Las reglas se parecen un poco a las vistas relacionales. Especifican relaciones virtuales que no están

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Las reglas se parecen un poco a las vistas relacionales. Especifican relaciones virtuales que no están"

Transcripción

1 BASES DE DATOS DEDUCTIVAS Introducción: El interés de los Sistemas de Gestión de Bases de Datos Deductivas tiende a incrementarse conforme se amplía su campo de aplicación (Gestión, Sistemas Expertos). Los estudios relativos a tales sistemas han comenzado a realizarse hace algunos años, inspirándose inicialmente en las técnicas desarrolladas en Inteligencia Artificial en el marco de los sistemas Pregunta Respuesta, adaptándolas a las limitaciones específicas de las Bases de Datos. Un SGBD deductivo es un Sistema que permite derivar nuevas informaciones a partir de las introducidas explícitamente en la Base por el usuario. Este maneja la perspectiva según la teoría de las demostraciones de una base de datos, y en particular es capaz de deducir hechos a partir de la base de datos extensional, es decir, las relaciones base, aplicando a esos hechos axiomas deductivos o reglas de inferencias especificados. Esta función deductiva se realiza mediante la adecuada explotación de ciertos conocimientos generales relativos a las informaciones de la Base. Definición: Un sistema de bases de datos que tenga la capacidad de definir reglas con las cuales deducir o inferir información adicional a partir de los hechos almacenados en las bases de datos se llama Sistema de Bases de Datos Deductivas. Puesto que parte de los fundamentos teóricos de algunos sistemas de ésta especie es la lógica matemática, a menudo se les denomina Bases de Datos Lógicas. Una base de datos deductiva es, en esencia, un programa lógico; mapeo de relaciones base hacia hechos, y reglas que son usadas para definir nuevas relaciones en términos de las relaciones base y el procesamiento de consultas. Los sistemas Bases de Datos Deductivas intentan modificar el hecho de que los datos requeridos residan en la memoria principal (por lo que la gestión de almacenamiento secundario no viene al caso) de modo que un SGBD se amplíe para manejar datos que residen en almacenamiento secundario. En un sistema de Bases de Datos Deductivas por lo regular se usa un lenguaje declarativo para especificar reglas. Con lenguaje declarativo se quiere decir un lenguaje que define lo que un programa desea lograr, en vez de especificar los detalles de cómo lograrlo. Una máquina de inferencia (o mecanismo de deducción) dentro del sistema puede deducir hechos nuevos a partir de la base de datos interpretando dichas reglas. El modelo empleado en las Bases de Datos Deductivas está íntimamente relacionado con el modelo de datos relacional, y sobre todo con el formalismo del cálculo relacional. También esta relacionado con el campo de la programación lógica y el lenguaje Prolog. Los trabajos sobre Bases de Datos Deductivas basados en lógica han utilizado Prolog como punto de partida. Con un subconjunto de Prolog llamado Datalog se definen reglas declarativamente junto con un conjunto de relaciones existentes que se tratan como literales en el lenguaje. Aunque la estructura gramatical se parece a la de Prolog, su semántica operativa (esto es, la forma como debe ejecutarse un programa en Datalog) queda abierta. Una Base de Datos Deductiva utiliza dos tipos de especificaciones: hechos y reglas. Los hechos se especifican de manera similar a como se especifican las relaciones, excepto que no es necesario incluir los nombres de los atributos. Recordemos que una tupla en una relación describe algún hecho del mundo real cuyo significado queda determinado en parte por los nombres de los atributos. En una Base de Datos Deductiva, el significado del valor del atributo en una tupla queda determinado exclusivamente por su posición dentro de la tupla. Las reglas se parecen un poco a las vistas relacionales. Especifican relaciones virtuales que no están 1

2 almacenadas realmente, pero que se pueden formar a partir de los hechos aplicando mecanismos de inferencia basados en las especificaciones de las reglas. La principal diferencia entre las reglas y las vistas es que en las primeras puede haber recursión y por tanto pueden producir vistas que no es posible definir en términos de las vistas relacionales estándar. Las BDD buscan derivar nuevos conocimientos a partir de datos existentes proporcionando interrelaciones del mundo real en forma de reglas. Utilizan mecanismos internos para la evaluación y la optimización. Características: Una Base de Datos Deductiva debe contar al menos con las siguientes características: Tener la capacidad de expresar consultas por medio de reglas lógicas. Permitir consultas recursivas y algoritmos eficientes para su evaluación. Contar con negaciones estratificadas. Soportar objetos y conjuntos complejos. Contar con métodos de optimización que garanticen la traducción de especificaciones dentro de planes eficientes de acceso. Como característica fundamental de una Base de Datos Deductiva es la posibilidad de inferir información a partir de los datos almacenados, es imperativo modelar la base de datos como un conjunto de fórmulas lógicas, las cuales permiten inferir otras fórmulas nuevas. Reglas de Deducción: Las relaciones de una Base de Datos Relacional se define por intención y por extensión. Para una Base particular, la intención de las relaciones que la constituyen se define por un conjunto de leyes generales, mientras que cada estado de la Base proporciona una extensión (conjunto de tuplas) para cada una de las relaciones. Las tuplas constituyen, de hecho, informaciones elementales. En un SGBD convencional, todas las leyes generales se explotan para mantener la coherencia de las informaciones elementales; a estas leyes se las denomina entonces restricciones de integridad. Por el contrario, en un Sistema deductivo, algunos (o todas) de estas leyes se utilizan como reglas de deducción para deducir nuevas informaciones elementales a partir de las introducidas explícitamente en la Base. Por ejemplo: se considera una Base de Datos en la que se detallan los lazos de parentesco entre individuos, interesándose particularmente por las relaciones PADRE y ABUELO. Entre las leyes generales que conciernen a estas dos relaciones, se considera la ley 1 que expresa Todo padre de un padre es un abuelo, y se supone que, en un momento dado, el estado de la Base es tal que las informaciones elementales relativas a las relaciones PADRE y ABUELO son las siguientes: PADRE P H ABUELO A N Juan Pablo Roberto Pedro Pablo Jaime Si la ley 1 se considera como una regla de coherencia, este estado de la Base debe considerarse no válido, ya que la vulnera. En efecto, la extensión de ABUELO no contiene la tupla (Juan, Jaime), siendo así que Juan es el padre de Pablo y Pablo es el padre de Jaime. En este caso se ha hecho (implícitamente) la hipótesis de que la tupla que satisface (en un momento dado) la relación ABUELO son exactamente las que aparecen en su extensión. Si se prescinde de este supuesto se puede, por el contrario, suponer que las tuplas que satisfacen la relación ABUELO no son sólo las que aparecen de modo explícito en su extensión, sino también las que 2

3 pueden deducirse, mediante la ley 1, de las informaciones relativas a PADRE; usando así 1 como regla de deducción. Problemas asociados a las reglas de deducción: La explotación de las reglas de deducción en un SGBD plantea algunos problemas: Encontrar criterios que permitan, para una ley dada; decidir su utilización como regla de deducción o como regla de coherencia. Replantear correctamente, en un contexto deductivo, las convenciones habituales en una base de datos (representaciones de informaciones negativas, eficacia de las respuestas a las interrogaciones, cierre del dominio). Desarrollar procedimientos eficaces de deducción Utilización de las reglas de deducción: La explotación de las reglas de deducción pueden analizarse de dos formas. La primera, consiste en su uso en fase de interrogación, buscando así informaciones deducibles implícitas. Una segunda forma consiste en su uso en fase de modificación, cuando se añaden informaciones deducibles. Según se utilicen en el primer o el segundo modo, las reglas se denominan de derivación o de generación. Interpretación de reglas: Existen dos alternativas principales para interpretar el significado teórico de las reglas: por la teoría de demostración y por la teoría de modelos. En los sistemas prácticos, es mecanismo de inferencia que tiene el sistema, define la interpretación exacta, que pudiera no coincidir con ninguna de las dos interpretaciones teóricas. El mecanismo de inferencia es un procedimiento computacional y por tanto provee una interpretación computacional del significado de las reglas. Una interpretación es la llamada interpretación de reglas por la teoría de demostraciones. En ella se considerarán los hechos y las reglas como enunciados verdades o axiomas. Los axiomas base no contienen variables. Los hechos son axiomas base que se dan por ciertos. Las reglas se llaman axiomas deductivos, ya que pueden servir para deducir hechos nuevos. Con los axiomas deductivos se pueden construir demostraciones que deriven hechos nuevos a partir de los ya existentes. Los axiomas deductivos, junto con las restricciones de integridad constituyen lo que en ocasiones se denomina base de datos intencional, y la base de datos extensional junto con la intencional constituyen lo que suele llamarse Base de Datos Deductivas; aunque en realidad, quien se encarga de las deducciones es el DBMS, no la base de datos. La interpretación por la teoría de demostraciones ofrece un enfoque por procedimientos o computacional para calcular una respuesta a la consulta Datalog. Al proceso de demostrar si un determinado hecho (teorema) se cumple se le conoce también como demostración de teoremas. El segundo tipo de demostración se llama interpretación por la teoría de modelos. Aquí, dado un dominio finito o infinito de valores constantes, se le asigna a un predicado todas las combinaciones posibles de valores como argumentos. Después se debe determinar si el predicado es verdadero o falso. En general, basta con especificar las combinaciones de argumentos que hacen que el predicado sea verdadero, y decir que todas las demás combinaciones hacen que sean falso. Si esto se hace con todos los predicados, se habla de una interpretación del conjunto de predicados. A una interpretación se le llama modelo para un conjunto específico de reglas si esas reglas siempre se cumplen en esa interpretación; es decir, para cualesquiera valores que se asignen a las variables de las reglas, la cabeza de reglas es verdadera cuando sustituimos los valores de verdad asignados a los predicados en el 3

4 cuerpo de las reglas según esa interpretación. De este modo, siempre que se aplica una sustitución (enlace) a las variables de las reglas, si todos los predicados del cuerpo de un arreglo son verdaderos en esa interpretación, el predicado de la cabeza de la regla también debe ser verdadero. Cabe señalar que una regla se viola si un determinado enlace de constantes en a las variables hace verdaderos todos los predicados del cuerpo de la regla, pero hace que el predicado de la cabeza de la regla sea falso. Seguridad de los programas en Datalog en las BDD: Se dice que un programa o una regla es seguro se genera un conjunto finito de hechos. El problema teórico de determinar si un conjunto de reglas es o no seguro es indecidible. Sin embargo, es posible determinar la seguridad de formas restringidas de reglas. Se obtendrán reglas inseguras, que puedan general un número infinito de hecho, cuando una de las variables de la regla pueda abarcar un dominio infinito de valores y esa variable no esté limitada a abarcar una relación finita. Para definir reglas seguras de manera más formal, se utiliza el concepto de variable limitada. Una variable X es limitada en una regla si: a) aparece en un predicado normal (no integrado) en el cuerpo de la regla; b) aparece en un predicado de la forma X = c o c = X o (c1<= X y X <= c2) en el cuerpo de la regla, donde c, c1 y c2 son valores constantes; o c) aparece en predicado de la forma X = Y o Y = X en el cuerpo de la regla, donde Y es una variable limitada. Se dice que una regla es segura si todas sus variables son limitadas. Sistema LDL: El proyecto Logic Data Languaje (Lenguaje Lógico de Dato: LDL) de Microelectronics and Computer Corporation (MCC) se inició en 1984 con dos objetivos primarios: Crear un sistema que extendiera el modelo relacional y a la vez aprovechara algunas de las características positivas de un SGBDR (Sistema de Gestión de Base de Datos Relacionales). Mejorar la funcionalidad de un SGBD de modo que operara como un SGBD deductivo y además permitiera la creación de aplicaciones de propósito general. Ahora el sistema resultante es un SGBD deductivo que se encuentra en el mercado. Aplicaciones de LDL : El sistema LDL se ha utilizado en los siguientes dominios de aplicación: Modelado de empresas: este dominio implica modelar la estructura, los procesos y las restricciones dentro de una empresa. Los datos relacionados con ella pueden resultar en modelo ER extendido que contiene cientos de entidades y vínculos y miles de atributos. Es posible desarrollar varias aplicaciones útiles para los diseñadores de nuevas aplicaciones (así como para los gerentes) a partir de esta metabase de datos, que contiene información tipo diccionario a cerca de toda la empresa. Prueba de hipótesis o dragado de datos: este dominio implica formular una hipótesis, traducirla a un conjunto de reglas LDL y una consulta, y luego ejecutar la consulta contra los datos para probar la hipótesis. El proceso se repite reformulando las reglas y la consulta. Esto se ha aplicado al análisis de datos de genoma en el campo de la microbiología. El dragado de datos consiste en identificar las secuencias de DNA a partir de autorradiografías digitalizadas de bajo nivel obtenidas de experimentos con bacterias E. coli. Reutilización de software: el grueso del software para una aplicación se desarrolla en código estándar por procedimientos, y una pequeña fracción se basa en reglas y se codifica en LDL. Las reglas dan origen a una base de conocimientos que contienen los siguientes elementos: Una definición de cada módulo C empleado en el programa. 4

5 Un conjunto de reglas que define las formas en que los módulos pueden exportar / importar funciones, restricciones, etc. La base de conocimientos puede servir para tomar decisiones referentes a la reutilización de subconjuntos del software. Los módulos pueden recombinarse para satisfacer tarea específicas, en tanto se satisfagan las reglas pertinentes. Se está experimentando con esto en el software bancario. Hardware: Físicamente, las bases de datos deductivas casi siempre se almacenan en medios de acceso directo, por lo regular discos magnéticos de cabeza móvil, aunque en algunos sistemas pudieran utilizarse otros medios (tambores, discos ópticos) en vez de discos o además de discos. Los tiempos de acceso a disco son mucho más largos que los de acceso a la memoria principal: 400 milisegundos o más para un disco flexible, y 30 milisegundos o menos para un disco "rápido" grande. El acceso a la memoria principal será con toda probabilidad cuatro o cinco órdenes de magnitud más rápido que el acceso a disco en un sistema dado. Por lo tanto, un objetivo prioritario de desempeño en sistemas de Bases de Datos Deductivas es reducir al mínimo el número de accesos a disco (E/S a disco). Cualquier organización de los datos en el disco se denomina estructura de almacenamiento, la cual debe ser elegido el proceso de diseño, a esto se le conoce como diseño físico de Bases de Datos Deductivas. Algunas de las estructuras de almacenamiento utilizadas con mayor frecuencia en los sistemas actuales son la indexación, hash, cadenas de apuntadores y técnicas de compresión. Se han hecho varias sugerencias alternativas para crear hardware especial enfocado a las funciones de gestión de datos. Estas alternativas cuyo nombre genérico es máquinas (o computadores) de Bases de Datos, incluyen procesadores dorsales, dispositivos inteligentes, sistemas multiprocesadores, sistema de memoria asociativa y procesadores de propósito general. Arquitectura de una SABD Deductivo: A continuación se muestra la arquitectura de una SABD Deductivo con su dos componentes fundamentales: un módulo deductivo y un SABD relacional. Reglas generales hechos elementales (datos implícitos) (datos explícitos) SABD Deductivo Conclusión: Se ha presentado una introducción a una rama relativamente nueva de la gestión de Bases de Datos: los Sistemas de Bases de Datos Deductivas. Este campo acusa la influencia de los lenguajes de programación de lógica, sobre todo de Prolog. Un subconjunto de Prolog, llamado Datalog que contiene cláusulas de Horn libres de funciones, es el que se usa primordialmente como fundamento de los trabajos con Bases de Datos Deductivas en la actualidad. Una cláusula de Horn es una fórmula en la lógica de primer orden que se, que por las propiedades de las conectivas lógicas, es equivalente a la siguiente fórmula: B1 "... " Bn! A 5

6 la cual será denotada de la siguiente forma: A! B1 "... " Bn Y se llama también cláusula de bases de datos. El área de las Bases de Datos Deductivas todavía está en una etapa experimental. Su adopción por parte de la industria impulsará su desarrollo. Bibliografía González Alvarado, Carlos. Sistema de Bases de Datos. Editorial Tecnológica de Costa Rica, Primera Edición, Elmasri, Ramez. Sistemas de Bases de Datos. Editorial Addison Wesley Iberoamericana S A. Segunda Edición, Módulo Deductivo SABD Relacional 6

Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño

Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño Unidad II: Diseño de Bases de Datos y el modelo E-R. 2.1 El Proceso de Diseño El proceso de diseño para una base de datos consta básicamente de 7 pasos, los cuáles se describen en la siguiente imagen.

Más detalles

El conjunto de conocimientos científicos y técnicos que hacen posible la resolución de forma automática de problemas por medio de las computadoras.

El conjunto de conocimientos científicos y técnicos que hacen posible la resolución de forma automática de problemas por medio de las computadoras. 1 Conceptos Generales 1.1 Definición de Informática Una posible definición de informática podría ser: El conjunto de conocimientos científicos y técnicos que hacen posible la resolución de forma automática

Más detalles

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin

Más detalles

TEORIA DE BASES DE DATOS. M. Sc. Cristina Bender Lic. Diana Gázquez

TEORIA DE BASES DE DATOS. M. Sc. Cristina Bender Lic. Diana Gázquez TEORIA DE BASES DE DATOS Docentes: Dra. Claudia Deco M. Sc. Cristina Bender Lic. Diana Gázquez OBJETIVO DE LA MATERIA Capacitar al alumno en los conocimientos fundamentales, teóricos y prácticos, necesarios

Más detalles

Estrategias Didácticas B-Learning: ÁLGEBRA RELACIONAL

Estrategias Didácticas B-Learning: ÁLGEBRA RELACIONAL Estrategias Didácticas B-Learning: ÁLGEBRA RELACIONAL Mg. Guillermo Bernardo Durán González Guillermo.duran.g@gmail.com Modelo de diseño instruccional, basado en la modalidad semi-presencial b-learning,

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual

Introducción. Ciclo de vida de los Sistemas de Información. Diseño Conceptual Introducción Algunas de las personas que trabajan con SGBD relacionales parecen preguntarse porqué deberían preocuparse del diseño de las bases de datos que utilizan. Después de todo, la mayoría de los

Más detalles

Unidad II: Administración de Procesos y del procesador

Unidad II: Administración de Procesos y del procesador Unidad II: Administración de Procesos y del procesador 2.1 Concepto de proceso Un proceso no es más que un programa en ejecución, e incluye los valores actuales del contador de programa, los registros

Más detalles

GUÍAS. Módulo de Diseño de software SABER PRO 2013-2

GUÍAS. Módulo de Diseño de software SABER PRO 2013-2 GUÍAS Módulo de Diseño de software SABER PRO 2013-2 GUÍAS Módulo de diseño en ingeniería El diseño de productos tecnológicos (artefactos, procesos, sistemas e infraestructura) está en el centro de la naturaleza

Más detalles

2.1 Planificación del Alcance

2.1 Planificación del Alcance 2. Gestión del Alcance del Proyecto La Gestión del Alcance del Proyecto incluye los procesos necesarios para asegurarse que el incluya todo el trabajo requerido, y sólo el trabajo requerido, para completar

Más detalles

SISTEMA DE GESTIÓN DE BASE DE DATOS (Database Management System (DBMS))

SISTEMA DE GESTIÓN DE BASE DE DATOS (Database Management System (DBMS)) SISTEMA DE GESTIÓN DE BASE DE DATOS (Database Management System (DBMS)) Los sistemas de gestión de bases de datos son un tipo de software muy específico, dedicado a servir de interfaz entre la base de

Más detalles

2. Proceso de creación de bases de datos

2. Proceso de creación de bases de datos 2. Proceso de creación de bases de datos Contenidos 2.1 Ciclo de vida de un sistema de aplicación de bases de datos 2.2.1 El proceso de diseño 2.2.2 Conceptos y etapas de un método de diseño 2.2.3 Características

Más detalles

TALLER No. 1 Capitulo 1: Conceptos Básicos de Bases de datos

TALLER No. 1 Capitulo 1: Conceptos Básicos de Bases de datos TALLER No. 1 Capitulo 1: Conceptos Básicos de Bases de datos 1. La base de datos se puede considerar como una unificación de varios archivos de datos independientes, cuyo propósito básico es evitar la

Más detalles

Plan de estudios Maestría en Sistemas de Información y Tecnologías de Gestión de Datos

Plan de estudios Maestría en Sistemas de Información y Tecnologías de Gestión de Datos Plan de estudios Maestría en Sistemas de Información y Tecnologías de Gestión de Datos Antecedentes y Fundamentación Un Sistema de Información es un conjunto de componentes que interactúan entre sí, orientado

Más detalles

Operaciones en el Modelo Relacional. Relacional. Relacional. Índice. Lenguajes de Consulta

Operaciones en el Modelo Relacional. Relacional. Relacional. Índice. Lenguajes de Consulta Operaciones en el Modelo Relacional Bases de Datos Ingeniería a Técnica T en Informática de Sistemas El interés de los usuarios de las bases de datos se suele centrar en realizar consultas (contestar a

Más detalles

ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS

ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS Base de Datos ELEMENTO I INTRODUCCION A LOS SISTEMAS DE BASES DE DATOS Una base de datos es un conjunto de elementos de datos que se describe a sí mismo, con relaciones entre esos elementos, que presenta

Más detalles

Academia: Ingeniería Aplicada. Asignatura: Programación Web. Planificacion De Aplicaciónes Web. Profesora: Xochitl Raquel Wong Cohen Grupo: 5201

Academia: Ingeniería Aplicada. Asignatura: Programación Web. Planificacion De Aplicaciónes Web. Profesora: Xochitl Raquel Wong Cohen Grupo: 5201 Tecnológico De Estudios Superiores De Ecatepec División De Ingeniería En Sistemas Computacionales Academia: Ingeniería Aplicada Asignatura: Programación Web Integrantes: Planificacion De Aplicaciónes Web

Más detalles

Planificación, Administración n de Bases de Datos. Bases de Datos. Ciclo de Vida de los Sistemas de Información. Crisis del Software.

Planificación, Administración n de Bases de Datos. Bases de Datos. Ciclo de Vida de los Sistemas de Información. Crisis del Software. Planificación, n, Diseño o y Administración n de Crisis del Software Proyectos software de gran envergadura que se retrasaban, consumían todo el presupuesto disponible o generaban productos que eran poco

Más detalles

1 La Resolución de Problemas utilizando la Computadora

1 La Resolución de Problemas utilizando la Computadora La Resolución de Problemas utilizando la Computadora Lissette Alvarez Abril-Julio, 2004 El Computador es una máquina que no puede trabajar por si sola, únicamente realiza aquellas órdenes que el hombre

Más detalles

Institución Educativa Inem Felipe Pérez de Pereira 2012 Estrategia taller. AREA: Sistemas de información Taller 1 2 3 4 Previsto 1 2 3 4 5 6 7 8 9 10

Institución Educativa Inem Felipe Pérez de Pereira 2012 Estrategia taller. AREA: Sistemas de información Taller 1 2 3 4 Previsto 1 2 3 4 5 6 7 8 9 10 Grado 10º Tiempo (semanas) GUÍA DE FUNDAMENTACIÓN Institución Educativa AREA: Sistemas de información Taller 1 2 3 4 Previsto 1 2 3 4 5 6 7 8 9 10 Fecha Real 1 2 3 4 5 6 7 8 9 10 Área/proyecto: es y Mantenimiento

Más detalles

2. Conceptos básicos Abstracción La abstracción como un proceso mental natural La abstracción en el desarrollo de software

2. Conceptos básicos Abstracción La abstracción como un proceso mental natural La abstracción en el desarrollo de software 2. Conceptos básicos Hoy en día las aplicaciones son demasiado voluminosas y complejas para ser manejadas por una sola persona. Las aplicaciones de software son complejas porque modelan la complejidad

Más detalles

Tema 6: Teoría de la Normalización

Tema 6: Teoría de la Normalización Tema 6: Teoría de la Normalización 1. Introducción Si definimos una base de datos como; una colección de información estructurada, referente a objetos y hechos de la realidad, y almacenados en un ordenador

Más detalles

Orden y estructuras algebraicas mediante nuevas tecnologías

Orden y estructuras algebraicas mediante nuevas tecnologías Orden y estructuras algebraicas mediante nuevas tecnologías Miguel A. García-Muñoz, Carmen Ordóñez y Juan F. Ruiz Departamento de Matemáticas (Área de Álgebra). Universidad de Jaén. Campus Las Lagunillas

Más detalles

Lógica Proposicional IIC2212. IIC2212 Lógica Proposicional 1 / 56

Lógica Proposicional IIC2212. IIC2212 Lógica Proposicional 1 / 56 Lógica Proposicional IIC2212 IIC2212 Lógica Proposicional 1 / 56 Inicio de la Lógica Originalmente, la Lógica trataba con argumentos en el lenguaje natural. Ejemplo Es el siguiente argumento válido? Todos

Más detalles

Diagramas del UML. A continuación se describirán los diagramas más comunes del UML y los conceptos que representan: Diagrama de Clases

Diagramas del UML. A continuación se describirán los diagramas más comunes del UML y los conceptos que representan: Diagrama de Clases El UML está compuesto por diversos elementos gráficos que se combinan para conformar diagramas. Debido a que el UML es un lenguaje, cuenta con reglas para combinar tales elementos. La finalidad de los

Más detalles

BASE DE DATOS Heterogéneas

BASE DE DATOS Heterogéneas Arquitecturas de los sistemas de base de datos: La arquitectura de un sistema de bases de datos está influida en gran medida por el sistema informático subyacente en el que se ejecuta, en concreto por

Más detalles

RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS

RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS AUTORÍA SERGIO BALLESTER SAMPEDRO TEMÁTICA MATEMÁTICAS ETAPA ESO, BACHILLERATO Resumen En este artículo comienzo definiendo proposición y los distintos

Más detalles

PROGRAMACIÓN ORIENTADA A OBJETOS

PROGRAMACIÓN ORIENTADA A OBJETOS PROGRAMACIÓN ORIENTADA A OBJETOS Clase 1. Introducción Profesor: Diego Sánchez Gómez Introducción a la programación orientada a objetos 1. Introducción a la programación orientada a objetos 2. Las clases

Más detalles

Segmentos de Operación

Segmentos de Operación NIIF 8 Norma Internacional de Información Financiera 8 Segmentos de Operación Esta versión incluye las modificaciones resultantes de las NIIF emitidas hasta el 17 de enero de 2008. La NIC 14 Información

Más detalles

Guía Docente 2015/2016

Guía Docente 2015/2016 Guía Docente 2015/2016 Trabajo Fin de Grado Final Project Grado en Ingeniería Informática Modalidad Presencial Índice Trabajo Fin de Grado... 3 Breve descripción de la asignatura... 3 Brief Description...

Más detalles

A. Subcampos basados en el contenido.

A. Subcampos basados en el contenido. ARTIFICIAL INTELLIGENCE. AN ILLUSTRATIVE OVERVIEW Aaron Sloman School of Computer Science The University of Birmingham http://www.cs.bham.ac.uk/~axs/courses.ai.html Las áreas de aplicación de la Inteligencia

Más detalles

Carrera: Clave de la asignatura: SATCA: 2-2-4

Carrera: Clave de la asignatura: SATCA: 2-2-4 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: SATCA: Bases de Datos Distribuidas Ingeniería Sistemas Computacionales TIC-1302 2-2-4 2. PRESENTACION Caracterización

Más detalles

Clase 09. La capa lógica. Mg. A. G. Stankevicius. Segundo Cuatrimestre

Clase 09. La capa lógica. Mg. A. G. Stankevicius. Segundo Cuatrimestre Ingeniería de Aplicaciones para la Web Semántica Clase 09 La capa lógica Mg. A. G. Stankevicius Segundo Cuatrimestre 2005 Copyright 2 Copyright 2005 A. G. Stankevicius. Se asegura la libertad para copiar,

Más detalles

Historia y Filosofía de la Lógica

Historia y Filosofía de la Lógica Historia y Filosofía de la Lógica Pablo Cobreros pcobreros@unav.es Tema 1: El objeto de la lógica La lógica proposicional clásica El objeto de la lógica Consecuencia lógica La lógica proposicional El lenguaje

Más detalles

COMPETENCIAS COMUNICATIVAS PARA EL DESARROLLO EMPRESARIAL

COMPETENCIAS COMUNICATIVAS PARA EL DESARROLLO EMPRESARIAL COMPETENCIAS COMUNICATIVAS PARA EL DESARROLLO EMPRESARIAL PATRICIA ANDRADE DEL CID* Ensayo sobre el tema: Comunicación empresarial y responsabilidad social Resumen: La vinculación de la Teoría de la Comunicación

Más detalles

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos

Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Unidad I: Sistemas Gestores de Bases de Datos. 1.1 Objetivo de las Bases de Datos Redundancia e inconsistencia de datos: Puesto que los archivos que mantienen almacenada la información son creados por

Más detalles

GESTIÓN Y CONTROL DEL DESARROLLO E IMPLANTACIÓN DE APLICACIONES

GESTIÓN Y CONTROL DEL DESARROLLO E IMPLANTACIÓN DE APLICACIONES Ciclo Formativo: Módulo: Desarrollo de Aplicaciones Informáticas Análisis y Diseño Detallado de Aplicaciones Informáticas de Gestión Unidad de Trabajo 10: GESTIÓN Y CONTROL DEL DESARROLLO E IMPLANTACIÓN

Más detalles

RECOMENDACIONES DE INVESTIGACIÓN FUTURA.

RECOMENDACIONES DE INVESTIGACIÓN FUTURA. Capítulo 6 CONCLUSIONES Y RECOMENDACIONES DE INVESTIGACIÓN FUTURA. 212 METODOLOGÍA PARA LA DETECCIÓN DE REQUERIMIENTOS SUBJETIVOS EN EL DISEÑO DE PRODUCTO. CAPÍTULO 6. CONCLUSIONES, APORTACIONES Y RECOMENDACIONES.

Más detalles

ANEXO A LLAMADO A INTERESADOS: PRODUCTOS EDUCATIVOS DESARROLLADOS O A DESARROLLAR PARA TABLETS CON SISTEMA ANDROID

ANEXO A LLAMADO A INTERESADOS: PRODUCTOS EDUCATIVOS DESARROLLADOS O A DESARROLLAR PARA TABLETS CON SISTEMA ANDROID ANEXO A LLAMADO A INTERESADOS: PRODUCTOS EDUCATIVOS DESARROLLADOS O A DESARROLLAR PARA TABLETS CON SISTEMA ANDROID A. OBJETO DEL LLAMADO Centro Ceibal convoca a interesados en presentar productos educativos

Más detalles

Construcción y Pruebas de Software

Construcción y Pruebas de Software UNIVERSIDAD DE CARABOBO Facultad Experimental de Ciencias y Tecnología Departamento de Computación Construcción y Pruebas de Software Elaborado por: Gustavo Bazán Francisco Rosas Bárbula, Junio de 2012

Más detalles

Desarrollo de un Sistema de Gestión de Proyectos mediante el framework GWT

Desarrollo de un Sistema de Gestión de Proyectos mediante el framework GWT Proyecto de Fin de Carrera Universidad Politécnica de Valencia Escuela Técnica Superior de Informática Desarrollo de un Sistema de Gestión de Proyectos mediante el framework GWT Realizado por: Dirigido

Más detalles

SISTEMAS DE INFORMACION, ORGANIZACIONES Y PROCESOS DE NEGOCIOS

SISTEMAS DE INFORMACION, ORGANIZACIONES Y PROCESOS DE NEGOCIOS SISTEMAS DE INFORMACION, ORGANIZACIONES Y PROCESOS DE NEGOCIOS Relación entre Organizaciones y S.I. Pueden los Sistemas de Información aplanar las organizaciones reduciendo el numero de niveles que tienen?

Más detalles

UNIDAD I: LÓGICA PROPOSICIONAL

UNIDAD I: LÓGICA PROPOSICIONAL UNIDAD I: LÓGICA PROPOSICIONAL ASIGNATURA: INTRODUCCIÓN A LA COMPUTACIÓN CARRERAS: LICENCIATURA Y PROFESORADO EN CIENCIAS DE LA COMPUTACIÓN DEPARTAMENTO DE INFORMÁTICA FACULTAD DE CIENCIAS FÍSICO MATEMÁTICA

Más detalles

Las bases de datos pueden dividirse en dos grupos, considerando su función primordial, a saber:

Las bases de datos pueden dividirse en dos grupos, considerando su función primordial, a saber: Base de datos De Wikipedia, la enciclopedia libre. Una base de datos es un conjunto de datos que pertenecen al mismo contexto almacenados sistemáticamente para su uso posterior. En este sentido, una biblioteca

Más detalles

GUÍA DOCENTE. Curso 2015-2016. Ingeniería Informática en Sistemas de Información Doble Grado:

GUÍA DOCENTE. Curso 2015-2016. Ingeniería Informática en Sistemas de Información Doble Grado: 1. DESCRIPCIÓN DE LA ASIGNATURA Grado: Ingeniería Informática en Sistemas de Información Doble Grado: Asignatura: Diseño de base de datos Módulo: Módulo M7: Complementos Obligatorios Específicos de Sistemas

Más detalles

Licenciatura en Computación

Licenciatura en Computación Res. CFI 21/06/2012 Res. CDC 25/09/2012 Pub. DO 31/10/2012 Plan de Estudios Licenciatura en Computación Facultad de Ingeniería 1 Antecedentes y fundamentos 1.1 Antecedentes En la Facultad de Ingeniería,

Más detalles

BASES DE DATOS. Grado en. Ingeniería Telemática Ingeniería en Sistemas de Telecomunicación Ingeniería Electrónica de Comunicaciones

BASES DE DATOS. Grado en. Ingeniería Telemática Ingeniería en Sistemas de Telecomunicación Ingeniería Electrónica de Comunicaciones BASES DE DATOS Grado en Ingeniería Telemática Ingeniería en Sistemas de Telecomunicación Ingeniería Electrónica de Comunicaciones Universidad de Alcalá Curso Académico 2014/2015 GUÍA DOCENTE Nombre de

Más detalles

UNIVERSIDAD DE GUADALAJARA

UNIVERSIDAD DE GUADALAJARA UNIVERSIDAD DE GUADALAJARA DEPARTAMENTO DE CIENCIAS COMPUTACIONALES NOMBRE DE LA MATERIA: Sistemas Expertos ACADEMIA: Técnicas Modernas de Programación CLAVE DE LA MATERIA: CC00 ÁREA DE FORMACIÓN: Optativa

Más detalles

ANEXO 2-A. Contenido del plan de estudios página 01 Anexo 2-A. 1. MATERIAS TRONCALES Asignaturas en las que la,

ANEXO 2-A. Contenido del plan de estudios página 01 Anexo 2-A. 1. MATERIAS TRONCALES Asignaturas en las que la, ANEXO 2-A. Contenido del plan de estudios página 0 Anexo 2-A Ciclo Curso () Cuatrimestre Denominación (2). MATERIAS TRONCALES Asignaturas en las que la, Universidad, en su caso, Créditos anuales (4) organiza/diversifica

Más detalles

BASE DE DATOS RELACIONALES

BASE DE DATOS RELACIONALES BASE DE DATOS RELACIONALES Una base de datos relacional es una base de datos que cumple con el modelo relacional, el cual es el modelo más utilizado en la actualidad para implementar bases de datos ya

Más detalles

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica.

Indicadores de la Variable.- Son aquellas cualidades o propiedades del objeto que pueden ser directamente observadas y cuantificadas en la práctica. Las variables de un estudio. La variable es determinada característica o propiedad del objeto de estudio, a la cual se observa y/o cuantifica en la investigación y que puede variar de un elemento a otro

Más detalles

En este capítulo se describe las herramientas, así como los procesos involucrados en el análisis y desarrollo de sistemas de información, por otro

En este capítulo se describe las herramientas, así como los procesos involucrados en el análisis y desarrollo de sistemas de información, por otro CAPITULO 5 TEORIA SOBRE ANALISIS Y DISEÑO DE SISTEMAS DE INFORMACION En este capítulo se describe las herramientas, así como los procesos involucrados en el análisis y desarrollo de sistemas de información,

Más detalles

Introducción a las bases de datos

Introducción a las bases de datos Introducción a las bases de datos Juan Ignacio Rodríguez de León Abstract Aplicaciones de los sistemas de bases de datos. Sistemas de bases de datos frente a sistemas de archivos. Visión de los datos.

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

Procedimiento para el Monitoreo y Control de Tecnologías de Información

Procedimiento para el Monitoreo y Control de Tecnologías de Información Procedimiento para el Monitoreo y Control de Tecnologías de Información DIRECCIÓN DE COORDINACIÓN TÉCNICA Y PLANEACIÓN DICIEMBRE DE 2009 PR-DCTYP-15 Índice 1. INTRODUCCIÓN.... 3 2. OBJETIVO.... 3 3. ALCANCE....

Más detalles

IAP 1003 - ENTORNOS INFORMATIZADOS CON SISTEMAS DE BASES DE DATOS

IAP 1003 - ENTORNOS INFORMATIZADOS CON SISTEMAS DE BASES DE DATOS IAP 1003 - ENTORNOS INFORMATIZADOS CON SISTEMAS DE BASES DE DATOS Introducción 1. El propósito de esta Declaración es prestar apoyo al auditor a la implantación de la NIA 400, "Evaluación del Riesgo y

Más detalles

EDITOR E INTÉRPRETE DE ALGORITMOS REPRESENTADOS EN DIAGRAMAS DE FLUJO 1 RESUMEN

EDITOR E INTÉRPRETE DE ALGORITMOS REPRESENTADOS EN DIAGRAMAS DE FLUJO 1 RESUMEN Informática Educativa Vol 11, No, 1, 1998 UNIANDES - LIDIE pp. 101-106 EDITOR E INTÉRPRETE DE ALGORITMOS REPRESENTADOS EN DIAGRAMAS DE FLUJO 1 Fabián CÁRDENAS VARELA Nelson CASTILLO IZQUIERDO Eduardo DAZA

Más detalles

Tema 1 Introducción a la Ingeniería de Software

Tema 1 Introducción a la Ingeniería de Software Tema 1 Introducción a la Ingeniería de Software Curso Ingeniería de Software UMCA Profesor Luis Gmo. Zúñiga Mendoza 1. Software En la actualidad todo país depende de complejos sistemas informáticos. Podemos

Más detalles

Práctica1. Introducción a Microsoft Access. Qué es Access?

Práctica1. Introducción a Microsoft Access. Qué es Access? Práctica1. Introducción a Microsoft Access Los sistemas de información empresariales tienen como misión el proporcionar información precisa en el momento adecuado, tanto para la gestión y realización de

Más detalles

- Bases de Datos - - Diseño Físico - Luis D. García

- Bases de Datos - - Diseño Físico - Luis D. García - Diseño Físico - Luis D. García Abril de 2006 Introducción El diseño de una base de datos está compuesto por tres etapas, el Diseño Conceptual, en el cual se descubren la semántica de los datos, definiendo

Más detalles

Objetivos del Programa

Objetivos del Programa PLAN DE ESTUDIOS DE LA LICENCIATURA EN INGENIERÍA DE SOFTWARE () Julio de 2009 Licenciatura en Ingeniería de (Plan 2009) Objetivos del Programa General Formar profesionales en el proceso de desarrollo

Más detalles

Figura 1.4. Elementos que integran a la Tecnología de Información.

Figura 1.4. Elementos que integran a la Tecnología de Información. 1.5. Organización, estructura y arquitectura de computadoras La Gráfica siguiente muestra la descomposición de la tecnología de información en los elementos que la conforman: Figura 1.4. Elementos que

Más detalles

INTRODUCCIÓN A LOS SISTEMAS GESTORES DE BASE DE DATOS

INTRODUCCIÓN A LOS SISTEMAS GESTORES DE BASE DE DATOS INTRODUCCIÓN A LOS SISTEMAS GESTORES DE BASE DE DATOS AUTORÍA JOSEFA PÉREZ DOMÍNGUEZ TEMÁTICA NUEVAS TECNOLOGIAS ETAPA CICLOS FORMATIVOS DE GRADO SUPERIOR DE INFORMÁTICA Resumen En esta publicación se

Más detalles

Gestión más simple y eficaz de las filiales Implementación de una estrategia de ERP de dos niveles con SAP Business ByDesign

Gestión más simple y eficaz de las filiales Implementación de una estrategia de ERP de dos niveles con SAP Business ByDesign SAP Business ByDesign Gestión más simple y eficaz de las filiales Implementación de una estrategia de ERP de dos niveles con SAP Business ByDesign Índice 3 Objetivos empresariales típicos para una red

Más detalles

INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL

INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL MÓDULO 3: REPRESENTACIÓN DEL CONOCIMIENTO 3.1. INTRODUCCIÓN La IA involucra la construcción de programas que resuelvan problemas que, de ser resueltos por seres

Más detalles

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II)

TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II) TEMA 6 SELECCIÓN DE INVERSIONES PRODUCTIVAS CON RIESGO (parte II) Tema 6- Parte II 1 ANÁLISIS DE PROYECTOS En ambiente de incertidumbre Los flujos de caja a descontar no son ciertos Criterio a aplicar

Más detalles

Guía Docente 2015/2016

Guía Docente 2015/2016 Guía Docente 2015/2016 Trabajo Fin de Grado Final Project Grado en Ingeniería Informática Modalidad a distancia Trabajo Fin degrado Índice Trabajo Fin de Grado... 3 Breve descripción de la asignatura...

Más detalles

INSTRUCTIVO PARA LA FORMULACIÓN DEL PLAN DE TRABAJO, PRESUPUESTO Y EVALUACIÓN

INSTRUCTIVO PARA LA FORMULACIÓN DEL PLAN DE TRABAJO, PRESUPUESTO Y EVALUACIÓN INSTRUCTIVO PARA LA FORMULACIÓN DEL PLAN DE TRABAJO, PRESUPUESTO Y EVALUACIÓN - Organizaciones no gubernamentales dedicadas a la prevención y la lucha contra las enfermedades de transmisión sexual y la

Más detalles

Inteligencia Artificial II. Razonamiento con ontologías

Inteligencia Artificial II. Razonamiento con ontologías Inteligencia Artificial II Curso 2008 09 Trabajo de curso Razonamiento con ontologías Antonio Jiménez Mavillard Enunciado Una ontología es una representación formal de un determinado dominio o área de

Más detalles

LEY QUE NORMA EL USO, ADQUISICIÓN Y ADECUACIÓN DEL SOFTWARE EN LA ADMINISTRACIÓN PUBLICA

LEY QUE NORMA EL USO, ADQUISICIÓN Y ADECUACIÓN DEL SOFTWARE EN LA ADMINISTRACIÓN PUBLICA ADQUISICIÓN DE SOFTWARE DE CORREO 1. Nombre del Área :. Responsable de la Evaluación : Aldo Quispe Santa María. Cargo : Director (e) de Tecnología de la Información y Sistemas 4. Fecha : de Julio de 007

Más detalles

GERENCIA DE INTEGRACIÓN

GERENCIA DE INTEGRACIÓN GERENCIA DE INTEGRACIÓN CONTENIDO Desarrollo del plan Ejecución del plan Control de cambios INTRODUCCIÓN La gerencia de integración del proyecto incluye los procesos requeridos para asegurar que los diversos

Más detalles

Tema 1. Conceptos básicos

Tema 1. Conceptos básicos Conceptos básicos Sistema de Gestión de Bases de Datos, SGBD (DBMS, Database Management System): software diseñado específicamente para el mantenimiento y la explotación de grandes conjuntos de datos 1

Más detalles

1. Aplicación de la conmutación de circuitos y la conmutación de paquetes. 1.1 Sistema de señalización número 7 (SS7).

1. Aplicación de la conmutación de circuitos y la conmutación de paquetes. 1.1 Sistema de señalización número 7 (SS7). REDES DE COMPUTADORES I Lectura No. 5. TEMAS: 1. Aplicación de la conmutación de circuitos y la conmutación de paquetes. 1.1 Sistema de señalización número 7 (SS7). SISTEMA DE SEÑALIZACIÓN NÚMERO 7 (SS7)

Más detalles

CAPÍTULO III MARCO TEÓRICO. Cada día cambian las condiciones de los mercados debido a diferentes factores como: el

CAPÍTULO III MARCO TEÓRICO. Cada día cambian las condiciones de los mercados debido a diferentes factores como: el CAPÍTULO III MARCO TEÓRICO 3.1 Introducción Cada día cambian las condiciones de los mercados debido a diferentes factores como: el incremento de la competencia, la globalización, la dinámica de la economía,

Más detalles

Tema 2. Software. Informática (1º Ingeniería Civil) jcarmur@unex.es

Tema 2. Software. Informática (1º Ingeniería Civil) jcarmur@unex.es Tema 2. Software Informática (1º Ingeniería Civil) Curso 2011/2012 Javier Carmona Murillo jcarmur@unex.es Índice Introducción. Programas e instrucciones. Tipos y estructuras de datos. Algoritmos. Proceso

Más detalles

El modelo relacional

El modelo relacional El modelo relacional El modelo relacional constituye una alternativa para la organización y representación de la información que se pretende almacenar en una base de datos. Se trata de un modelo teórico

Más detalles

FICHA PÚBLICA DEL PROYECTO PROGRAMA DE ESTÍMULOS A LA INNOVACIÓN 217356 EyeSoft S.A. de C.V.

FICHA PÚBLICA DEL PROYECTO PROGRAMA DE ESTÍMULOS A LA INNOVACIÓN 217356 EyeSoft S.A. de C.V. FICHA PÚBLICA DEL PROYECTO PROGRAMA DE ESTÍMULOS A LA INNOVACIÓN 217356 EyeSoft S.A. de C.V. Sistema integral de administración empresarial de fácil configuración con alojamiento en la nube (Cloud 4 Business)

Más detalles

31.5.2008 Diario Oficial de la Unión Europea L 141/5

31.5.2008 Diario Oficial de la Unión Europea L 141/5 31.5.2008 Diario Oficial de la Unión Europea L 141/5 REGLAMENTO (CE) N o 482/2008 DE LA COMISIÓN de 30 de mayo de 2008 por el que se establece un sistema de garantía de la seguridad del software que deberán

Más detalles

PRUEBAS DE SOFTWARE TECNICAS DE PRUEBA DE SOFTWARE

PRUEBAS DE SOFTWARE TECNICAS DE PRUEBA DE SOFTWARE PRUEBAS DE SOFTWARE La prueba del software es un elemento crítico para la garantía de la calidad del software. El objetivo de la etapa de pruebas es garantizar la calidad del producto desarrollado. Además,

Más detalles

SUPLEMENTO EUROPASS AL TÍTULO DE TÉCNICO SUPERIOR DE ARTES PLÁSTICAS Y DISEÑO

SUPLEMENTO EUROPASS AL TÍTULO DE TÉCNICO SUPERIOR DE ARTES PLÁSTICAS Y DISEÑO SUPLEMENTO EUROPASS AL TÍTULO DE TÉCNICO SUPERIOR DE ARTES PLÁSTICAS Y DISEÑO TÉCNICO SUPERIOR DE ARTES PLÁSTICAS Y DISEÑO EN GRÁFICA INTERACTIVA --------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Más detalles

El Producto: Software

El Producto: Software Este material está basado en el curso preparado por A.Navarro, UCM U (que a su vez sigue el texto del libro de Pressman) El Producto: Software Ingeniería del Software de Gestión 1 Facultad de Informática

Más detalles

"CONTRASTES DE HIPÓTESIS" 4.4 Parte básica

CONTRASTES DE HIPÓTESIS 4.4 Parte básica 76 "CONTRASTES DE HIPÓTESIS" 4.4 Parte básica 77 4.4.1 Introducción a los contrastes de hipótesis La Inferencia Estadística consta de dos partes: Estimación y Contrastes de Hipótesis. La primera se ha

Más detalles

Capítulo 4 Implementación

Capítulo 4 Implementación Capítulo 4 Implementación Este capítulo describe los detalles de implementación del sistema. La sección 4.1 habla sobre las herramientas utilizadas y detalla la arquitectura para la implementación de ATEXEM.

Más detalles

ESTUDIO DE LOS EJEMPLOS RESUELTOS 7.1, 7.2 Y 7.8 DEL LIBRO DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA.

ESTUDIO DE LOS EJEMPLOS RESUELTOS 7.1, 7.2 Y 7.8 DEL LIBRO DE FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA. ESTUIO E LOS EJEMPLOS RESUELTOS.1,.2 Y.8 EL LIRO E FUNMENTOS FÍSIOS E L INFORMÁTI. Resolver un circuito implica conocer las intensidades que circula por cada una de sus ramas lo que permite conocer la

Más detalles

Revisión de las Directrices comunitarias sobre ayudas estatales en favor del medio ambiente Cuestionario

Revisión de las Directrices comunitarias sobre ayudas estatales en favor del medio ambiente Cuestionario Revisión de las Directrices comunitarias sobre ayudas estatales en favor del medio ambiente Cuestionario El conjunto de Directrices vigente expira a finales de 2007. Para preparar su revisión, la Comisión

Más detalles

FICHA PÚBLICA DEL PROYECTO

FICHA PÚBLICA DEL PROYECTO NUMERO DE PROYECTO: 000000000198809 EMPRESA BENEFICIADA: ALIMENTOS BASICOS CHIHUAHUA, S.A. DE C.V. TÍTULO DEL PROYECTO: AUTOMATIZACION DEL PROCESO DE DISTRIBUCION Y PROMOCION DEL PRODUCTO OBJETIVO DEL

Más detalles

Ergonomía e interfases de interacción humano-computadora

Ergonomía e interfases de interacción humano-computadora Ergonomía e interfases de interacción humano-computadora Martínez de la Teja, Guillermo Manuel Maestro en Ciencias en Ergonomía Ergoprojects / Sociedad de Ergonomistas de México A.C. gmmt@ergoprojects.com

Más detalles

Manual de buenas prácticas Política de Seguridad de la Información

Manual de buenas prácticas Política de Seguridad de la Información Manual de buenas prácticas Política de Seguridad de la Información 1 Introducción La información que es elaborada y generada por los procesos de la institución es un activo, que como otros bienes de nuestra

Más detalles

Bases de Datos Especializadas

Bases de Datos Especializadas Bases de Datos Especializadas BASES DE DATOS ESPECIALIZADAS 1 Sesión No.7 Nombre: Fragmentación, asignación y arquitectura de referencia Objetivo: Al término de la sesión, el alumno conocerá características

Más detalles

Denominación de la materia. N créditos ECTS = 60 carácter = OPTATIVA INGENIERIA DE SOFTWARE

Denominación de la materia. N créditos ECTS = 60 carácter = OPTATIVA INGENIERIA DE SOFTWARE Denominación de la materia INGENIERIA DE SOFTWARE N créditos ECTS = 60 carácter = OPTATIVA Ubicación dentro del plan de estudios y duración Esta materia conforma el itinerario de Ingeniería de Software.

Más detalles

GRADO EN INGENIERIA INFORMATICA

GRADO EN INGENIERIA INFORMATICA GRADO EN INGENIERIA INFORMATICA El plan de estudios del Grado en Ingeniería Informática responde a la ficha recogida en la Resolución de 8 de junio de 2009 de la Secretaria General de Universidades que

Más detalles

AUDITOR LÍDER EN SISTEMAS DE GESTIÓN DE CALIDAD ISO 9001:2008

AUDITOR LÍDER EN SISTEMAS DE GESTIÓN DE CALIDAD ISO 9001:2008 - AUDITOR LÍDER EN SISTEMAS DE GESTIÓN DE CALIDAD ISO 9001:2008 Duración Opciones de Dictado Acreditación Lenguaje de curso 05 Días / 40 Horas Público & In-house SGS Español DESCRIPCIÓN DEL CURSO Este

Más detalles

4 Teoría de diseño de Experimentos

4 Teoría de diseño de Experimentos 4 Teoría de diseño de Experimentos 4.1 Introducción En los capítulos anteriores se habló de PLC y de ruido, debido a la inquietud por saber si en una instalación eléctrica casera que cuente con el servicio

Más detalles

DGB14DR-101 DCA/2002

DGB14DR-101 DCA/2002 BACHILLERATO GENERAL NOMBRE DE LA CAPACITACIÓN INFORMÁTICA CLAVE ASIGNATURA BASES DE DATOS I SEMESTRE V CRÉDITOS 6 ASIGNACIÓN DE TIEMPO 3 horas a la semana COMPONENTE DE FORMACIÓN DISTRIBUCIÓN DE ASIGNATURAS

Más detalles

Capítulo 11. Conclusiones y trabajo futuro

Capítulo 11. Conclusiones y trabajo futuro Capítulo 11. Conclusiones y trabajo futuro En esta tesis ha realizado un entorno de desarrollo Web que proporciona herramientas para la mejora de la calidad del código de los desarrolladores. Para conseguir

Más detalles

PROGRAMA DESCRIPTIVO DE LAS ASIGNATURAS DE LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN. Nivel Básico

PROGRAMA DESCRIPTIVO DE LAS ASIGNATURAS DE LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN. Nivel Básico PROGRAMA DESCRIPTIVO DE LAS ASIGNATURAS DE LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN Nivel Básico FORMACIÓN HUMANA Y SOCIAL (FGUM-001) En este curso, se fortalece la formación integral y pertinente

Más detalles

Tema 3. Concepto de Probabilidad

Tema 3. Concepto de Probabilidad Tema 3. Concepto de Probabilidad Presentación y Objetivos. El Cálculo de Probabilidades estudia el concepto de probabilidad como medida de incertidumbre. En situaciones donde se pueden obtener varios resultados

Más detalles

El Producto. Qué es la Ingeniería de Software? Tecnología para construir software Un proceso Un conjunto de métodos Herramientas

El Producto. Qué es la Ingeniería de Software? Tecnología para construir software Un proceso Un conjunto de métodos Herramientas El Producto Qué es la Ingeniería de Software? Tecnología para construir software Un proceso Un conjunto de métodos Herramientas Evolución Primeros años Principios 1960 s orientación batch distribución

Más detalles

SP 72GMFME22 Revisión nº 4

SP 72GMFME22 Revisión nº 4 Página 1 de 10 FAMILIA PROFESIONAL DENOMINACIÓN TITULACIÓN FABRICACIÓN MECÁNICA TÉCNICO EN PLAN DE CONTROL: PC 750103 1. DESCRIPCIÓN GENERAL El Ciclo de Grado Medio de Mecanizado forma parte de la Familia

Más detalles

Modelado de datos Relacional Modelado de datos Orientado a Objeto Modelado de datos Objeto-Relacional

Modelado de datos Relacional Modelado de datos Orientado a Objeto Modelado de datos Objeto-Relacional 2. 1 Modelado de Datos El manejo de información implica el saber como organizar los datos. Un apoyo lo encontramos en las herramientas de bases de datos que a su vez se apoyan en el modelo de datos. Para

Más detalles