si Como consecuencia, r 2 r 1 = 0 d = 0 y luego r 1 = r 2. q 1 q 2 = 0 q 1 = q 2.

Raíces y factorización Semana 14 [7/19] Raíces de un polinomio Teorema del Resto Sean p K[x] y c K. El resto de dividir p por el polinomio (x c) es exactamente p(c). Demostración. Por el teorema anterior, existen únicos q, r K[x] con gr(r) < 1 tales que p(x) = q(x)(x c) + r(x) Como gr(r) < 1, existe r 0 K tal que r(x) = r 0. Evaluando la relación de división antes obtenida en x = c, obtenemos p(c) = q(c) 0 + r 0 por lo que el resto vale r 0 = p(c). Raíz Diremos que c K es una raíz del polinomio p K[x] si p(c) = 0.

Raíces y factorización Semana 14 [8/19] Raíces de un polinomio Propiedad c à es raíz de p (x c) p(x) Demostración. ) Sabemos que p(c) es el resto de dividir p por (x c), es decir existe q K[x] tal que p(x) = q(x)(x c) + p(c) Como c es raíz de p, p(c) = 0, y así p(x) = q(x)(x c) con lo que (x c) p(x). ) Si (x c) p(x), entonces existe q K[x] tal que p(x) = q(x)(x c) Entonces p(c) = q(c) 0 = 0.

Raíces y factorización Semana 14 [9/19] Raíces de un polinomio: Propiedades Se tienen las siguientes propiedades: Propiedades 1 Si c 1, c 2,...,c k son raíces distintas de p, entonces (x c 1 )(x c 2 )...(x c k ) p(x) 2 Sea n 1. Si p K[x] es tal que gr(p) = n, entonces p posee a lo más n raíces distintas. 3 Sean n 1, y p, q K[x] tales que gr(p) n y gr(q) n. Si p y q coinciden en n + 1 puntos distintos, entonces son iguales (como polinomios). Demostración. Demostraremos (1) y (2). (3) se obtiene como consecuencia de (2), aplicándola al polinomio (p q). Para (1): Por inducción en k. El caso k = 1 está demostrado en el teorema anterior. Sean c 1, c 2,...,c k raíces distintas de p. Usando hipótesis inductiva, sabemos que o, equivalentemente, existe q K[x] tal que Como c k también es raíz de p, Continúa... (x c 1 )(x c 2 )...(x c k 1 ) p(x) p(x) = q(x)(x c 1 )(x c 2 )...(x c k 1 ) 0 = p(c k ) = q(c k )(c k c 1 )(c k c 2 )...(c k c k 1 )

Raíces y factorización Semana 14 [10/19] Raíces de un polinomio: Propiedades Continuación demostración. Gracias a que los valores c i son todos distintos, tenemos necesariamente que q(c k ) = 0, con lo que concluimos que c k es raíz del polinomio q. Así, (x c k ) q(x), y existe q K[x] tal que q(x) = q (x)(x c k ) Reemplazando esto en la descomposición de p, nos queda p(x) = q (x)(x c 1 )(x c 2 )...(x c k ) Es decir, (x c 1 )(x c 2 )...(x c k ) p(x) Para (2): Sea k el número de raíces distintas que posee p, y sean c 1,...,c k estas raíces. Aplicando (??), tenemos que existe q K[x] tal que p(x) = q(x)(x c 1 )...(x c k ) Luego de donde obtenemos que n = gr(p) = gr(q) + gr(x c 1 ) +... + gr(x c k ) n = gr(q) + k pues gr(x c i ) = 1 para i = 1,..., k. Como gr(p) = n 1, entonces p no puede ser el polinomio nulo. Así, q tampoco puede ser el polinomio nulo (razonar por contradicción), y por lo tanto gr(q) 0. Entonces k = n gr(q) n 0 = n es decir, p posee a lo más n raíces distintas.

Teorema Fundamental del Álgebra Semana 14 [11/19] Teorema Fundamental del Álgebra En la sección anterior demostramos un resultado que dice que un polinomio de grado n posee a lo más n raíces distintas, pero deja la posibilidad abierta de que pudiera no tener raíces. Cuando consideramos raíces en Ê, el caso puede darse. Tan sólo consideremos p(x) = 1 + x 2 Las raíces de este polinomio son i y i, sin embargo éstas no son reales, sino complejas. El polinomio p no posee raíces en Ê. El Teorema Fundamental del Álgebra da una versión general de este caso, generalizando además el resultado de la sección anterior. Teorema Fundamental del Álgebra Sea p un polinomio con coeficientes en C[x], tal que gr(p) = n 1. Entonces p posee al menos una raíz en C. No demostraremos este teorema, ya que para eso requerimos herramientas más avanzadas. Sin embargo, estudiaremos la siguiente aplicación.

Teorema Fundamental del Álgebra Semana 14 [12/19] Factorización de un polinomio en C[x] Proposición Sea p un polinomio con coeficientes en C[x], tal que gr(p) = n 1. Entonces existen valores α, c 1,..., c m C y naturales l 1,..., l m 1 tales que p(x) = α(x c 1 ) l 1...(x c m ) lm Demostración. Como gr(p) 1, utilizamos el Teorema Fundamental del Álgebra para encontrar r 1 C que es raíz de p. Entonces podemos escribir p(x) = q 1 (x)(x r 1 ) para algún q 1 C[x]. El grado de q 1 es gr(q 1 ) = gr(p) gr(x r 1 ) = n 1. Si n 1 1, entonces podemos seguir aplicando el Teorema Fundamental, esta vez a q 1. Así, existe una raíz r 2 C de q 1, y podemos escribir p(x) = q 2 (x)(x r 1 )(x r 2 ) para algún q 2 C[x]. Si continuamos iterando este proceso mientras gr(q i ) 1, llegamos a una descomposición p(x) = q n (x)(x r 1 )(x r 2 )...(x r n ) donde r 1,...,r n C y q n C[x] es de grado 0. Por lo tanto, q n (x) = α donde α es un valor fijo en C. Continúa...

Teorema Fundamental del Álgebra Semana 14 [13/19] Factorización de un polinomio en C[x] Continuación demostración. Para terminar de escribir la descomposición deseada, notamos que los valores r i no necesariamente son distintos, así que los agrupamos de modo que El valor c 1 C aparece l 1 veces. El valor c 2 C aparece l 2 veces.... El valor c m C aparece l m veces. Así p(x) = α(x c 1 ) l 1...(x c m ) lm Notar que si existe una demostración del tipo mencionado, entonces gr(p) = l 1 +... + l m Queda como ejercicio para el lector demostrar que el complejo α que aparece en la descomposición de p es exactamente su coeficiente a n.

Acerca de las raíces complejas Semana 14 [14/19] Raíces complejas Proposición Sea p Ê[x], y sea z C una raíz de p. Entonces, el conjugado z también es raíz de p. Demostración. Escribamos donde a k Ê para k = 0,...,n. Se tiene que n p(x) = a k x k k=0 n p( z) = a k ( z) k k=0 Observemos que, como a k Ê, entonces a k = a k, y así a k ( z) k = a k z k (k = 0,...,n) Reemplazando esta expresión, obtenemos p( z) = n a k z k = k=0 n a k z k = p(z) k=0 Como z es raíz de p, entonces p(z) = 0, y así p( z) = 0 = 0, con lo que z también es raíz de p.

Acerca de las raíces complejas Semana 14 [15/19] Factorización de un polinomio en Ê[x] Proposición Sea p un polinomio con coeficientes en Ê[x], tal que gr(p) = n 1. Entonces existen valores α, c 1,..., c m, a 1, b 1, a 2, b 2... a s, b s Ê tales que p(x) = α(x c 1 )(x c 2 )...(x c m )(x 2 + a 1 x + b 1 )(x 2 + a 2 x + b 2 )...(x 2 + a s x + b s ). En donde c 1,...,c m son las raíces reales de p y x 2 + a 1 x + b 1,..., x 2 + a s x + b s son polinomios sin raíces reales (con posible repetición). α es el coeficiente a n de p. Demostración. La demostración se basa en la descomposición anterior, salvo que consideramos primero todas las raíces reales de p (posiblemente repetidas), obteniendo: p(x) = (x c 1 )(x c 2 )...(x c m )q(x). Luego por cada raíz compleja z C \ Ê de p, por la proposición anterior (ya que p Ê[x]) sabemos que z es también raíz de p. Así, (x z)(x z) divide a p. Pero esto no nos sirve para factorizar a p en Ê[x]. Sin embargo: (x z)(x z) = x 2 (z + z)x + zz = x 2 2Re(z) x + z 2 Ê[x]. Definimos entonces a i = 2Re(z) y b i = z 2, en cada paso (con posible repetición). Obtenemos así la descomposición. Queda como ejercicio para el lector el formalizar esta demostración.

Algunos resultados útiles Semana 14 [16/19] a coeficientes enteros Proposición Sea p Ê[x], con coeficientes a 0,...,a n. Si r É (se asume que r y s son primos relativos) es una raíz s de p, entonces: r a 0 s a n. Demostración. Como r es raíz de p, luego s ( r ( r ) n ( r ) n 1 ( r p = a n + an 1 + + a1 + a 0 = 0 s) s s s) r ( ) a n r n 1 + a n 1 sr n 2 + + s n a 1 = a0 s n. De aquí, r divide a a 0 s n. Sin embargo, como r y s son primos relativos, r y s n también lo son. Luego necesariamente r a 0. Queda propuesto como ejercicio probar que s a n.

Algunos resultados útiles Semana 14 [17/19] Aplicación El siguiente corolario es útil para explorar cuáles son las raíces enteras de un polinomio mónico con coeficientes enteros. Corolario Sea p Ê[x] mónico, con coeficientes a 0,...,a n 1. Entonces toda raíz racional de p es entera y divide a a 0. Ejemplo Consideremos el polinomo (mónico y con coeficientes enteros) p(x) = x 3 + 6x 2 3x 4. Gracias al resultado anterior, sabemos que toda raíz x É de p, debe ser un entero y ser divisor de a 0 = 4. Luego, si x É es raíz de p, entonces x {±1, ±2, ±4}. Podríamos evaluar p en x = 1534 para ver si es raíz. Pero para qué? Lo anterior nos dice que eso sería tiempo perdido.

Algunos resultados útiles Semana 14 [18/19] Regla de Ruffini A continuación veremos un método para dividir un polinomio p por (x c), de manera rápida. Regla de Ruffini Sea p(x) = n k=0 a kx k Ê[x] y c Ê. Para dividir p por (x c), construimos la siguiente tabla para calcular los números b i, con i {0,... n 1}: c a n a n 1 a 1 a 0 b n 1 = a n En el paso i 1, multiplicamos b i+1 por c y sumamos el resultado a a i+1. O sea b i = a i+1 + b i+1 c. a n a n 1 a 1 a 0 c b n 1 c b 1 c b 0 c b n 1 = a n b n 2 = a n 1 + b n 1 c b 0 = a 1 + b 1 c r = a 0 + b 0 c Luego, el cuociente de dividir p por (x c) es: q(x) = b n 1 x n 1 + b n 2 x n 2 + + b 1 x + b 0. Además, el último término calculado en la tabla es el resto de dividir p por (x c): O sea, r(x) = r = a 0 + b 0 c. p(x) = q(x)(x c) + r(x). Queda propuesto para el lector probar que el método recién presentado funciona.

Algunos resultados útiles Semana 14 [19/19] Algoritmo de Horner Notemos que gracias al Teorema del Resto, el resto r entregado por la Regla de Ruffini, es la evaluación de p en c. Así, la Regla de Ruffini puede ser usada para estudiar las raíces reales de un polinomio en Ê[x]. Este uso es denominado Algoritmo de Horner. Ejemplo Consideremos el polinomio anterior: p(x) = x 3 + 6x 2 3x 4 (aunque la Regla de Ruffini no requiere que sea mónico). Dividamos p por (x 1): 1 6-3 -4 1 1 7 4 1 7 4 0 Es decir p(x) = (x 2 + 7x + 4)(x 1) + 0 y luego x = 1 es raíz de p. Sin embargo, al dividir por (x 2): 1 6-3 -4 2 2 16 26 1 8 13 22 Luego p(x) = (x 2 + 8x + 13)(x 2) + 22 y por lo tanto p(2) = 22 (x = 2 no es raíz de p).