Pruebas t para muestras pareadas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Pruebas t para muestras pareadas"

Transcripción

1 AGRO 55 LAB 1 Pruebas t para muestras pareadas PARTE I. Incluya en cada caso todos los pasos necesarios para probar las hipótesis correspondientes, una gráfica con t tab (t crítico), el cálculo del t obs (o el valor p de la salida de InfoStat), conclusiones e interpretaciones (en el contexto del experimento). A menos que esté especificado de otra manera, use = Se desean comparar los rendimientos de dos nuevas variedades de maíz. Debido a que existe una gran variabilidad en los rendimientos en distintas fincas, se escogieron 7 fincas al azar, y se plantó una parcela con cada una de las variedades en cada finca. Los resultados del experimento son los siguientes (en ton/ha): Finca Variedad A Variedad B a. Pruebe la hipótesis de igualdad en los rendimientos de las dos variedades versus la alternativa a dos colas. Use =.5. Los datos debe ser entrados en la siguiente manera en InfoStat: H : vs. H : 1 2 a 1 2 o: H : vs. H : d a d

2 Densidad d.4429 t 4.98 ; t.25, ; s n d Valor P (InfoStat):.13.4 Función de densidad T Student(6): p(evento)= Variable Luego, se rechaza H. Es decir, existe diferencia entre los promedios de las dos variedades.

3 b. Construya un intervalo de confianza del 95% para 1-2, la verdadera diferencia entre los rendimientos de las variedades A y B. El intervalo obtenido, contiene el valor? Qué relación tiene esto con sus conclusiones en la parte a? sd.2387 IC.95 : d t.443 (2.447) ; n 1 2 n 7 IC.95 : (.222 ;.664) el intervalo no incluye cuando hay diferencias significativas entre dos medias, el intervalo de confianza (de la diferencia entre las medias) no incluirá el valor de. c. Considere la siguiente modificación del experimento descrito arriba: Se desean comparar los rendimientos de dos nuevas variedades de maíz, A y B. Se escogieron 14 fincas al azar. En 7 fincas (seleccionadas al azar) se siembra la variedad A y en las otras 7 fincas se siembra la variedad B. Ud. utilizaría el mismo tipo de prueba de t como en la parte a? Por qué o por qué no? El diseño es de datos independientes, no datos pareados como en el caso anterior. No se agrupan unidades experimentales (las dos predios sembrados en la misma finca corresponde a un par (o grupo o bloque ) en el diseño experimental) 2. Los datos siguientes son logaritmos de recuentos de bacterias en siete botellas de leche (escogidas aleatoriamente), tomados antes y después de un tratamiento térmico. Se desea conocer si el tratamiento reduce el número de bacterias. Formule y pruebe las hipótesis de interés usando =.5. En pruebas bilaterales (de dos colas), la forma de calcular la diferencia no afecta el resultado de la prueba (se puede considerar una diferencia positiva o negativa no importa). Al contrario, pruebas unilaterales (de una cola) pueden ser hechas calculando la diferencia como trta trt B o viceversa. En este ejercicio, una opción es usar la siguiente hipótesis: = Favor de notar que el orden de los tratamientos para esta hipótesis es antes y luego después, y así tiene que aparecer en la ventanilla de Variables en InfoStat (ejemplo abajo).

4 En la salida aparece la diferencia entre las medias (.2171), la desviación estándar de la diferencia (.4266 = s d ), t obs (1.3467) y la probabilidad de obtener el t obs (p=.1134). Se puede hacer la prueba comparando el valor de tobs en la salida con el valor tabular, o comparando el p-valor con el valor de alfa. A mano, los cálculos son: t observado: = CONCLUSIÓN: t tabular: t obs < t tab, así que se acepta la H o. (t obs no está en la área de rechazo) p-valor (.1134) > alfa (.5) No se rechaza H. Es decir, el tratamiento nuevo no reduce el número de bacterias.

5 Densidad.4 Función de densidad T Student(6): p(evento)= Variable También se puede presentar la hipótesis como: Ho: despues = antes ; Ha: despues < antes Con esta hipótesis, la diferencia tiene que ser calcula como después antes, dando una diferencias de (fijase que tendría que entre después y luego antes en la ventanilla de variables en InfoStat- ejempo abajo). La prueba sería de la cola izquierda. La conclusión (y el p-valor) no cambia.

6 Densidad 3. Se tomaron 11 hojas, una de cada una de 11 plantas de tabaco. Cada hoja se dividió en dos mitades. Una de las mitades se eligió al azar y se trató con preparación I y la otra mitad se trató con preparación II. El objetivo del experimento era comparar los efectos de las dos preparaciones del virus del mosaico sobre el número de lesiones después de un cierto período de tiempo. Los datos se presentan en la siguiente tabla: Planta Prep. I Prep. II H :. :,.5 prepi prepii vs Ha prepi prepii d t ;.25, s n d t ; Valor P (InfoStat):.14.4 Función de densidad T Student(1): p(evento)= Variable Se rechaza H. Es decir, hay evidencia de la diferencia entre los efectos de las dos preparaciones del virus del mosaico sobre el número de lesiones después de un cierto período de tiempo

7 PARTE II Trabajando en grupos de 2-3 estudiantes, decida cuál de las pruebas t (para muestras independientes o para datos pareados) usaría Ud. en cada una de las siguientes situaciones. Presente las hipótesis nula y alternativa. Justifique brevemente (uno de los miembros del grupo deberá presentar la justificación al resto de la clase). 4. Una corporación petrolera está interesada en realizar algunas pruebas preliminares para comparar una nueva mezcla de gasolina con otra actualmente en el mercado. Diez automóviles idénticos se asignaron aleatoriamente, 5 a una gasolina y 5 a la otra gasolina. Cada automóvil se llenó con 1 galones de gasolina y se condujo en una pista de pruebas hasta que la gasolina se agotó. El resultado fueron las millas recorridas en cada caso. Prueba t: Independiente (no pareada). Hipótesis: H o : nueva mescla = mescla actual H a : nueva mescla > mescla actual (porque se espera que la nueva gasolina es más eficiente) 5. Una compañía tiene una política muy generosa (pero muy complicada) para ofrecer el bono de navidad al personal gerencial de menor rango. El factor clave en la decisión es un juicio subjetivo de la "contribución a los objetivos de la corporación". Un encargado de personal tomó muestras de 24 gerentes mujeres y 24 gerentes hombres para ver si había diferencias entre los bonos. Las observaciones se registraron como un porcentaje del salario anual. Prueba t: Independiente. Hipótesis: H : : vs H Mujeres Hombres a Mujeres Hombres 6. En un estudio de los posibles factores que influyen en la frecuencia de pájaros embestidos por aviones (que, irónicamente, se ve como un peligro para los aviones), el nivel de ruido de varios aviones se midió dos segundos después del despegue (momento en que las ruedas dejan de tocar tierra). Veintidós jets de cabina ancha y 1 jets de cabina angosta se midieron y sus niveles de ruido se compararon. Prueba t: Independiente. Hipótesis: H : : vs H Ancha Angosta a Ancha Angosta 7. Dos aleaciones se usan en la fabricación de barras de acero. Se desea comparar la resistencia de las barras hechas con cada aleación. Se toman muestras aleatorias de 9 barras de la aleación A y de 15 barras de la aleación B. Prueba t: Independiente. Hipótesis: H : : vs H aleacióna aleaciónb a aleacióna aleaciónb 8. Con el objeto de estudiar el crecimiento de bacterias bajo dos dosis distintas de un cierto fungicida, se prepararon 2 placas de Petri. En 1 de ellas se colocaron 2 ppm del fungicida en el medio de cultivo, y en las otras 1, 1 ppm. Luego de inocular las placas con las bacterias, se colocaron en una cámara en forma completamente aleatoria, y al cabo de cierto tiempo se midió el crecimiento radial de las bacterias.

8 Prueba t: Independiente. H : vs H : Hipótesis: 2 ppm 1 ppm a 2 ppm 1 ppm 9. Para estudiar el efecto de la exposición de flores de alfalfa a diferentes condiciones ambientales se escogieron 1 plantas vigorosas con flores expuestas libremente en la parte alta, y flores escondidas en la parte basal. Se determinó el número de semillas producidas por 1 vainas en cada ubicación (parte superior y parte inferior). Prueba t: Pareada. Hipótesis: H : vs H : Alta Basal a Alta Basal 1. Con el objeto de evaluar si una nueva formulación permite obtener mayores aumentos de peso, una muestra de 8 novillos es alimentada con la ración regular, y otra muestra de 8 novillos es alimentada con la ración reformulada. Se analizan los pesos de los novillos luego de un año. Prueba t: Independiente. Hipótesis: H : : vs H regular reformulada a regular reformulada 11. Para estudiar el efecto de un tratamiento con fungicidas (usado para eliminar hongos) a plantas de geranio, se registró la densidad de esporas del hongo Phytium sp. antes de aplicar un tratamiento a 15 tiestos con plantas de geranio. A los 1 días de aplicar el tratamiento, los mismos tiestos se evaluaron nuevamente y se registró la densidad de esporas del mismo hongo. Prueba t: Pareada. Hipótesis: H : vs H : Antes Después a Antes Después 12. Para estudiar el efecto de Motrín en pacientes con síndrome de túnel carpal, se diseñó un experimento durante el cual todos los participantes recibían el medicamento y un placebo. Aproximadamente la mitad de los pacientes recibía Motrín durante tres semanas, luego ninguna medicación durante tres semanas y luego el placebo durante tres semanas. El resto de los pacientes recibía placebo durante tres semanas, luego ninguna medicación durante tres semanas y luego Motrín durante tres semanas. Al final del primer y del tercer período de tres semanas (es decir, luego de tomar Motrín o el Placebo), los participantes indicaban una puntuación (score) para el dolor, en relación al dolor que sentían antes de comenzar el experimento. Prueba t: Pareada (cada paciente recibe ambos tratamientos). Hipótesis:

AGRO Examen Parcial 2. Nombre:

AGRO Examen Parcial 2. Nombre: Densidad Densidad Densidad Densidad Examen Parcial 2 AGRO 5005 Nombre: Instrucciones: Por favor lea los enunciados y las preguntas cuidadosamente. Se pueden usar el libro, las tablas con fórmulas y la

Más detalles

CONCEPTOS FUNDAMENTALES

CONCEPTOS FUNDAMENTALES TEMA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICAS PRIMERA PARTE: Conceptos fundamentales 8.1. Hipótesis estadística. Tipos de hipótesis 8.2. Región crítica y región de aceptación 8.3. Errores tipo I y tipo

Más detalles

Ejercicio 1 (20 puntos)

Ejercicio 1 (20 puntos) ESTADISTICA Y SUS APLICACIONES EN CIENCIAS SOCIALES. Examen Montevideo, 15 de diciembre de 2015. Nombre: C.I.: EXAMEN Libre Reglamentado El examen consta de dos partes. La primera parte debe ser realizada

Más detalles

EVALUACIÓN DE PHOSTRON K EN TRIGO

EVALUACIÓN DE PHOSTRON K EN TRIGO EVALUACIÓN DE PHOSTRON K EN TRIGO INFORMACIÓN DE SIEMBRA DE LAS PARCELAS TRATAMIENTOS ESTABLECIDOS DISEÑO EXPERIMENTAL Y EVALUACIONES REALIZADAS Diseño en bloques aleatorizados con 4 repeticiones: MOMENTO

Más detalles

Técnicas Cuantitativas para el Management y los Negocios I

Técnicas Cuantitativas para el Management y los Negocios I Técnicas Cuantitativas para el Management y los Negocios I Licenciado en Administración Módulo II: ESTADÍSTICA INFERENCIAL Contenidos Módulo II Unidad 4. Probabilidad Conceptos básicos de probabilidad:

Más detalles

TALLER ESTADISTICAS EN EXCEL MSP 21 VERANO 2014

TALLER ESTADISTICAS EN EXCEL MSP 21 VERANO 2014 TALLER ESTADISTICAS EN EXCEL MSP 21 VERANO 2014 AGENDA Estadísticas en Excel Construcción de una hoja de trabajo Puntuaciones por asistencia Calificaciones finales igual peso Calificaciones finales pesadas

Más detalles

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico.

MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN. a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. MATERIA: ESTADÍSTICA EJEMPLOS DE POSIBLES PREGUNTAS DE EXAMEN 1. Conteste las preguntas siguientes: a. Cuáles son las escalas en que pueden estar los datos en un análisis estadístico. 1. 2. 3. 4. b. En

Más detalles

Estadísticas Pueden ser

Estadísticas Pueden ser Principios Básicos Para iniciar en el curso de Diseño de experimentos, es necesario tener algunos conceptos claros en la parte de probabilidad y estadística. A continuación se presentan los conceptos más

Más detalles

LAB 13 - Análisis de Covarianza - CLAVE

LAB 13 - Análisis de Covarianza - CLAVE LAB 13 - Análisis de Covarianza - CLAVE Se realizó un experimento para estudiar la eficacia de un promotor de crecimiento en terneros en lactación. Se usaron cuatro dosis de la droga (0, 2.5, 5 y 7.5 mg).

Más detalles

Técnicas de validación estadística Bondad de ajuste

Técnicas de validación estadística Bondad de ajuste Técnicas de validación estadística Bondad de ajuste Georgina Flesia FaMAF 28 de mayo, 2013 Pruebas de bondad de ajuste Dado un conjunto de observaciones, de qué distribución provienen o cuál es la distribución

Más detalles

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis

Pruebas de Hipótesis. Diseño Estadístico y Herramientas para la Calidad. Pruebas de Hipótesis. Hipótesis Diseño Estadístico y Herramientas para la Calidad Pruebas de Hipótesis Expositor: Dr. Juan José Flores Romero juanf@umich.mx http://lsc.fie.umich.mx/~juan M. en Calidad Total y Competitividad Pruebas de

Más detalles

Ensayos manejo de arveja Zafra 2011

Ensayos manejo de arveja Zafra 2011 211 Ensayos manejo de arveja Zafra 211 Información procesada por el Ing. Agr. Sebastian Mazzilli Trabajo de campo por equipo técnico de Greising & Elizarzú ENSAYOS MANEJO DE ARVEJA ZAFRA 211 1) Introducción.

Más detalles

Ejercicios de Regresión Lineal

Ejercicios de Regresión Lineal 1 Ejercicios de Regresión Lineal 1º) En un determinado proceso industrial, se piensa que la producción Y en toneladas, está linealmente relacionada con la temperatura X. Se toman dos observaciones de producción

Más detalles

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8

UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 UNIVERSIDAD TECNICA PARTICULAR DE LOJA ESTADISTICA Y PROBABILIDAD ENSAYO N 8 DOCENTE: Ing. Patricio Puchaicela ALUMNA: Andrea C. Puchaicela G. CURSO: 4to. Ciclo de Electrónica y Telecomunicaciones AÑO

Más detalles

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR

Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis. Facultad de Ciencias Sociales, UdelaR Estadística y sus aplicaciones en Ciencias Sociales 6. Prueba de hipótesis Facultad de Ciencias Sociales, UdelaR Índice 1. Introducción: hipótesis estadística, tipos de hipótesis, prueba de hipótesis 2.

Más detalles

4. Prueba de Hipótesis

4. Prueba de Hipótesis 4. Prueba de Hipótesis Como se ha indicado anteriormente, nuestro objetivo al tomar una muestra es extraer alguna conclusión o inferencia sobre una población. En nuestro interés es conocer acerca de los

Más detalles

PRUEBA DE HIPÓTESIS DE UNA MUESTRA PARA PROPORCIONES J UA N J O S É H E R NÁ N D E Z O C A ÑA

PRUEBA DE HIPÓTESIS DE UNA MUESTRA PARA PROPORCIONES J UA N J O S É H E R NÁ N D E Z O C A ÑA PRUEBA DE HIPÓTESIS DE UNA MUESTRA PARA PROPORCIONES J UA N J O S É H E R NÁ N D E Z O C A ÑA PROPORCIONES n es una razón entre el número de éxitos y bservaciones re al número de éxitos y n al de, la proporción

Más detalles

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8.

MODELO DE RESPUESTAS Objetivos 2, 3, 4, 5, 6, 7, Y 8. UNIVERSIDAD NACIONAL ABIERTA ESTADÍSTICA GENERAL 745) VICERRECTORADO ACADÉMICO INTEGRAL ÁREA DE MATEMÁTICA Fecha: 17/ 01 /009 MODELO DE RESPUESTAS Objetivos, 3, 4, 5, 6, 7, Y 8. OBJ. 1 PTA 1 Una compañía

Más detalles

Bloque II (Columnas) B= Y212 C= Y322 D= Y432 C= Y313 D= Y423 E= Y533. A= Y1k2. B= Y2k3

Bloque II (Columnas) B= Y212 C= Y322 D= Y432 C= Y313 D= Y423 E= Y533. A= Y1k2. B= Y2k3 DISEÑO EN CUADRO LATINO En el diseño en cuadro latino (DCL) se controlan dos factores de bloque y se estudia un solo factor de interés. En este sentido, se tienen cuatro fuentes de variación: Los tratamientos

Más detalles

Cómo se hace la Prueba t a mano?

Cómo se hace la Prueba t a mano? Cómo se hace la Prueba t a mano? Sujeto Grupo Grupo Grupo Grupo 33 089 74 5476 84 7056 75 565 3 94 8836 75 565 4 5 704 76 5776 5 4 6 76 5776 6 9 8 76 5776 7 4 78 6084 8 65 45 79 64 9 86 7396 80 6400 0

Más detalles

Teorema Central del Límite (1)

Teorema Central del Límite (1) Teorema Central del Límite (1) Definición. Cualquier cantidad calculada a partir de las observaciones de una muestra se llama estadístico. La distribución de los valores que puede tomar un estadístico

Más detalles

Contrastes de hipótesis paramétricos

Contrastes de hipótesis paramétricos Estadística II Universidad de Salamanca Curso 2011/2012 Outline Introducción 1 Introducción 2 Contraste de Neyman-Pearson Sea X f X (x, θ). Desonocemos θ y queremos saber que valor toma este parámetro,

Más detalles

TEST DE HIPÓTESIS. Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una

TEST DE HIPÓTESIS. Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una TEST DE HIPÓTESIS Ejemplo: vamos a analizar los resultados de 5 Servicios de Neonatología de una provincia según un indicador: mortalidad de recién nacidos con peso 1.000 gr. Supongamos, como ejemplo,

Más detalles

Interpretación de análisis foliar

Interpretación de análisis foliar Interpretación de análisis foliar AGRO 4037 Fertilidad de Suelos y Abonos Muestreo del tejido Considerar Organos de la planta (hojas con o sin pecíolos) Edad del tejido (hojas jóvenes, hojas viejas) Edad

Más detalles

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo

Estructura de este tema. Tema 3 Contrastes de hipótesis. Ejemplo Estructura de este tema Tema 3 Contrastes de hipótesis José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Qué es un contraste de hipótesis? Elementos de un contraste: hipótesis,

Más detalles

ESTIMACIÓN DE PARÁMETROS Y PRUEBA DE HIPÓTESIS

ESTIMACIÓN DE PARÁMETROS Y PRUEBA DE HIPÓTESIS ANÁLISIS EXPLORATORIO TRABAJOS DE APLICACIÓN INFORMÁTICA EJERCICIO N 1: Realice un análisis exploratorio utilizando el archivo que incluya las siguientes etapas a) Confección de tablas de distribución

Más detalles

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] =

= P (Z ) - P (Z ) = P (Z 1 25) P (Z -1 25)= P (Z 1 25) [P (Z 1 25)] = P (Z 1 25) [1- P (Z 1 25)] = El peso en kg de los estudiantes universitarios de una gran ciudad se supone aproximado por una distribución normal con media 60kg y desviación típica 8kg. Se toman 100 muestras aleatorias simples de 64

Más detalles

AGRO 5005: BIOMETRÍA LABORATORIOS

AGRO 5005: BIOMETRÍA LABORATORIOS AGRO 5005: BIOMETRÍA LABORATORIOS Laboratorio 1: Introducción... 2 Laboratorio 2: Manejo de datos Gráficos I... 6 Laboratorio 3: Resumen gráfico de datos II... 9 Laboratorio 4: Estadísticos descriptivos...

Más detalles

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005

Solución Examen Parcial IV Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 Nombres: Apellidos: C.I.: Firma: Fecha: 22/06/2005 MÉTODOS ESTADÍSTICOS I EXAMEN IV PARTE I: Encierre con un círculo la respuesta correcta o llene los espacios en blanco (0,5 puntos c/u): 1. (V F) La prueba

Más detalles

Ejercicios Introducción. Capítulo. Estos ejercicios fueron recopilados por los profesores Douglas Rivas, Luis Nava y. Ángel Zambrano.

Ejercicios Introducción. Capítulo. Estos ejercicios fueron recopilados por los profesores Douglas Rivas, Luis Nava y. Ángel Zambrano. Capítulo 1 Ejercicios Estos ejercicios fueron recopilados por los profesores Douglas Rivas, Luis Nava y Ángel Zambrano. 1.1. Introducción 1. Se realiza un estudio en el municipio Libertador del Estado

Más detalles

Pruebas de Hipótesis

Pruebas de Hipótesis Pruebas de Hipótesis Tipos de errores Se pueden cometer dos tipos de errores: Decisión Población Ho es erdadera Ho es falsa No rechazar Ho Decisión correcta. Error tipo II Rechazar Ho Error tipo I Decisión

Más detalles

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto

Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre Profesor: Jaime Soto Universidad Rafael Belloso Chacín (URBE) Cátedra: Fundamentos de Estadística y Simulación Básica Semestre 2011-1 Profesor: Jaime Soto PRUEBA DE HIPÓTESIS Ejemplo El jefe de la Biblioteca de la URBE manifiesta

Más detalles

Test de Kolmogorov-Smirnov

Test de Kolmogorov-Smirnov Test de Kolmogorov-Smirnov Georgina Flesia FaMAF 2 de junio, 2011 Test de Kolmogorov-Smirnov El test chi-cuadrado en el caso continuo H 0 : Las v.a. Y 1, Y 2,..., Y n tienen distribución continua F. Particionar

Más detalles

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS)

2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) 2. EL DISEÑO UNIFACTORIAL (COMPARACION DE TRATAMIENTOS) La idea principal en este capitulo es el inicio a planear los diseño experimentales y su correspondiente análisis estadístico. En este caso iniciaremos

Más detalles

Tema 9: Contraste de hipótesis.

Tema 9: Contraste de hipótesis. Estadística 84 Tema 9: Contraste de hipótesis. 9.1 Introducción. El objetivo de este tema es proporcionar métodos que permiten decidir si una hipótesis estadística debe o no ser rechazada, en base a los

Más detalles

Prueba de Hipótesis. Dr. Víctor Aguirre Torres, ITAM. Guión 13.

Prueba de Hipótesis. Dr. Víctor Aguirre Torres, ITAM. Guión 13. Prueba de Hipótesis 1 Propósito En ocasiones se desea ver si los datos soportan una diferencia. Se quiere ver si con los datos podemos probar que existe una diferencia. De ser así, se continúa con el proyecto,

Más detalles

ESTADISTICA NO PARAMETRICA

ESTADISTICA NO PARAMETRICA ESTADISTICA NO PARAMETRICA La mayor parte de los procedimientos de prueba de hipótesis que se presentan en las unidades anteriores se basan en la suposición de que las muestras aleatorias se seleccionan

Más detalles

UNIVERDAD TECNOLÓGICA DE TORREÓN

UNIVERDAD TECNOLÓGICA DE TORREÓN UNIVERDAD TECNOLÓGICA DE TORREÓN PROCESOS INDUSTRIALES DE MANUFACTURA ENCARGADO DE LA MATERIA: LIC. EDGAR GERARDO MATA ORTÍZ ALUMNA: ELIZABETH GRIJALVA ROCHA TEMA: EJERCICIOS DE HISTOGRAMA: GRADO: 3-C

Más detalles

PRUEBAS DE HIPOTESIS. Propósito de una Dócima

PRUEBAS DE HIPOTESIS. Propósito de una Dócima PRUEBAS DE HIPOTESIS Los intervalos de confianza sirven para verificar la validez de cualquier suposición hecha acerca de un valor de un parámetro poblacional. Este valor supuesto suele denominarse hipótesis

Más detalles

Determinación del tamaño de muestra (para una sola muestra)

Determinación del tamaño de muestra (para una sola muestra) STATGRAPHICS Rev. 4/5/007 Determinación del tamaño de muestra (para una sola muestra) Este procedimiento determina un tamaño de muestra adecuado para la estimación o la prueba de hipótesis con respecto

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva, Ejercicio

Más detalles

PATRONES DE DISTRIBUCIÓN ESPACIAL

PATRONES DE DISTRIBUCIÓN ESPACIAL PATRONES DE DISTRIBUCIÓN ESPACIAL Tipos de arreglos espaciales Al azar Regular o Uniforme Agrupada Hipótesis Ecológicas Disposición al Azar Todos los puntos en el espacio tienen la misma posibilidad de

Más detalles

Departamento de Estadística y Econometría. Curso EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 2

Departamento de Estadística y Econometría. Curso EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 2 Departamento de Estadística y Econometría. Curso 2002-2003 EJERCICIOS DE ESTADÍSTICA APLICADA A LA EMPRESA II. L.A.D.E. TEMA 2 1.- Una empresa de elaboración de materiales pone en práctica un nuevo método

Más detalles

INFERENCIA ESTADISTICA

INFERENCIA ESTADISTICA INFERENCIA ESTADISTICA ESTIMACION 2 maneras de estimar: Estimaciones puntuales x s 2 Estimaciones por intervalo 2 ESTIMACION Estimaciones por intervalo Limites de Confianza LCI

Más detalles

Pruebas de hipótesis

Pruebas de hipótesis Pruebas de hipótesis Álvaro José Flórez 1 Escuela de Ingeniería Industrial y Estadística Facultad de Ingenierías Febrero - Junio 2012 Prueba de hipótesis Uno de los objetivos de la estadística es hacer

Más detalles

EJERCICIOS. Curso: Estadística. Profesores: Mauro Gutierrez Martinez Christiam Miguel Gonzales Chávez. Cecilia Milagros Rosas Meneses

EJERCICIOS. Curso: Estadística. Profesores: Mauro Gutierrez Martinez Christiam Miguel Gonzales Chávez. Cecilia Milagros Rosas Meneses EJERCICIOS Curso: Estadística Profesores: Mauro Gutierrez Martinez Christiam Miguel Gonzales Chávez. Cecilia Milagros Rosas Meneses 1. Un fabricante de detergente sostiene que los contenidos de las cajas

Más detalles

11. PRUEBAS NO PARAMÉTRICAS

11. PRUEBAS NO PARAMÉTRICAS . PRUEBAS NO PARAMÉTRICAS Edgar Acuña http://math.uprm/edu/~edgar UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ PRUEBAS NO PARAMÉTRICAS Se estudiarán las pruebas noparamétricas, las cuales

Más detalles

CLAVE-LAB 3-Supuestos del Análisis de la Varianza

CLAVE-LAB 3-Supuestos del Análisis de la Varianza (Revisado enero 016_LWB/CL) CLAVE-LAB 3-Supuestos del Análisis de la Varianza El archivo Excel con los datos para este laboratorio está en la página del curso. Los datos provienen de un estudio realizado

Más detalles

Ideas básicas del diseño experimental

Ideas básicas del diseño experimental Ideas básicas del diseño experimental Capítulo 4 de Analysis of Messy Data. Milliken y Johnson (1992) Diseño de experimentos p. 1/23 Ideas básicas del diseño experimental Antes de llevar a cabo un experimento,

Más detalles

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola)

Estadística Inferencial 3.7. Prueba de hipótesis para la varianza. σ gl = n -1. Es decir: Ho: σ 2 15 Ha: σ 2 > 15 (prueba de una cola) UNIDAD III. PRUEBAS DE HIPÓTESIS 3.7 Prueba de hipótesis para la varianza La varianza como medida de dispersión es importante dado que nos ofrece una mejor visión de dispersión de datos. Por ejemplo: si

Más detalles

Contrastes de hipótesis. 1: Ideas generales

Contrastes de hipótesis. 1: Ideas generales Contrastes de hipótesis 1: Ideas generales 1 Inferencia Estadística paramétrica población Muestra de individuos Técnicas de muestreo X 1 X 2 X 3.. X n Inferencia Estadística: métodos y procedimientos que

Más detalles

CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN

CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN CALIDAD DE MARCAS ECONÓMICAS DE ESMALTE DE UÑAS COMPARANDO TIEMPO DE SECADO Y DURACIÓN Espinoza Cárdenas Sara Dalila Flores Balderas Mayra Celeste Gómez Llanos Sandoval Ana Isabel LOS ESMALTES DE UÑAS

Más detalles

3. Correlación. Introducción. Diagrama de dispersión

3. Correlación. Introducción. Diagrama de dispersión 1 3. Correlación Introducción En los negocios, no todo es el producto, pueden existir factores relacionados o externos que modifiquen cómo se distribuye un producto. De igual manera, la estadística no

Más detalles

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07

PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 PLAN DE TRABAJO 9 Período 3/09/07 al 28/09/07 TEMAS A ESTUDIAR En esta guía nos dedicaremos a estudiar el tema de Estimación por intervalo y comenzaremos a estudiar las pruebas de hipótesis paramétricas.

Más detalles

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON

OTRAS HERRAMIETAS ESTADISTICAS UTILES. Dra. ALBA CECILIA GARZON OTRAS HERRAMIETAS ESTADISTICAS UTILES Dra. ALBA CECILIA GARZON Que es un Test de Significancia estadística? El término "estadísticamente significativo" invade la literatura y se percibe como una etiqueta

Más detalles

Es una proposición o supuesto sobre los parámetros de una o más poblaciones

Es una proposición o supuesto sobre los parámetros de una o más poblaciones HIPOTESIS ESTADISTICA Es una proposición o supuesto sobre los parámetros de una o más poblaciones http://www.itch.edu.mx/academic/industrial/estadistica1/cap02.html POR LUIS M. BAQUERO ROSAS, MBA JUNIO

Más detalles

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN

DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN DIFERENCIAS EN LA UTILIZACIÓN DE LA BIBLIOTECA DEL IIESCA ANTE UN CAMBIO DE INFORMACIÓN Beatriz Meneses A. de Sesma * I. INTRODUCCIÓN En todo centro educativo, es de suma importancia el uso que se haga

Más detalles

R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z

R E S O L U C I Ó N. a) El intervalo de confianza de la media poblacional viene dado por: I. C. z Un estudio realizado sobre 100 usuarios revela que un automóvil recorre anualmente un promedio de 15.00 Km con una desviación típica de.50 Km. a) Determine un intervalo de confianza, al 99%, para la cantidad

Más detalles

Indicaciones para el lector... xv Prólogo... xvii

Indicaciones para el lector... xv Prólogo... xvii ÍNDICE Indicaciones para el lector... xv Prólogo... xvii 1. INTRODUCCIÓN Qué es la estadística?... 3 Por qué estudiar estadística?... 5 Empleo de modelos en estadística... 6 Perspectiva hacia el futuro...

Más detalles

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 )

Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ 2 conocida: Suponga que X 1, X 2,, X n, es una m.a.(n) desde N( µ, σ 2 ) Test de Hipótesis II Tabla de Test de Hipótesis ( Caso: Una muestra ) A. Test para µ con σ conocida: Suponga que X, X,, X n, es una m.a.(n) desde N( µ, σ ) Estadística de Prueba X - μ Z 0 = σ / n ~ N(0,)

Más detalles

AGRO 6600 Segundo Examen Parcial

AGRO 6600 Segundo Examen Parcial AGRO 6600 Segundo Examen Parcial Nombre: 2012 Instrucciones: Apague celulares. Se descontarán puntos si su celular suena durante el examen. Por favor lea los enunciados y las preguntas cuidadosamente.

Más detalles

Para ello hacemos lo siguiente: Analizar. o Comparar medias. García Bellido, R.; González Such, J. y Jornet Meliá, J.M.

Para ello hacemos lo siguiente: Analizar. o Comparar medias. García Bellido, R.; González Such, J. y Jornet Meliá, J.M. SPSS: PRUEBA T PRUEBA T PARA MUESTRAS INDEPENDIENTES El procedimiento Prueba T para muestras independientes debe utilizarse para comparar las medias de dos grupos de casos, es decir, cuando la comparación

Más detalles

Estadísticamente significativo o clínicamente relevante?

Estadísticamente significativo o clínicamente relevante? Adolfo Figueiras Guzmán rof. Titular de edicina reventiva e Saúde ública (USC) Estadísticamente significativo o clínicamente relevante? Índice 1. 1. Introducción 2. 2. Objetivos 3. 3. Desarrollo Conceptos

Más detalles

Diferentes tamaños de u.e. Diseño de experimentos p. 1/24

Diferentes tamaños de u.e. Diseño de experimentos p. 1/24 Diferentes tamaños de u.e. Diseño de experimentos p. 1/24 Introducción Los diseños experimentales que tienen varios tamaños de u.e. son: diseños de mediciones repetidas, diseños de parcelas divididas,

Más detalles

CONTRASTE DE HIPÓTESIS

CONTRASTE DE HIPÓTESIS CONTRASTE DE HIPÓTESIS Antonio Morillas A. Morillas: Contraste de hipótesis 1 CONTRASTE DE HIPÓTESIS 1. Introducción 2. Conceptos básicos 3. Región crítica óptima i. Teorema de Neyman-Pearson ii. Región

Más detalles

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15.

Problemas resueltos. Temas 10 y 11 11, 9, 12, 17, 8, 11, 9, 4, 5, 9, 14, 9, 17, 24, 19, 10, 17, 17, 8, 23, 8, 6, 14, 16, 6, 7, 15, 20, 14, 15. Temas 10 y 11. Contrastes paramétricos de hipótesis. 1 Problemas resueltos. Temas 10 y 11 1- las puntuaciones en un test que mide la variable creatividad siguen, en la población general de adolescentes,

Más detalles

Tema 8: Contraste de hipótesis

Tema 8: Contraste de hipótesis Tema 8: Contraste de hipótesis 1 En este tema: Conceptos fundamentales: hipótesis nula y alternativa, nivel de significación, error de tipo I y tipo II, p-valor. Contraste de hipótesis e IC. Contraste

Más detalles

Conceptos del contraste de hipótesis

Conceptos del contraste de hipótesis Análisis de datos y gestión veterinaria Contraste de hipótesis Departamento de Producción Animal Facultad de Veterinaria Universidad de Córdoba Córdoba, 14 de Diciembre de 211 Conceptos del contraste de

Más detalles

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio

Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio Distribuciones de muestreo fundamentales y descripciones de datos Muestreo aleatorio En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población),

Más detalles

Densidad de siembra y logro de plántulas en alfalfa.

Densidad de siembra y logro de plántulas en alfalfa. Densidad de siembra y logro de plántulas en alfalfa. La densidad de plantas logradas en alfalfa es altamente determinante de su producción ya que esta especie carece de estrategias de propagación vegetativa

Más detalles

Probabilidad y Estadística, EIC 311

Probabilidad y Estadística, EIC 311 Probabilidad y Estadística, EIC 311 Medida de resumen 1er Semestre 2016 1 / 105 , mediana y moda para datos no Una medida muy útil es la media aritmética de la muestra = Promedio. 2 / 105 , mediana y moda

Más detalles

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI

PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI PRUEBA DE HIPÓTESIS BENJAMIN MAMANI CONDORI 2014 Para qué es útil la estadística inferencial? Se utiliza para probar hipótesis y generalizar los resultados obtenidos en la muestra a la población o universo.

Más detalles

Discretas. Continuas

Discretas. Continuas UNIDAD 0. DISTRIBUCIÓN TEÓRICA DE PROBABILIDAD Discretas Binomial Distribución Teórica de Probabilidad Poisson Normal Continuas Normal Estándar 0.1. Una distribución de probabilidad es un despliegue de

Más detalles

CAPITULO III: METODOLOGIA. En el presente capítulo se describirá el conjunto de pasos a seguir para lograr el

CAPITULO III: METODOLOGIA. En el presente capítulo se describirá el conjunto de pasos a seguir para lograr el CAPITULO III: METODOLOGIA En el presente capítulo se describirá el conjunto de pasos a seguir para lograr el objetivo propuesto en esta tesis. Primero se presenta la descripción general del programa y

Más detalles

Distribución Normal Curva Normal distribución gaussiana

Distribución Normal Curva Normal distribución gaussiana Distribución Normal La distribución continua de probabilidad más importante en todo el campo de la estadística es la distribución normal. La distribución normal tiene grandes aplicaciones prácticas, en

Más detalles

EFECTIVIDAD BIOLÓGICA DEL INSECTICIDA CINNA-MEC EN EL CONTROL DEL ÁCARO CAFÉ

EFECTIVIDAD BIOLÓGICA DEL INSECTICIDA CINNA-MEC EN EL CONTROL DEL ÁCARO CAFÉ EFECTIVIDAD BIOLÓGICA DEL INSECTICIDA CINNA-MEC EN EL CONTROL DEL ÁCARO CAFÉ (Oligonychus punicae Hirst.) DEL AGUACATERO EN NUEVO SAN JUAN PARANGARICUTIRO, MICH. RESPONSABLE: Ing Braulio Alberto Lemus

Más detalles

EJERCICIOS DE SELECTIVIDAD

EJERCICIOS DE SELECTIVIDAD EJERCICIOS DE SELECTIVIDAD INFERENCIA 1998 JUNIO OPCIÓN A Un fabricante de electrodomésticos sabe que la vida media de éstos sigue una distribución normal con media μ = 100 meses y desviación típica σ

Más detalles

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica

INDICE 1. Qué es la Estadística? 2.Descripción de Datos: Distribuciones de Frecuencia y Presentación Gráfica INDICE 1. Qué es la Estadística? 1 Introducción 2 Qué significa estadística? 2 Por qué se estudia la estadística? 4 Tipos de estadística 5 Estadística descriptiva 5 Estadística inferencial 6 Tipos de variables

Más detalles

Estadística II Tema 2. Conceptos básicos en el contraste de. Curso 2010/11

Estadística II Tema 2. Conceptos básicos en el contraste de. Curso 2010/11 Estadística II Tema 2. Conceptos básicos en el contraste de hipótesis Curso 2010/11 Tema 2. Conceptos básicos en el contraste de hipótesis Contenidos Definición de contraste e hipótesis estadística. Hipótesis

Más detalles

Posibles escenarios. (a) ESTADO REAL (VERDAD) desconocido. (Error tipo II) EVIDENCIA ( DATOS) observados. Error Tipo I NO HAY ERROR NO HAY ERROR (ß)

Posibles escenarios. (a) ESTADO REAL (VERDAD) desconocido. (Error tipo II) EVIDENCIA ( DATOS) observados. Error Tipo I NO HAY ERROR NO HAY ERROR (ß) Hipótesis Pruebas de hipótesis Son enunciados formulados como respuestas tentativas a preguntas de investigación. Walter Valdivia Miranda Instituto de investigaciones de la Altura Universidad Peruana Cayetano

Más detalles

ESTADÍSTICA GRADO EN FARMACIA Curso 2010/2011

ESTADÍSTICA GRADO EN FARMACIA Curso 2010/2011 ESTADÍSTICA GRADO EN FARMACIA Curso 2010/2011 PRÁCTICA 5. INTERVALOS DE CONFIANZA 1.- El nivel de creatina sérica en la sangre se considera un buen indicador de la presencia o ausencia de enfermedades

Más detalles

DISEÑOS EXPERIMENTALES

DISEÑOS EXPERIMENTALES CAPITULO I DISEÑOS EXPERIMENTALES 1.1 ASPECTOS GENERALES El Diseño de Experimentos tuvo su inicio teórico a partir de 1935 por Sir Ronald A. Fisher, quién sentó la base de la teoría del Diseño Experimental

Más detalles

Tema 5. Contraste de hipótesis (I)

Tema 5. Contraste de hipótesis (I) Tema 5. Contraste de hipótesis (I) CA UNED de Huelva, "Profesor Dr. José Carlos Vílchez Martín" Introducción Bienvenida Objetivos pedagógicos: Conocer el concepto de hipótesis estadística Conocer y estimar

Más detalles

Estadística II. Planteamiento de las hipótesis nula y alternativa

Estadística II. Planteamiento de las hipótesis nula y alternativa Estadística II Planteamiento de las hipótesis nula y alternativa Una muestra aleatoria de 100 muertes registradas en Estados Unidos el año pasado muestra una vida promedio de 71.8 años. Suponga una desviación

Más detalles

Tabla 1. Planteos tecnológicos de colza para Entre Ríos.

Tabla 1. Planteos tecnológicos de colza para Entre Ríos. MÁRGENES ECONÓMICOS DE COLZA CANOLA EN ENTRE RÍOS- Campaña 2011-12 Ing. Agr. M. Sc. Patricia L. Engler INTA EEA Paraná Trabajo elaborado en el marco del Proyecto Regional INTA CRER: Herramientas de socio-economía

Más detalles

Estadística II Tema 3. Comparación de dos poblaciones. Curso 2010/11

Estadística II Tema 3. Comparación de dos poblaciones. Curso 2010/11 Estadística II Tema 3. Comparación de dos poblaciones Curso 2010/11 Tema 3. Comparación de dos poblaciones Contenidos Comparación de dos poblaciones: ejemplos, datos apareados para la reducción de la variabilidad

Más detalles

PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS

PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS PRÁCTICA 8: CONTRASTES DE HIPÓTESIS PARAMÉTRICOS Objetivos Plantear y resolver problemas mediante la técnica de contraste de hipótesis. Asimilar los conceptos relativos a contrastes de hipótesis, tales

Más detalles

Fertilizantes Seleccionados

Fertilizantes Seleccionados El proyecto tiene una duración de tres años y en la actualidad se encuentra en la primera etapa de prueba de campo. La motivación del proyecto surgió debido a la gran superficie con arándanos orgánicos

Más detalles

1. Considera los datos siguientes: 6, 8, 2, 5, 4, 2, 7, 8, 6, 1, 7, 9 calcula lo que se te pide

1. Considera los datos siguientes: 6, 8, 2, 5, 4, 2, 7, 8, 6, 1, 7, 9 calcula lo que se te pide UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES ACADEMIA DE MATEMÁTICAS Toda cosa grande, majestuosa y bella en este mundo, nace y se forja en el interior el hombre Gibrán Jalil

Más detalles

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS

CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS CAPÍTULO IV TRABAJO DE CAMPO Y PROCESO DE CONTRASTE DE LAS HIPÓTESIS 1. HIPÓTESIS ALTERNA E HIPÓTESIS NULA Para someter a contraste una hipótesis es necesario formular las Hipótesis Alternas ( H1 ) y formular

Más detalles

Evaluación del comportamiento en rendimiento de Soja con diferentes Inoculantes a la semilla.

Evaluación del comportamiento en rendimiento de Soja con diferentes Inoculantes a la semilla. Evaluación del comportamiento en rendimiento de Soja con diferentes Inoculantes a la semilla. EVALUACION DEL COMPORTAMIENTO EN RENDIMIENTO DE SOJA FRENTE AL USO DE DIFERENTES INOCULANTES A LA SEMILLA OBJETIVO

Más detalles

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO

Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS. Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Validación de los métodos microbiológicos HERRAMIENTAS ESTADISTICAS Bqca. QM Alicia I. Cuesta, Consultora Internacional de la FAO Objetivos de la clase Objetivos de la estadística. Concepto y parámetros

Más detalles

MATERIA: CONTROL ESTADÍSTICO DEL PROCESO GRADO: ENCARGADA DE LA MATERIA: LIC. EDGAR GERARDO MATA ORTIZ TEMA: INTERPRETACIÓN DE HISTOGRAMAS

MATERIA: CONTROL ESTADÍSTICO DEL PROCESO GRADO: ENCARGADA DE LA MATERIA: LIC. EDGAR GERARDO MATA ORTIZ TEMA: INTERPRETACIÓN DE HISTOGRAMAS MATERIA: CONTROL ESTADÍSTICO DEL PROCESO GRADO: 3C ENCARGADA DE LA MATERIA: LIC. EDGAR GERARDO MATA ORTIZ TEMA: INTERPRETACIÓN DE HISTOGRAMAS INTEGRANTES DEL EQUIPO: ELIZABETH GRIJALVA ROCHA KAREN LIZETH

Más detalles

Conectores Ángulos ,1 38, ,2 4 42,7 42,6 42,2 48,9 6 45,8 47,9 37,9 56,4

Conectores Ángulos ,1 38, ,2 4 42,7 42,6 42,2 48,9 6 45,8 47,9 37,9 56,4 Grupo 01 En un experimento para evaluar el efecto del ángulo de tiro en la fuerza requerida para causar la separación en conectores electricos, se emplearon tres angulos distintos y se tiró de cada uno

Más detalles

RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1

RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1 IV. RESULTADOS. 4.1 ADAPTABILIDAD DEL SISTEMA. Los resultados de adaptabilidad del sistema cromatografico se detallan en la tabla 4.1 Ver gráficos en ANEXO 1 4.2 SELECTIVIDAD Placebo de excipientes: No

Más detalles

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua

ESTADÍSTICA. Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal. continua ESTADÍSTICA Población Individuo Muestra Muestreo Valor Dato Variable Cualitativa ordinal nominal Cuantitativa discreta continua DISTRIBUCIÓN DE FRECUENCIAS Frecuencia absoluta: fi Frecuencia relativa:

Más detalles

Olimpíada Argentina de Física

Olimpíada Argentina de Física Pruebas Preparatorias Primera Prueba: Cinemática - Dinámica Nombre:... D.N.I.:... Escuela:... - Antes de comenzar a resolver la prueba lea cuidadosamente TODO el enunciado de la misma. - Escriba su nombre

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 6: TEORÍA DE MUESTRAS Junio, Ejercicio 3, Parte II, Opción A Junio, Ejercicio 3, Parte II, Opción B Reserva

Más detalles

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos

Agro 6998 Conferencia 2. Introducción a los modelos estadísticos mixtos Agro 6998 Conferencia Introducción a los modelos estadísticos mixtos Los modelos estadísticos permiten modelar la respuesta de un estudio experimental u observacional en función de factores (tratamientos,

Más detalles

Incertidumbre, Validación y Trazabilidad en el Laboratorio de Análisis Clínicos. Cómo cumplir con requisitos de la ISO 15189

Incertidumbre, Validación y Trazabilidad en el Laboratorio de Análisis Clínicos. Cómo cumplir con requisitos de la ISO 15189 Incertidumbre, Validación y Trazabilidad en el Laboratorio de Análisis Clínicos Cómo cumplir con requisitos de la ISO 15189 Calidad en mediciones químicas Validación de métodos Estoy midiendo lo que intentaba

Más detalles