Tema 5 y 6: Conjuntos Recursivamente Enumerables. Indecidibilidad

Save this PDF as:
Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 5 y 6: Conjuntos Recursivamente Enumerables. Indecidibilidad"

Transcripción

1 Tema 5 y 6: Conjuntos Recursivamente Enumerables. Indecidibilidad Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Teoría de la Computabilidad Curso TCO, Indecidibilidad. Conjuntos r.e

2 Indecidibilidad El problema de la parada El teorema de Rice Conjuntos r. e. Definición Operaciones con conjuntos r. e. Unión e Intersección Complementario Cuantificación existencial Teorema de caracterización TCO, Indecidibilidad. Conjuntos r.e

3 Problemas de decisión Sea A un conjunto cualquiera y θ un predicado definido sobre A. Diremos que el problema siguiente: Dado x A determinar si se verifica θ(x) es un problema de decisión. Lo denotaremos por (A, θ). Un problema de decisión diremos que es Decidible (o resoluble algorítmicamente) si existe un procedimiento mecánico que lo resuelve (es decir, que para cada x devuelve 1 si se verifica θ(x) y 0 si no se verifica). Indecidible o irresoluble algorítmicamente si no es decidible. Semidecidible. Si existe un procedimiento mecánico tal que, para cada x, si θ(x) devuelve 1; caso contrario no para. Nota: Obsérvese que en un problema de decisión (A, θ): Si θ es GOTO-computable, el problema es decidible. Si θ no es GOTO-computable, el problema es indecidible. Si θ es parcialmente decidible, el problema es semidecidible. TCO, Indecidibilidad. Conjuntos r.e

4 El problema de la parada (I) Enunciado informal. Dado un algoritmo A (por ejemplo, un programa GOTO) y un dato de entrada cualquiera x de dicho algoritmo, determinar si A para sobre x. Cuestión informal. Es resoluble algorítmicamente el problema de la parada? Enunciado formal. Dados e, x N determinar si ϕ e (x). Cuestión formal. Es GOTO computable el conjunto: K 0 = {(e, x) N 2 : ϕ e (x) }? * Si escribimos HALT (x, e) = ϕ e (x), el problema de la parada se expresa como el par (N 2, HALT ) * Como veremos, la respuesta a la cuestión formal es negativa. TCO, Indecidibilidad. Conjuntos r.e

5 El problema de la parada (II) Sea HALT el predicado: HALT (x, y) ϕ y (x) Proposición. HALT (x, y) no es GOTO computable. Veamos que no es GOTO computable, utilizando el método diagonal. Si fuese GOTO computable, la función: f (x) = { si HALT (x, x) 0 e.c.o.c. sería computable por el siguiente programa P: { [A] IF HALT (x, x) GOTO A Si e = #(P), entonces, para todo x N: HALT (x, e) ϕ (1) e (x) [[P]] (1) (x) f (x) HALT (x, x) y tomando x = e se llega a una contradicción. TCO, Indecidibilidad. Conjuntos r.e

6 El conjunto de la parada Hemos probado impĺıcitamente que el conjunto de la parada: no es GOTO computable. K = {x : ϕ x (x) } Podemos, pues, afirmar que no existe un programa P que resuelva el siguiente problema: Entrada: { Q GOTO, x N. 1, si [[Q]](x) Salida: 0, en caso contrario TCO, Indecidibilidad. Conjuntos r.e

7 El teorema de Rice Sea F GCOMP (n). Denotaremos por I F al conjunto: I F = {e N : ϕ (n) e F} {#(P) : [[P]] (n) F} Teorema. (Teorema de Rice) Si F GCOMP (1) es tal que F, GCOMP (1), entonces I F NO es GOTO computable. Ejemplo. Sea f : N N la función f (x) = x 2, y A = {#(P) : [[P]] (1) = f } Entonces, si F = {f } se tiene que I F = A. Obviamente, F no es vacía ya que f F. F GCOMP (1), pues, por ejemplo, la función nula O GCOMP (1), pero O / F Por el teorema de Rice, A no es GOTO computable. TCO, Indecidibilidad. Conjuntos r.e

8 Conjuntos recursivamente enumerables Definición. Diremos que un conjunto B N k es recursivamente enumerable (r.e.) si existe g GCOMP (k) tal que B = dom(g). De otra forma, B N k es r.e. si y sólo si existe un programa GOTO, P, tal que, para todo x N k, [[P]] (k) ( x) x B Proposición. Si B N k es GOTO computable, entonces B es r.e. En efecto, si B es GOTO computable entonces C B GCOMP (k) y, por tanto, el programa P: [A] IF C B (X 1, X 2,..., X k ) = 0 GOTO A es tal que dom([[p]] (k) ) = { x N : C B ( x) = 1} = B TCO, Indecidibilidad. Conjuntos r.e

9 Función característica parcial Definición. Se denomina función característica parcial de un conjunto B N k, y se denota por CB, a la función: { CB 1 (x) = si x B e.o.c Proposición. Sea B N k. Son equivalentes: 1. B es recursivamente enumerable. 2. La función característica parcial C B es GOTO computable. 1 2 Si B es r.e. existe g, GOTO computable, tal que dom(g) = B. Entonces como C B = C 1 g, resulta que C B es GOTO computable. 2 1 Como B = dom(cb ), si C B es GOTO computable resultará, por definición, que B es r. e. TCO, Indecidibilidad. Conjuntos r.e

10 Unión e Intersección de conjuntos r.e. Proposición. B, C N k r.e. = B C y B C son r. e. Sean f, g GCOMP (k) tales que dom(f ) = B, dom(g) = C; sean e 1 y e 2 los números de Gödel de dos programas que calculan f y g respectivamente; entonces, los programas: { Y f (X1,..., X P : k ) Y g(x 1,..., X k ) Q : [A] IF STEP (k) (X 1,..., X k, e 1, Z) GOTO E IF STEP (k) (X 1,..., X k, e 2, Z) GOTO E Z Z + 1 GOTO A son tales que dom([[p]]) = B C y dom([[q]]) = B C. TCO, Indecidibilidad. Conjuntos r.e

11 Teorema del Complemento Teorema. B N k es GOTO computable B y B son r.e. = Si B es GOTO computable, entonces B y B son GOTO computables; luego ambos son r.e. = Sean P y P programas con e = #(P) y ē = #( P), tales que: dom([[p]] (k) ) = B y dom([[ P]] (k) ) = B Entonces, el programa siguiente calcula C B : [A] IF STEP (k) (X 1,..., X k, e, Z) GOTO C IF STEP (k) (X 1,..., X k, ē, Z) GOTO E Z Z + 1 GOTO A [C] Y Y + 1 Por tanto, B es GOTO computable. TCO, Indecidibilidad. Conjuntos r.e

12 Teorema de la proyección Teorema. Son equivalentes: 1. B N k es r.e. 2. Existe un predicado GOTO computable k + 1-ario θ( x, t), tal que B = { x : t θ( x, t)}. (1) = (2) Sea P un programa cuyo código es e y tal que dom([[p]] (k) ) = B. Entonces: Luego existe dicho predicado. B = { x : t STEP (k) ( x, e, t)} (2) = (1) Si θ( x, t) es GOTO computable, el programa: [A] IF θ(x 1,..., X k, Z) GOTO E P : Z Z + 1 GOTO A verifica: dom([[p]] (k) ) = { x : t θ( x, t)} = B. TCO, Indecidibilidad. Conjuntos r.e

13 El problema de la parada HALT (x, y) es r.e. En efecto, HALT (x, y) z STEP (1) (x, y, z) luego, por el teorema de la proyección es r.e. El conjunto de la parada K es r.e. pero su complementario, N K, no es r.e. (aplicar teorema del complemento). TCO, Indecidibilidad. Conjuntos r.e

14 Predicados parcialmente decidibles Todo predicado GOTO computable se dice también que es decidible. Definición. Un predicado θ diremos que es parcialmente decidible si el conjunto que define, B = { x : θ( x)}, es recursivamente enumerable. Todas las propiedades de los conjuntos r. e. se trasladan de forma natural a los predicados parcialmente decidibles. En particular, del teorema de la proyección se sigue: Corolario. Son equivalentes: 1. θ es un predicado parcialmente decidible de aridad k. 2. Existe un predicado GOTO computable (k + 1)-ario θ, tal que θ( x) = t θ ( x, t). Lema de la contracción. Si θ( x, t) es parcialmente decidible, entonces tθ( x, t) también es parcialmente decidible. TCO, Indecidibilidad. Conjuntos r.e

15 Teorema de Caracterización Teorema. Sea A N, A. Son equivalentes: 1. A es recursivamente enumerable. 2. Existe g GCOMP y total tal que A = rang(g). 3. Existe h GCOMP tal que A = rang(h). Observaciones: Gracias a este teorema, un conjunto no vacío, A N es r.e. si y sólo si existe un programa GOTO, P, tal que A es el conjunto de todos los datos de salida que el programa produce como resultados en sus computaciones. La implicación (2) = (3) es obvia. Probemos (1) = (2) y (3) = (1). TCO, Indecidibilidad. Conjuntos r.e

16 Teorema de Caracterización (II) (1) = (2): Por el teorema de la proyección, existe un predicado GOTO computable, θ(x, z), tal que A = {x : t θ(x, t)}. Sea x 0 A (que existe, pues A ). Definimos: { l(u) si θ(l(u), r(u)) f (u) = e.c.o.c. x 0 Se tiene que f es GOTO computable y total y rang(f ) = A. Nota: Por esta propiedad, conocida también como teorema de enumeración, los conjuntos r.e. se denominan también conjuntos listables. TCO, Indecidibilidad. Conjuntos r.e

17 Teorema de Caracterización (III) (3) = (1): Sea P tal que h = [[P]] (1) y A = rang(h). Sea e = #(P) y Q el siguiente programa: [A] IF STEP(Z, e, Z 2 ) GOTO B V h(z) IF V = X GOTO E [B] Z Z + 1 IF Z Z 2 GOTO A Z 2 Z Z 0 GOTO A Por tanto, A es r.e. ya que dom([[q]] (1) ) = A. Nota: Este teorema, que dice que el rango de toda función GOTO computable es recursivamente enumerable, se conoce también como teorema del rango. TCO, Indecidibilidad. Conjuntos r.e

18 Teorema del grafo Proposición. f GCOMP (k) G(f ) r.e. = La función g( x, y) = (µz)( f ( x) y = 0) = { 0 si f ( x) = y e.c.o.c. verifica que dom(g) = G(f ). = Si G(f ) es r.e. existe un predicado GOTO computable θ( x, y, t) tal que: Por lo que se verifica: G(f ) = {( x, y) : t θ( x, y, t)} f ( x) = l((µu)θ( x, l(u), r(u))) y, por tanto, f GCOMP (k). TCO, Indecidibilidad. Conjuntos r.e

19 Teorema de definición por casos Como consecuencia inmediata del teorema del grafo se obtiene el teorema general de definición por casos para funciones GOTO computables (sean o no totales). Teorema. Sean f 1,..., f n GOTO computables y θ 1,..., θ n predicados k-arios GOTO-computables y complementarios, entonces la función: es GOTO computable. g( x) = f 1 ( x) si θ 1 ( x) f n ( x) si θ n ( x) Basta con observar que: ( x, y) G(g) (( x, y) G(f 1 ) θ 1 ( x))... (( x, y) G(f n ) θ n ( x)) Nota: Al expresar que θ 1,..., θ n son complementarios queremos decir que, para cada i, θ i es complementario con la conjunción de los restantes. TCO, Indecidibilidad. Conjuntos r.e

Capítulo V: CONJUNTOS RECURSIVAMENTE ENUMERABLES

Capítulo V: CONJUNTOS RECURSIVAMENTE ENUMERABLES Capítulo V: CONJUNTOS RECURSIVAMENTE ENUMERABLES Mario de J. Pérez Jiménez Grupo de investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Más detalles

Tema 5: Funciones recursivas

Tema 5: Funciones recursivas Tema 5: Funciones recursivas Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2005 06 LC, 2005 06 Funciones Recursivas 5.1 Procedimientos

Más detalles

Tema 5: Programas Universales

Tema 5: Programas Universales Tema 5: Programas Universales Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2006 07 LC, 2006 07 Programas universales 5.1 Procedimientos

Más detalles

Tema 5: Procedimientos para obtener funciones computables

Tema 5: Procedimientos para obtener funciones computables Tema 5: Procedimientos para obtener funciones computables Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Procedimientos

Más detalles

Capítulo IV: FUNCIONES RECURSIVAS

Capítulo IV: FUNCIONES RECURSIVAS Capítulo IV: FUNCIONES RECURSIVAS IV.2: FUNCIONES PRIMITIVAS RECURSIVAS Mario de J. Pérez Jiménez Grupo de investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia Artificial

Más detalles

Modelos de Computación y Complejidad PRELIMINARES

Modelos de Computación y Complejidad PRELIMINARES Modelos de Computación y Complejidad Grado en Ingeniería Informática. Tecnologías Informáticas PRELIMINARES Mario de J. Pérez Jiménez Dpto. Ciencias de la Computación e Inteligencia Artificial E.T.S. Ingeniería

Más detalles

a partir de otras funciones. Entonces C es la menor clase de funciones que contiene a las funciones básicas y es cerrada por los p. d.

a partir de otras funciones. Entonces C es la menor clase de funciones que contiene a las funciones básicas y es cerrada por los p. d. Tema 3: Funciones Primitivas Recursivas Caracterización de clases de funciones: Maneras básicas de definir una clase de funciones C: Descriptiva: C satisface ciertas propiedades. (Ejemplo: la clase GCOMP)

Más detalles

Funciones GOTO computables

Funciones GOTO computables Funciones GOTO computables Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica Matemática Curso 2011 12 LM, 2011 12 Lenguaje GOTO 4.1 Contenido El lenguaje GOTO Sintaxis

Más detalles

Tema 3: Conjuntos y Funciones

Tema 3: Conjuntos y Funciones Tema 3: Conjuntos y Funciones Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2008 09 LC, 2008 09 Conjuntos y Funciones 3.1 Conjuntos Escribimos

Más detalles

Introducción a la indecidibilidad

Introducción a la indecidibilidad Introducción a la indecidibilidad José M. empere Departamento de istemas Informáticos y Computación Universidad Politécnica de Valencia Lenguajes y problemas Un problema será considerado cualquier cuestión

Más detalles

Ejercicios resueltos. Teoría de la Computabilidad. Tema 3

Ejercicios resueltos. Teoría de la Computabilidad. Tema 3 Ejercicios resueltos. Teoría de la Computabilidad. Tema 3 Ejercicio.- Sea f : N 3 N y g 1 : N N, g 2 : N 2 N y g 3 : N 3 N. a) En los siguientes casos, expresar f como composición de funciones de la misma

Más detalles

Ejercicios resueltos. Computación. Tema 3

Ejercicios resueltos. Computación. Tema 3 Ejercicios resueltos. Computación. Tema 3 Ejercicio.- Sea f : N 3 N y g 1 : N N, g 2 : N 2 N y g 3 : N 3 N. a) En los siguientes casos, expresar f como composición de funciones de la misma aridad. 1. f(x,

Más detalles

Lógica y Computabilidad Capítulo 3

Lógica y Computabilidad Capítulo 3 Dpto. CCIA, Universidad de Sevilla 19 Lógica y Computabilidad. 2004 05 Capítulo 3 Capítulo 3 Funciones Recursivas 3.1. La clase de las funciones recursivas Comenzaremos presentando tres procedimientos

Más detalles

Problemas recursivamente enumerables

Problemas recursivamente enumerables Problemas recursivamente enumerables Definición Un problema L es recursivamente enumerable si existe una máquina de Turing M tal que L = L(M). Nótese que M en la definición no necesariamente se detiene

Más detalles

Problemas recursivamente enumerables

Problemas recursivamente enumerables Problemas recursivamente enumerables Definición Un problema L es recursivamente enumerable si existe una máquina de Turing M tal que L = L(M). Nótese que M en la definición no necesariamente se detiene

Más detalles

Ejercicios resueltos. Computación. Tema 4

Ejercicios resueltos. Computación. Tema 4 Ejercicios resueltos. omputación. Tema 4 Ejercicio.-Sea P un programa GOT O tal que #(P ) = 16. a) uántas instrucciones tiene P? b) Dar todas las instrucciones de P. c) Generalizar el resultado anterior

Más detalles

Tema 1: Sintaxis y Semántica de la Lógica Proposicional

Tema 1: Sintaxis y Semántica de la Lógica Proposicional Tema 1: Sintaxis y Semántica de la Lógica Proposicional Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Lógica Proposicional

Más detalles

Decidibilidad. I. Procedimientos Efectivos. Lógica Matemática III

Decidibilidad. I. Procedimientos Efectivos. Lógica Matemática III I. Procedimientos Efectivos La idea de tener una receta para resolver una clase de problemas nos relaciona con los procedimientos efectivos. Las recetas están escritas en algún lenguaje (español, chino,

Más detalles

Def.- Un conjunto A N es recursivamente enumerable (r.e.) si. existe una función P-computable, sobreyectiva, total ef : N A

Def.- Un conjunto A N es recursivamente enumerable (r.e.) si. existe una función P-computable, sobreyectiva, total ef : N A CONJUNTOS RECURSIVAMENTE ENUMERABLES.- Def.- Un conjunto A N es recursivamente enumerable (r.e.) si A = o existe una función P-computable, sobreyectiva, total ef : N A Esto significa que por medio de una

Más detalles

Tema 4: (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla

Tema 4: (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Tema 4: Proposicional Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica Informática (Tecnologías Informáticas) Curso 2015 16 Contenido Los tableros semánticos proporcionan

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

MODELOS DE COMPUTACIÓN Y COMPLEJIDAD

MODELOS DE COMPUTACIÓN Y COMPLEJIDAD MODELOS DE COMPUTACIÓN Y COMPLEJIDAD Grado de Ingeniería Informática. Tecnologías Informáticas Mario de J. Pérez Jiménez Grupo de investigación en Computación Natural Dpto. Ciencias de la Computación e

Más detalles

MODELOS DE COMPUTACIÓN Y COMPLEJIDAD

MODELOS DE COMPUTACIÓN Y COMPLEJIDAD MODELOS DE COMPUTACIÓN Y COMPLEJIDAD Grado de Ingeniería Informática. Tecnologías Informáticas Mario de J. Pérez Jiménez Grupo de investigación en Computación Natural Dpto. Ciencias de la Computación e

Más detalles

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S

Tipos de datos en S. Lógica y Computabilidad. Codificación de variables y etiquetas de S. Codificación de programas en S Tipos de datos en S Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Computabilidad - clase 5 Codificación de programas, Halting problem, diagonalización, tesis de Church,

Más detalles

Ciencias de la Computación I

Ciencias de la Computación I Ciencias de la Computación I Nociones básicas de Computabilidad Problemas y Lenguajes Un problema se describe con un lenguaje Cuanto más formal el lenguaje, más precisa la formulación del problema Los

Más detalles

Departamento de Tecnologías de la Información. Tema 6. Funciones recursivas. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 6. Funciones recursivas. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 6 Funciones recursivas Ciencias de la Computación e Inteligencia Artificial Índice 6.1 Funciones recursivas primitivas 6.2 Limitaciones de las funciones

Más detalles

1. Programas y funciones computables

1. Programas y funciones computables Computabilidad 1 Índice 1. Programas y funciones computables 3 1.1. El lenguaje S........................................... 3 1.2. Programas de S......................................... 3 1.3. Macros...............................................

Más detalles

Contenido. BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática

Contenido. BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática Contenido BLOQUE I: PRELIMINARES Tema 2 ALGUNAS NOCIONES DE TEORÍA DE CONJUNTOS, RELACIONES Y FUNCIONES Lógica Grado en Ingeniería Informática Alessandra Gallinari URJC Nociones de teoría de conjuntos

Más detalles

Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Reducibilidad

Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Reducibilidad 300CIG007 Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Reducibilidad Pontificia niversidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Reducibilidad

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Sintaxis y semántica LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Sintaxis y semántica Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lenguajes de primer orden 1 La lógica

Más detalles

Departamento de Tecnologías de la Información. Tema 5. Decidibilidad. Ciencias de la Computación e Inteligencia Artificial

Departamento de Tecnologías de la Información. Tema 5. Decidibilidad. Ciencias de la Computación e Inteligencia Artificial Departamento de Tecnologías de la Información Tema 5 Decidibilidad Ciencias de la Computación e Inteligencia Artificial Índice 5.1 Lenguajes reconocibles y decidibles 5.2 Problemas decidibles sobre lenguajes

Más detalles

Teorías. Una teoría acerca de una base de conocimiento Σ contendrá no sólo a Σ sino que a todo lo que se puede deducir de Σ.

Teorías. Una teoría acerca de una base de conocimiento Σ contendrá no sólo a Σ sino que a todo lo que se puede deducir de Σ. Teorías Qué es una teoría? Ya hemos usado antes la noción de base de conocimiento Este concepto se refiere a un conocimiento, representado a través de axiomas. Una teoría acerca de una base de conocimiento

Más detalles

Modelos Abstractos de Cálculo. Elvira Mayordomo Cámara

Modelos Abstractos de Cálculo. Elvira Mayordomo Cámara Modelos Abstractos de Cálculo Elvira Mayordomo Cámara 18 de enero de 2008 Capítulo 0 Presentación La asignatura de Modelos Abstractos de Cálculo consta de dos partes: computabilidad (también llamada recursividad)

Más detalles

FUNDAMENTOS DE COMPUTABILIDAD GUÍA DOCENTE

FUNDAMENTOS DE COMPUTABILIDAD GUÍA DOCENTE FUNDAMENTOS DE COMPUTABILIDAD GUÍA DOCENTE OBJETIVOS: El área de Fundamentos de Computabilidad se encuadra en el campo de la Informática Teórica, que trata de dar respuesta a cuestiones tales como qué

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2018 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2018 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2018 1

Más detalles

Los Teoremas de Incompletitud de Gödel: Parte II: Coherencia y completitud

Los Teoremas de Incompletitud de Gödel: Parte II: Coherencia y completitud Los Teoremas de Incompletitud de Gödel: Parte II: Coherencia y completitud Guillermo Morales Luna Departmento de Computación CINVESTAV-IPN gmorales@cs.cinvestav.mx 2-o Encuentro Nacional de Epistemología

Más detalles

Tema 2: Métodos de Deducción para la Lógica Proposicional

Tema 2: Métodos de Deducción para la Lógica Proposicional Tema 2: Métodos de Deducción para la Lógica Proposicional Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2006 07 LC, 2006 07 Métodos de Deducción

Más detalles

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2017 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2017 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2017 1

Más detalles

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016

Tema 1: Conjuntos. Miguel Ángel Olalla Acosta Departamento de Álgebra Universidad de Sevilla. Septiembre de 2016 Tema 1: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2016 Olalla (Universidad de Sevilla) Tema 1: Conjuntos Septiembre de 2016 1

Más detalles

ORGANIZACIÓN DOCENTE del curso Teoría de Autómatas y Lenguajes Formales. Ayudante LSI. Prac. Problemas (2) Prac. Problemas. Prac.

ORGANIZACIÓN DOCENTE del curso Teoría de Autómatas y Lenguajes Formales. Ayudante LSI. Prac. Problemas (2) Prac. Problemas. Prac. ORGANIZACIÓN DOCENTE del curso 2008-09 1. DATOS GENERALES DE LA ASIGNATURA NOMBRE Teoría de Autómatas y Lenguajes Formales PÁGINA WEB CÓDIGO 5410 DEPARTAMENTO Matemáticas, Estadística y Computación PLAN

Más detalles

Temas. Objetivo. Que el estudiante logre:

Temas. Objetivo. Que el estudiante logre: 0 Temas Objetivo Que el estudiante logre: 1) Formalizar problemas de decisión. 2) Identificar conceptos constructivos de la Teoría de la Computabilidad. 1 2 TEORÍA DE LA COMPLEJIDAD COMPUTACIONAL TEORÍA

Más detalles

Entscheidungsproblem I TEORÍA DE LA COMPUTACIÓN MÁQUINAS DE TURING Y DECIDIBILIDAD. Máquinas de Turing (TM) Procedimiento efectivo

Entscheidungsproblem I TEORÍA DE LA COMPUTACIÓN MÁQUINAS DE TURING Y DECIDIBILIDAD. Máquinas de Turing (TM) Procedimiento efectivo Entscheidungsproblem I TEORÍA DE LA COMPUTACIÓN MÁQUINAS DE TURING Y DECIDIBILIDAD Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx Página

Más detalles

Entscheidungsproblem I LENGUAJES RECURSIVAMENTE ENUMERABLES MÁQUINAS DE TURING. DECIDIBILIDAD. Máquinas de Turing (TM) Procedimiento efectivo

Entscheidungsproblem I LENGUAJES RECURSIVAMENTE ENUMERABLES MÁQUINAS DE TURING. DECIDIBILIDAD. Máquinas de Turing (TM) Procedimiento efectivo Entscheidungsproblem I LENGUAJES RECURSIVAMENTE ENUMERABLES MÁQUINAS DE TURING. DECIDIBILIDAD Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

Sucesiones y series de funciones

Sucesiones y series de funciones Sucesiones y series de funciones Renato Álvarez Nodarse Departamento de Análisis Matemático Facultad de Matemáticas. Universidad de Sevilla http://euler.us.es/ renato/ 8 de octubre de 2012 Sucesiones y

Más detalles

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano

MATEMÁTICAS BÁSICAS. Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano MATEMÁTICAS BÁSICAS Autoras: Margarita Ospina Pulido Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad

Más detalles

Teorema de incompletitud de Gödel

Teorema de incompletitud de Gödel Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. IIC2213 Teorías 79 / 109 Teorema de incompletitud de Gödel Theorem (Gödel) Th(N) es una teoría indecidible. Corolario

Más detalles

Tema 4: Estructura vectorial de R n.

Tema 4: Estructura vectorial de R n. TEORÍA DE ÁLGEBRA I: Tema 4. DIPLOMATURA DE ESTADÍSTICA 1 Tema 4: Estructura vectorial de R n. 1 Definiciones y propiedades Definición. 1.1 Denotaremos por R n al conjunto de todas las n-tuplas de números

Más detalles

Computación Bio inspirada Tema VIII: Complejidad Computacional en Modelos Celulares

Computación Bio inspirada Tema VIII: Complejidad Computacional en Modelos Celulares Computación Bio inspirada Tema VIII: Complejidad Computacional en Modelos Celulares Mario de J. Pérez Jiménez Grupo de Investigación en Computación Natural Dpto. Ciencias de la Computación e Inteligencia

Más detalles

El lenguaje P. Lógica y Computabilidad ( ) símbolos p. Verano convenciones. Lógica Proposicional - clase 1

El lenguaje P. Lógica y Computabilidad ( ) símbolos p. Verano convenciones. Lógica Proposicional - clase 1 Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Lógica Proposicional - clase 1 Lenguaje de lógica proposicional, semántica, tautología, consecuencia semántica, conjunto satisfacible,

Más detalles

Nos ayuda la incomputabilidad de f para demostrar la de g? NO

Nos ayuda la incomputabilidad de f para demostrar la de g? NO LIMITACIONES DE LA DIAGONALIZACIÓN Para demostrar la indecidibilidad del siguiente conjunto: K 0 = { x: x (0) } Es aplicable el método? NO Supongamos demostrado por diagonalización que la siguiente función

Más detalles

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática

Más detalles

8 Indecibilidad. 8.1 Problemas

8 Indecibilidad. 8.1 Problemas Curso Básico de Computación 8 Indecibilidad Ahora se considera la clase de lenguajes recursivos y recursivamente enumerables. El aspecto más interesante de este estudio trata de lenguajes cuyas cadenas

Más detalles

Tema 9: Resolución en lógica de primer orden

Tema 9: Resolución en lógica de primer orden de Tema 9: en lógica de no Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica Informática (Tecnologías Informáticas) Curso 2016 17 Contenido de no no Introducción Por

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

Operaciones extendidas de conjuntos

Operaciones extendidas de conjuntos 234 A. GENERALIDADES DE TEORÍA DE CONJUNTOS Tema 3. Operaciones extendidas de conjuntos En este tema extenderemos las operaciones de conjuntos anteriormente definidas a familias arbitrarias de conjuntos.

Más detalles

Integración de Funciones Reales

Integración de Funciones Reales Capítulo 20 Integración de Funciones Reales Nos proponemos estudiar en este capítulo las propiedades fundamentales del operador integral. n particular, extenderemos aquí al caso de funciones medibles con

Más detalles

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para

Más detalles

Tema 2: Métodos de Deducción para la Lógica Proposicional

Tema 2: Métodos de Deducción para la Lógica Proposicional Tema 2: Métodos de Deducción para la Lógica Proposicional Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica y Computabilidad Curso 2010 11 LC, 2010 11 Métodos de Deducción

Más detalles

Lenguaje de programación S (Davis/Sigal/Weyuker) Lógica y Computabilidad. Ejemplo 1. Ejemplo 2

Lenguaje de programación S (Davis/Sigal/Weyuker) Lógica y Computabilidad. Ejemplo 1. Ejemplo 2 Lógica y Computabilidad Verano 2011 Departamento de Computación - FCEyN - UBA Computabilidad - clase 4 Lenguaje S, estado, descripción instantánea, cómputo, funciones parciales computables, minimización

Más detalles

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad.

En general, un conjunto A se define seleccionando los elementos de un cierto conjunto U de referencia que cumplen una determinada propiedad. nidad 3: Conjuntos 3.1 Introducción Georg Cantor [1845-1918] formuló de manera individual la teoría de conjuntos a finales del siglo XIX y principios del XX. Su objetivo era el de formalizar las matemáticas

Más detalles

Conjuntos, Aplicaciones y Relaciones

Conjuntos, Aplicaciones y Relaciones Conjuntos, Aplicaciones y Relaciones Curso 2017-2018 1. Conjuntos Un conjunto será una colección de objetos; a cada uno de estos objetos lo llamaremos elemento del conjunto. Si x es un elemento del conjunto

Más detalles

1. Convergencia en medida

1. Convergencia en medida FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Otras propiedades de los lenguajes regulares

Otras propiedades de los lenguajes regulares Capítulo 3 Otras propiedades de los lenguajes regulares En los dos capítulos anteriores hemos presentado las propiedades básicas de los lenguajes regulares pero no hemos visto cómo se puede demostrar que

Más detalles

Lógica y Computabilidad

Lógica y Computabilidad Lógica y Computabilidad Santiago Figueira Departamento de Computación, FCEyN, UBA verano 2015 1 Contenido - Computabilidad 1. Introducción, máquinas de Turing, funciones parciales, funciones Turing computables,

Más detalles

Métodos de Inteligencia Artificial

Métodos de Inteligencia Artificial Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) esucar@inaoep.mx ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Contenido Lógica proposicional Lógica de predicados Inferencia en lógica

Más detalles

Tema 5: (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla

Tema 5: (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Tema 5: Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica Informática (Tecnologías Informáticas) Curso 2017 18 en LPO no restringida Contenido en LPO no restringida

Más detalles

Axiomas del Cálculo de Predicados

Axiomas del Cálculo de Predicados Axiomas del Cálculo de Predicados Si bien el cálculo proposicional nos permitió analizar cierto tipo de razonamientos y resolver acertijos lógicos, su poder expresivo no es suficiente para comprobar la

Más detalles

Álgebra Booleana. Guía Álgebra Booleana. Tema I: Álgebra de Boole

Álgebra Booleana. Guía Álgebra Booleana. Tema I: Álgebra de Boole Guía Álgebra Booleana Tema I: Álgebra de Boole AXIOMAS DEL ALGEBRA DE BOOLE Sea B un conjunto en el cual se han definido dos operaciones binarias, + y * (En algunos casos se definen en términos de y respectivamente),

Más detalles

Los números naturales. Definición y propiedades

Los números naturales. Definición y propiedades Los números naturales. Definición y propiedades Con la idea de abrir boca para empezar los estudios de matemáticas en bachillerato, en un artículo anterior se hablaba sobre la introducción al número real

Más detalles

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra.

En primer lugar, vamos a precisar un concepto al que ya nos hemos referido anteriormente, el de σ-álgebra. Capítulo 20 Conjuntos de Borel Hemos demostrado ya que la familia M de los conjuntos medibles contiene a todos los abiertos de R n y, por tanto, a todos los conjuntos que podamos formar a partir de los

Más detalles

Espacios topológicos y espacios métricos

Espacios topológicos y espacios métricos CAPíTULO 2 Espacios topológicos y espacios métricos Tema 1. Definición y primeros ejemplos Como queda anunciado al final del capítulo anterior ampliaremos la definición de abierto de un conjunto utilizando

Más detalles

Un poco de lógica. Ramón Espinosa. Departamento de Matemáticas, ITAM

Un poco de lógica. Ramón Espinosa. Departamento de Matemáticas, ITAM Un poco de lógica Ramón Espinosa Departamento de Matemáticas, ITAM La lógica, como el whisky, pierde sus efectos benéficos cuando se consume en grandes cantidades. Lord Dunsany Uno de los principales propósitos

Más detalles

CARACTERIZACIONES DE LA COMPLETITUD DE R

CARACTERIZACIONES DE LA COMPLETITUD DE R CARACTERIZACIONES DE LA COMPLETITUD DE R 1 Definición 1. Diremos que un cuerpo ordenado K es arquimediano si lím n n que decir que N, visto como subconjunto de K, no está acotado en K. = 0 en K. Esto es

Más detalles

13.3. MT para reconocer lenguajes

13.3. MT para reconocer lenguajes 13.3. MT para reconocer lenguajes Gramática equivalente a una MT Sea M=(Γ,Σ,,Q,q 0,f,F) una Máquina de Turing. L(M) es el lenguaje aceptado por la máquina M. A partir de M se puede crear una gramática

Más detalles

Tema 2: (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla

Tema 2: (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla y Tema 2: y Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica Informática (Tecnologías Informáticas) Curso 2017 18 Contenido y En este tema presentaremos mecanismos

Más detalles

Conexión Motivación. Lección 10

Conexión Motivación. Lección 10 Lección 10 Conexión Estudiamos la propiedad topológica que nos va a permitir obtener una versión general para espacios métricos del teorema del valor intermedio que conocemos para funciones reales de variable

Más detalles

Capítulo 4: Conjuntos

Capítulo 4: Conjuntos Capítulo 4: Conjuntos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Septiembre de 2014 Olalla (Universidad de Sevilla) Capítulo 4: Conjuntos Septiembre de

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Tema 3 Espacios vectoriales reales. 3.1 Espacios vectoriales. Definición 3.1 Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe el nombre

Más detalles

Espacios vectoriales reales

Espacios vectoriales reales 140 Fundamentos de Matemáticas : Álgebra Lineal 9.1 Espacios vectoriales Capítulo 9 Espacios vectoriales reales Los conjuntos de vectores del plano, R 2, y del espacio, R 3, son conocidos y estamos acostumbrados

Más detalles

Espacios vectoriales reales.

Espacios vectoriales reales. Capítulo 4 Espacios vectoriales reales. 4.1 Espacios vectoriales. Definición 86.- Un espacio vectorial real V es un conjunto de elementos denominados vectores, junto con dos operaciones, una que recibe

Más detalles

Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid

Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid LÓGICA FORMAL Lógica Proposicional: Teorema de Efectividad Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Lógica Proposicional 1 La lógica proposicional

Más detalles

Fundamentos de Ciencias de la Computación

Fundamentos de Ciencias de la Computación Fundamentos de Ciencias de la Computación Clase 16: Problema de Primer Cuatrimestre de 2005 Departamento de Cs. e Ing. de la Computación Universidad Nacional del Sur Bahía Blanca, Argentina Un problema

Más detalles

Tema 2 Conjuntos convexos

Tema 2 Conjuntos convexos Tema 2 Conjuntos convexos José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 2 Conjuntos convexos. Propiedades básicas y ejemplos. Cierre e interior de un

Más detalles

Teorema de Hahn-Banach

Teorema de Hahn-Banach Capítulo 3 Teorema de Hahn-Banach 3.1. Introducción Una vez introducidos los espacios vectoriales más importantes donde se tiene una estructura métrica a saber, los espacios de Hilbert y los espacios de

Más detalles

Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Máquinas de Turing

Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Máquinas de Turing 300CIG007 Computabilidad y Lenguajes Formales: Teoría de la Computabilidad: Máquinas de Turing Pontificia Universidad Javeriana Cali Ingenieria de Sistemas y Computación Prof. Gloria Inés Alvarez V. Máquina

Más detalles

Funciones continuas e inyectivas

Funciones continuas e inyectivas Nuestro último teorema afirmaba que toda función continua en un intervalo cerrado y acotado tiene máximo y mínimo absolutos, pero nada nos informa sobre los puntos en los que se alcanzan. Bajo la hipótesis

Más detalles

Tema 6.- Teorema de Riemann.

Tema 6.- Teorema de Riemann. Tema 6.- Teorema de Riemann. Sea C una curva plana proyectiva y sea X el modelo no singular. Teorema de Riemann.- Existe g N tal que, para todo divisor D en X, se tiene d(d) grado(d) + 1 g. Dada la curva

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Conjuntos. () April 4, / 32

Conjuntos. () April 4, / 32 Conjuntos En general, un conjunto A se de ne seleccionando los elementos de un cierto conjunto U de referencia (o universal) que cumplen una determinada propiedad. () April 4, 2014 1 / 32 Conjuntos En

Más detalles

6. Ortogonalidad. Universidad de Chile Conjuntos ortogonales y ortonormales. Ingeniería Matemática SEMANA 12: ORTOGONALIDAD

6. Ortogonalidad. Universidad de Chile Conjuntos ortogonales y ortonormales. Ingeniería Matemática SEMANA 12: ORTOGONALIDAD FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 7- SEMANA : ORTOGONALIDAD 6 Ortogonalidad 6 Conjuntos ortogonales y ortonormales Recordemos que la proyección de u sobre v

Más detalles

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición:

Capítulo 2 Conjuntos. 2.1 Introducción. 2.2 Determinación de conjuntos. Definición: Capítulo 2 Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma

Más detalles

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El teorema del valor medio Aplicaciones de las derivadas. El teorema del valor medio Ya hemos hablado en un par de artículos anteriores del concepto de derivada y de su interpretación tanto desde el punto de vista geométrico como

Más detalles

Tema 2: Diagonalización

Tema 2: Diagonalización TEORÍA DE ÁLGEBRA II: Tema 2. DIPLOMATURA DE ESTADÍSTICA 1 Tema 2: Diagonalización 1 Introducción Sea f : R n R n lineal. Dada una base B de R n podemos asociar a f la matriz A 1 = [f, B] M n. Si C es

Más detalles

Capítulo 2 El Método de Resolución

Capítulo 2 El Método de Resolución Capítulo 2 El Método de Resolución En este capítulo se realiza una descripción general del método de resolución, dado que el programa de razonamiento automático OTTER lo utiliza y prueba a través de refutación.

Más detalles