DINÁMICA DE UNA PARTÍCULA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DINÁMICA DE UNA PARTÍCULA"

Transcripción

1 DINÁMICA DE UNA PARTÍCULA SUMARIO DE REPASO A continuación se presentan las expresiones matemáticas de algunos conceptos tenidos en cuenta en la dinámica de partículas Cantidad de movimiento: Segundo principio de Newton: Peso de un cuerpo: Fuerza de rozamiento: Fuerza centrípeta:

2 PROBLEMAS RESUELTOS 1) Sea un paralelepípedo rectángulo de hierro (δ = 7,8 g/cm ³) cuya base es de 32 cm ² y su altura es de 20 cm, determinar: a) La masa. b) La aceleración que le provocará una fuerza constante de 100 N. c) La distancia recorrida durante 30 s. SOLUCIÓN Datos: b = 32 cm ² h = 20 cm δ = 7,8 g/cm ³ F = 100 N t = 30 s a) La masa la hallamos mediante la fórmula de densidad. δ = m/v m = δ.v m = (7,8 g/cm ³).(32 cm ².20 cm) m = 4992 g m = 5 kg b) F = m.a a = F/m a = 100 N/5 kg, luego: a = 20 m/s ² c) Suponiendo que parte del reposo. e = v 1.t + ½.a.t ² e = ½.a.t ² e = ½.(20 m/s ²).(30 s) ² e = 9000 m 2) Sobre un cuerpo actúa una fuerza constante de 50 N mediante la cual adquiere una aceleración de 1,5 m/s ², determinar: a) La masa del cuerpo. b) Su velocidad a los 10 s. c) La distancia recorrida en ese tiempo. Solución Datos: a = 1,5 m/s ² F = 50 N t = 10 s F = m.a m = F/a m = 50 N/1,5 m/s ² m = 33,33 kg b) Como parte del reposo: v = a.t v = (1, 5 m/s ²).10 s v = 15 m/s

3 c) e = ½.a.t ² e = ½.(1,5 m/s ²).(10 s) ² e = 75 m 3) Cuál será la intensidad de una fuerza constante al actuar sobre un cuerpo que pesa 50 N si después de 10 s ha recorrido 300 m? Solución Datos: P = 50 N t = 10 s e = 300 m Se adopta g = 10 m/s ² Primero calculamos la aceleración: e = ½.a.t ² a = 2.e/t ² a = m/(10 s) ² a = 6 m/s ² Ahora calculamos la masa del cuerpo: P = m.g m = P/g m = 50 N/(10 m/s ²) m = 5 kg Con estos datos calculamos la fuerza: F = m.a F = 5 kg.6 m/s ² F = 30 N 4) Cuál será la fuerza aplicada a un cuerpo que pesa N si lo hace detener en 35 s?, la velocidad en el instante de aplicar la fuerza era de 80 km/h. Solución Datos: P = N t = 35 s v 1 = 80 km/h = (80 km/h).(1000 m/1 km).(1 h/3600 s) = 22,22 m/s v 2 = 0 m/s Se toma g = 10 m/s ² Primero, empleando ecuaciones de cinemática, calculamos la aceleración (negativa) producida por la fuerza. v 2 - v 1 = a.t a = - v 1 /t a = (- 22, 22 m/s)/35 s a = -0,635 m/s ²

4 La masa resulta: P = m.g m = P/a m = N/(10 m/s ²) m = 1280 kg Luego: F = m.a F = 1280 kg.(-0,635 m/s ²) F = -812,7 N La fuerza es contraria al movimiento. 5) Un cuerpo posee una velocidad de 20 cm/s y actúa sobre él una fuerza de 120 N que después de 5 s le hace adquirir una velocidad de 8 cm/s. Cuál es la masa del cuerpo? Solución Datos: F = 120 N v 1 = 20 cm/s = 20 cm/s.(1 m/100 cm) = 0,2 m/s v 2 = 8 cm/s = 8 cm/s.(1 m/100 cm) = 0,08 m/s t = 5 s De acuerdo a los datos la fuerza le produce a la masa una desaceleración. Primero, empleando ecuaciones de cinemática, calculamos la aceleración (negativa) producida por la fuerza. v 2 - v 1 = a.t a = (v 2 - v 1 )/t a = (0, 08 m/s - 0,2 m/s)/5 s a = -0,024 m/s ² Luego: F = m.a m = F/a m = -120 N/(-0,024 m/s ²) m = 5000 kg 6) Impulsado por una carga explosiva, un proyectil de 250 N atraviesa la cámara de fuego de un arma de 2 m de longitud con una velocidad de 50 m/s, Cuál es la fuerza desarrollada por la carga explosiva? Solución Datos:

5 P = 250 N d = 2 m v 2 = 50 m/s Tome g = 10 m/s ² Calculamos la masa del proyectil: P = m.g m = P/a m = 250 N/(10 m/s ²) m = 25 kg Mediante cinemática calculamos la aceleración: v 2 ² - v 1 ² = 2.a.d Como la velocidad inicial es nula: v 2 ² = 2.a.d a = v 2 ²/(2.d) a = (50 m/s) ²/(2.2 m) a = 625 m/s ² Luego la fuerza: F = m.a F = 25 kg.625 m/s ² F = N 7) Un cuerpo de masa 3 kg está sometido a la acción de dos fuerzas de 6 N y 4 N dispuestas perpendicularmente, como indica la figura, determinar la aceleración y su dirección Solución Datos: m = 3 kg F 1 = 4 N F 2 = 6 N El esquema es el siguiente: Primero calculamos la fuerza resultante por Pitágoras:

6 R ² = F 1 ² + F 2 ² R ² = (4 N) ² + (6 N) ² R = 7,21 N Ahora calculamos la aceleración: R = m.a a = R/m a = 7,21 N/3 kg a = 2,4 m/s ² Calculamos la dirección con respecto a F 2 : tg α = F 1 /F 2 α = arctg (F 1 /F 2 ) α = arctg (4 N/6 N) α = arctg (0,67) α = " 8) Determinar la fuerza F necesaria para mover el sistema de la figura, considerando nulos los rozamientos, si la aceleración adquirida por el sistema es de 5 m/s ². Datos: a = 5 m/s ² m 1 = 5 kg m 2 = 12 kg m 3 = 15 kg Para calcular la fuerza necesaria para mover una masa simplemente se plantea la situación de equilibrio: F = 0 Si hay movimiento: F = m.a F 1 + F 2 + F 3 = R m 1.a + m 2.a + m 3.a = R (m 1 + m 2 + m 3 ).a = R R = (5 kg + 12 kg + 15 kg).5 m/s ² R = 160 N PROBLEMAS RESUELTOS 1. Dos cuerpos de 3 y 4 kg de masa, respectivamente, se deslizan sobre una superficie horizontal pulida bajo la acción de una fuerza de 15 N sobre el primero y de 8 N sobre el segundo. Los dos parten del reposo en el mismo instante. Cuánto tiempo transcurre hasta que la distancia entre ellos sea de 100 m. Qué velocidad llevará cada uno en dicho instante? La trayectoria seguida por los dos cuerpos es una línea recta. De F = ma se sigue:

7 Si en un tiempo t el primero recorre una distancia s+100 y el segundo una distancia s, será: La velocidad de cada móvil al cabo de 8,16 segundos será: 2. Un coche de kg se mueve sin rozamiento, con la aceleración de 0,2 m/s² Qué fuerza tiene que hacer el motor cuando el movimiento es por una carretera rectilínea y horizontal? Y cuando sube una cuesta del 30%? En la carretera rectilínea y horizontal: F = ma = ,2 = 400 N. Cuando sube la cuesta del 30% sin rozamiento: F - PT = ma F = PT + ma. Como PT = P sen = ,830/100 = N resulta: F = = N.

8 3. A un cuerpo de 30 g de masa, e inicialmente en reposo, se le aplica una fuerza constante igual a 0,6 N durante 10 s; a los 4 s de haber dejado de actuar la fuerza se le aplica otra también constante de 1,8 N, en la misma dirección que la primera pero de sentido contrario. Por efecto de esta segunda fuerza, el cuerpo se para. Calcular: 1) Velocidad del cuerpo en los instantes t = 6 s, t = 10 s, t = 11 s, t = 14 s, a partir del instante inicial. 2) Tiempo que tarda en pararse el cuerpo. 3) Distancia total recorrida. (Se supone nulo el rozamiento.) Durante los primeros segundos actúa la fuerza de 0,6 N sobre la masa de 0,030 kg produciendo una aceleración de: Entre los 10 y los 14 segundos deja de actuar la fuerza, luego la aceleración es: Una vez transcurridos los 14 primeros segundos, la aceleración es: ya que la fuerza actúa en sentido contrario al movimiento. 1) Las velocidades son 2) Se parará el cuerpo cuando la velocidad se haga cero: La distancia total recorrida en esos 52/3 s es:

9 4. Las masas que penden de los extremos de la cuerda de una máquina de Atwood son, respectivamente y g. Calcular: 1) la aceleración con que se mueve el sistema; 2) el espacio que recorre en 50 s partiendo del reposo; 3) la tensión de la cuerda. 2) La distancia valdrá: 3) Aislando una parte del sistema (masa m2) : Aislando la masa m, :

10 5. Un bloque de 300 N es arrastrado a velocidad constante sobre la superficie lisa de un plano inclinado, por la acción de un peso de 100 N pendiente de una cuerda atada al bloque y que pasa por una polea sin rozamiento. Calcular: a) el ángulo de inclinación del plano; b) la tensión de la cuerda. Si es arrastrado a velocidad constante, la fuerza resultante ha de ser cero, luego: Aislando una parte del sistema (por ejemplo, m1 ) : T = P1 = 100 N. 6. En el sistema de la figura, los dos bloques A y B tienen la misma masa igual a 20 kg, y se suponen superficies pulidas y poleas ligeras y sin rozamientos. Calcular: 1) Aceleración del sistema. 2) Tiempo transcurrido para que el bloque A recorra 2 m descendiendo por el plano inclinado. 1 ) De la figura: 2) El tiempo transcurrido en recorrer esos 2 m es:

11 7. En el sistema de la figura se suponen superficies pulidas y poleas ligeras y sin rozamiento. Calcular: 1) En qué sentido se moverá? 2) Con qué aceleración? 3) Cuál es la tensión de la cuerda? De la figura: 1) Suponemos que se dirige hacia la izquierda: Se mueve en el sentido supuesto. 3) Aislando la masa de 100 kg: 8. En el sistema de la figura, los bloques A (ma = 0,8 kg) y B (mb = 0,2 kg) deslizan con velocidad constante sobre la superficie horizontal por acción de otro bloque C (mc = 0,2 kg) suspendido. El bloque B se separa del A y se suspende junto con el C. Cuál será la aceleración del sistema? Y la tensión de la cuerda? En el primer caso, cuando el sistema es el de la figura, si se desliza con velocidad constante:

12 Al suspender el bloque B junto al C: y aislando, por ejemplo, el bloque A, obtenemos para la tensión: 9. Para arrastrar un bloque por una superficie horizontal con velocidad constante se requiere una fuerza de 30 N. Si la masa del bloque es de 5 kg, cuál es el coeficiente dinámico de rozamiento? Si la velocidad es constante, la fuerza resultante que actúa sobre el bloque ha de ser cero, luego: 10. Un bloque de 10 kg está sobre un plano inclinado 30º con relación al horizonte. Sobre el cuerpo actúa una fuerza paralela al plano de 60 N que hace ascender al cuerpo. Si el coeficiente dinámico de rozamiento es 0,1, determinar: 1) El valor de la fuerza de rozamiento. 2) La aceleración con que se mueve el cuerpo.

13 11. Sobre un plano inclinado 30º sobre el horizonte hay un cuerpo de 40 kg. Paralela al plano y hacia abajo, se le aplica una fuerza de 40 N. Si el coeficiente de rozamiento dinámico es 0,2, determinar: 1) Valor de la fuerza de rozamiento. 2) Aceleración con que se mueve el cuerpo. 3) Velocidad del cuerpo a los 10 s de iniciarse el movimiento. 12. Un hombre arrastra una caja por el suelo mediante una cuerda que forma un ángulo de 30º con la horizontal. Con qué fuerza tendría que tirar el hombre si la caja, que pesa 500 kg, se mueve con velocidad constante y el coeficiente dinámico de rozamiento es de 0,4?

14 Al moverse con velocidad constante: F = 0, luego de la figura: 13. Cuál debe ser el coeficiente de rozamiento dinámico entre un niño y la superficie de un tobogán de 30º de inclinación, para que la aceleración de caída del niño sea de 0,24 ms-2? De la figura: donde: luego:

15 14. Un bloque se encuentra en reposo sobre un plano inclinado, siendo 0,3 y 0,5 los coeficientes de rozamiento cinético y estático, respectivamente. Calcular: 1) El ángulo mínimo de inclinación que se debe dar al plano para que el cuerpo empiece a deslizar. 2) Para este ángulo, hallar la aceleración del bloque cuando ha empezado a moverse. 1) Si a es el ángulo de inclinación mínimo para el cual el cuerpo ha de comenzar a deslizar, éste ha de ser tal que el cuerpo se encuentre aún en equilibrio: 2) Para este ángulo, si el cuerpo comienza a moverse la aceleración será tal que: 15. Un bloque de 35,6 N está en reposo sobre un plano horizontal con el que roza, siendo 0,5 el coeficiente de fricción dinámico. El bloque se une mediante una cuerda sin peso, que pasa por una polea sin rozamiento, a otro bloque suspendido cuyo peso es también 35,6 N. Hallar: 1) La tensión de la cuerda. 2) La aceleración de cada bloque. 1) La ecuación dinámica es: es decir:

16 de donde: a = 2,45 ms-2 2) La tensión la podemos calcular aislando el bloque que produce el movimiento, donde: 16. Con ayuda de una cuerda se hace girar un cuerpo de 1 kg en una circunferencia de 1 m de radio, situada en un plano vertical, cuyo centro está situado a 10,8 m por encima de un suelo horizontal. La cuerda se rompe cuando la tensión es de 110,88 N, lo cual ocurre cuando el cuerpo está en el punto más bajo de su trayectoria. Hallar: 1) La velocidad del cuerpo cuando se rompe la cuerda. 2) El tiempo que tardará en caer al suelo. 3) Su velocidad en el instante de chocar con el suelo. Cuando el cuerpo está en el punto más bajo de su trayectoria, si v es la velocidad que ha adquirido: Como la velocidad en el instante de romperse la cuerda tiene dirección horizontal, tendremos al cabo de un cierto tiempo t:

17 alcanzando el suelo cuando y = 9,8 m en cuyo instante la velocidad vale: 17. Un cuerpo de 2 kg de masa atado al extremo de una cuerda de 0,5 m de longitud describe una circunferencia situada en un plano vertical. Si la velocidad en el punto más alto es de 5 ms-1, hallar la tensión de la cuerda: a) en el punto más alto de la trayectoria; b) en el punto más bajo; c) en un punto de la trayectoria al mismo nivel que el centro de la circunferencia; d) formando un ángulo de 45º con la horizontal. a) De la figura: Ta + P = Fc, siendo: P = 2 9,8 = 19,6 N y Fc = /0,5 = 100 N, con lo cual: Ta = Fc - P = ,6 = 80,4 N. b) En el punto más bajo la velocidad habrá aumentado debido al recorrido efectuado bajo la acción de la gravedad: con lo cual, en nuestro caso:

18 y la tensión: c) y la tensión: d) Para calcular la velocidad v d primeramente tendremos que hallar lo que el cuerpo ha bajado desde a hasta d. En la figura: con lo cual: y, por tanto: Es decir:

19 18. Una bolita unida por un hilo de 0,5 m de longitud a un punto fijo de una superficie plana gira, deslizándose sin rozamiento sobre dicha superficie, con una velocidad angular de 10 vueltas por minuto. Cuál será la inclinación máxima de la superficie para que la bola continúe describiendo circunferencias? Expresar el resultado mediante una función trigonométrica del ángulo de la superficie con la horizontal. Para que la bolita describa circunferencias, la inclinación máxima que puede tener la superficie debe ser tal que la fuerza centrífuga sea igual a la componente del peso de la bola según el plano de la trayectoria. Es decir: FC = P sen, siendo el ángulo que forma la superficie con la horizontal. Por lo tanto: de donde: y. 19. Si la masa de un ciclista y la de su máquina es de 80 kg, calcular la velocidad mínima que debe tener para rizar el "rizo de la muerte" de radio 7 m. La velocidad que lleve el ciclista debe ser tal que la fuerza centrífuga contrarreste el peso del ciclista y su máquina. Es decir: 20. Una pista de carreras de forma circular tiene 1,5 km de radio. Si no tiene peralte y el coeficiente de rozamiento es 0,12, calcular la velocidad máxima a la que se podrá circular.

20 igual a la fuerza de rozamiento: La velocidad máxima será la que dé lugar a una fuerza centrífuga que sea 21. Un dinamómetro se halla suspendido del techo de la cabina de un ascensor y cuelga una masa de 10 kg. Hallar la indicación del dinamómetro cuando el ascensor está parado y cuando sube con una aceleración constante de 2 m/s². La indicación del dinamómetro será la tensión que soporta el resorte del mismo, luego cuando está parado: T - P = 0 T = P = 10 9,8 = 98 N Cuando asciende con la aceleración de 2 ms -2 T - P = 10 2 T = = 118 N

21 22. Un cuerpo pende de una balanza de resorte colgada del techo de la cabina de un ascensor. Cuando el ascensor desciende con aceleración de 1,26 ms-2, la balanza señala un peso de 17,5 N. 1) Cuál es el verdadero peso del cuerpo? 2) Cuándo marcará la balanza 22,5 N? 3) Cuánto indicará la balanza si se rompe el cable del ascensor? 1) La tensión del resorte ha de ser tal que: luego: 2) Cuando el resorte marca 22,5 N:

22 El ascensor asciende con una aceleración de 1,18 ms-2 3) Si se rompe el cable del ascensor, el conjunto ascensor-resorte-cuerpo desciende con la aceleración de la gravedad (caída libre), luego: 23. Calcular la fuerza media de retroceso que se ejerce sobre una ametralladora que efectúa 120 disparos por minuto, siendo la masa de cada proyectil 10 g y la velocidad inicial 600 m/s 24. Un cohete quema 20 g de combustible por segundo, expulsándolo en forma de gas a la velocidad de ms-1. Qué fuerza ejerce el gas sobre el cohete? El cohete ejerce sobre los gases una fuerza igual a: 25. Una partícula de 1 kg se mueve con velocidad constante de 4 ms-1 en el plano XY, en el sentido positivo de las y y a lo largo de la línea x = 4 m. a) Hallar el momento cinético respecto al origen. b) Qué momento respecto al origen hace falta para mantener el movimiento?

23 a) La velocidad sólo tiene componente en el eje Y, por lo que: El momento cinético es entonces: 26. La distancia media de Júpiter al Sol es 5,22 veces la de la Tierra al Sol. Cuál es el período de revolución de Júpiter? Por la tercera ley de Kepler: de donde el período de Júpiter es: CUESTIONES C.1. Una bola de marfil se deja caer por un plano inclinado 60º respecto de la horizontal y de altura h, sin velocidad inicial. Si no existe fricción, hasta qué altura subirá por un segundo plano con inclinación mitad que el anterior? Si en la bajada recorre 1 m, cuál será la distancia recorrida en el ascenso? Podrias inducir lo que ocurriria si el segundo plano fuese horizontal? (Experiencia realizada por Galileo.)

24 Al no existir rozamiento, la bola de marfil subirá por el segundo plano a la misma altura h. (Principio de conservación de la energia.) De la figura: Si el segundo plano fuese horizontal y sin rozamiento, la bola seguirá moviéndose indefinidamente con movimiento rectilíneo y uniforme. C.2. Se supone una pelota colgada en el centro de un vagón y después el vagón acelera hacia adelante. Describir el movimiento de la pelota respecto: a) la tierra b) el vagón. a) Respecto a la tierra la pelota acelera hacia adelante, como el vagón. b) Respecto al vagón, la pelota debido a su inercia, se moverá hacia atrás mientras siga acelerando. C.3. Dos recipientes cerrados y del mismo aspecto están llenos el primero de plomo y segundo de plumas Cómo podrías determinar cuál de los dos tiene mayor masa si tú y los recipientes estuvieseis flotando en el espacio en condiciones de ingravidez. Podríamos utilizar un método basado en la inercia de los cuerpos, imprimiendo a ambos recipientes un mismo impulso. El que adquiere menos velocidad es el que tiene mayor masa. C.4. Una persona se está pesando en el cuarto de baño con una balanza. Utilizando la idea de acción y reacción por qué es menor lo que indica una báscula cuando empujas el lavabo hacia abajo? por qué es mayor la indicación de la báscula cuando tiras hacia arriba por la parte inferior del lavabo? Al empujar el lavabo hacia abajo, la reacción hace que el peso resulte menor. Lo contrario ocurre cuando se empuja del lavabo hacia arriba por la parte inferior del mismo. C.5. Se pensaba que era imposible enviar un cohete a la Luna porque una vez fuera de la atmósfera terrestre no había aire para que el cohete se impulsara. Hoy sabemos que esta idea es errónea Cuál es la fuerza que impulsa un cohete en el vacío? La fuerza que impulsa un cohete en el vacío hacia adelante es debida a la variación de la cantidad de movimiento de los gases que

25 expulsa hacia atrás. C.6. Un hombre tiene tanta ropa que no puede moverse y se encuentra en la mitad de una pista de patinaje de hielo perfectamente lisa. Cómo puede salir de la pista? Lo que tendrá que hacer es ir lanzando la ropa que se vaya quitando en sentido contrario del que desee moverse. C.7. Se pesa una jaula que contiene un pájaro. La indicación de la balanza varía según el pájaro descanse en su varilla o revolotee en la jaula?. Qué ocurre con un pez, varía la indicación de la balanza si el pez nada o descansa sobre el fondo? a) si el pájaro vuela, transmite su peso al aire y este al suelo. Su peso se reparte entre la superficie del suelo de la jaula y la del suelo de la habitación. Por lo tanto y salvo que la jaula esté herméticamente cerrada, si varía la indicación de la balanza. b) No, ya que el acuario con el pez dentro forman un sistema aislado. C.8. Una cuerda pasa por una polea colgando a ambos lados de esta. Un mono está colgado de uno de los extremos; enfrente de él, un espejo del mismo peso cuelga del otro extremo. Asustado de su imagen, el mono intenta escapar de ella trepando por la cuerda Qué le ocurre al espejo? Justifica la respuesta. Como el peso del mono y el espejo son iguales el conjunto polea, cuerda, mono y espejo forman un sistema aislado, cuando el mono intenta subir ejerce una tensión sobre la cuerda igual a la que recibe el espejo. Mono y espejo tienen la misma velocidad, con lo que el mono siempre se encuentra delante del espejo. C.9. Una cadena extendida sobre una mesa con algunos eslabones colgando hacia fuera es primero mantenida quieta y posteriormente se la deja libre a) es uniformemente acelerado su movimiento? b) su velocidad al cabo de un cierto tiempo, es menor, igual o mayor que la velocidad adquirida al cabo del mismo tiempo por un cuerpo en reposo que cae con caída libre? Al soltar la cadena cada vez es mayor el peso de los eslabones que cuelgan, con lo cual, la aceleración aumenta más y más hasta que la cadena cae libremente, luego: a) Mientras la cadena está sobre la mesa el movimiento no es uniformemente acelerado, la aceleración es cada vez mayor. b) Al ser menor la aceleración que la de la caída libre, la velocidad es menor. Cuando toda la cadena está fuera de la mesa: 1) el movimiento es uniformemente acelerado. 2) la velocidad es menor ya que la velocidad inicial de la cadena es menor que la que tendría en ese instante si hubiera caído libremente. PAGINAS CONSULTADAS:

26

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m.

6. Un hombre de 70 kg de masa se encuentra en la cabina de un ascensor, cuya altura es de 3 m. 1 1. De los extremos de una cuerda que pasa por la garganta de una polea sin rozamiento y de masa despreciable, cuelgan dos masas iguales de 200 gramos cada una. Hallar la masa que habrá de añadirse a

Más detalles

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA

DEPARTAMENTO DE FÍSICA Y QUÍMICA IES CASTILLO DE LUNA PROBLEMAS DE DINÁMICA 1º BACHILLERATO Curso 12-13 1. Se arrastra un cuerpo de 20 Kg por una mesa horizontal sin rozamiento tirando de una cuerda sujeta a él con una fuerza de 30 N. Con qué aceleración

Más detalles

GUIA DE ESTUDIO TEMA: DINAMICA

GUIA DE ESTUDIO TEMA: DINAMICA GUIA DE ESTUDIO TEMA: DINAMICA A. PREGUNTAS DE TIPO FALSO O VERDADERO A continuación se presentan una serie de proposiciones que pueden ser verdaderas o falsas. En el paréntesis de la izquierda escriba

Más detalles

Dinámica. Fuerzas sobre un móvil, y fuerza neta. Leyes de Newton. Fuerzas disipativas, fricción

Dinámica. Fuerzas sobre un móvil, y fuerza neta. Leyes de Newton. Fuerzas disipativas, fricción Dinámica Fuerzas sobre un móvil, y fuerza neta. Leyes de Newton. Fuerzas disipativas, fricción Nivelación: Física Dinámica 1. Un hombre de 80 kg está de pie sobre una balanza de muelle sujeta al suelo

Más detalles

Guía de Ejercicios en Aula: N 3

Guía de Ejercicios en Aula: N 3 Guía de Ejercicios en Aula: N 3 Tema: LEYES DE NEWTON Aprendizajes Esperados Opera con los Principios de Newton y da explicación de las fuerzas a las cuales están sometidos los cuerpos de un sistema proponiendo

Más detalles

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO 1.- Sobre una partícula de masa 500 g actúan las fuerzas F 1 = i 2j y F 2 = 2i + 4j (N). Se pide: a) Dibuje dichas fuerzas en el plano XY. b) La fuerza resultante

Más detalles

EJERCICIOS DE FÍSICA

EJERCICIOS DE FÍSICA EJERCICIOS DE FÍSICA 1. El vector posición de un punto, en función del tiempo, viene dado por: r(t)= t i + (t 2 +2) j (S.I.) Calcular: a) La posición, velocidad y aceleración en el instante t= 2 s.; b)

Más detalles

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012

TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 TRABAJO DE RECUPERACIÓN PARCIAL 1 2012-2013 ÁREA: FÍSICA CURSO: TERCERO DE BACHILLERATO: NOMBRE: FECHA DE ENTREGA: Jueves, 22-11-2012 INSTRUCCIONES: LEA DETENIDAMENTE LOS ENUNCIADOS DE CADA UNO DE LOS

Más detalles

TRABAJO POTENCIA - ENERGÍA

TRABAJO POTENCIA - ENERGÍA PROGRM DE VERNO DE NIVELCIÓN CDÉMIC 15 TRJO POTENCI - ENERGÍ 1. Un sujeto jala un bloque con una fuerza de 7 N., como se muestra, y lo desplaza 6 m. Qué trabajo realizó el sujeto? (m = 1 kg) a) 1 J b)

Más detalles

Problemas de Dinámica

Problemas de Dinámica Problemas de Dinámica 1.- Calcula la resultante de dos fuerzas concurrentes que actúan sobre un mismo objeto, de 3 y 4 N, respectivamente, en los siguientes casos, indicando el módulo, dirección y sentido:

Más detalles

5 Aplicaciones de las leyes

5 Aplicaciones de las leyes 5 Aplicaciones de las leyes de la dinámica ACIVIDADES Actividades DELdel DESARROLLO interiorde de LAla UIDAD unidad 1. Indica con qué interacciona cada uno de los siguientes cuerpos y dibuja las fuerzas

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas (II)

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas (II) 1(5) Ejercicio nº 1 Un bloque de 10 kg se suelta sobre un plano inclinado α = 60º a un altura h = 18 m. El coeficiente de rozamiento es µ = 0 5. Calcula: a) La aceleración del bloque; b) La velocidad final.

Más detalles

Ejercicios de Dinámica

Ejercicios de Dinámica Ejercicios de Dinámica 1. Una fuerza de 14 N que forma 35 con la horizontal se quiere descomponer en dos fuerzas perpendiculares, una horizontal y otra vertical. Calcula el módulo de las dos fuerzas perpendiculares

Más detalles

BOLETÍN EJERCICIOS TEMA 2 FUERZAS

BOLETÍN EJERCICIOS TEMA 2 FUERZAS BOLETÍN EJERCICIOS TEMA 2 FUERZAS 1. Al aplicar una fuerza de 20 N sobre un cuerpo adquiere una aceleración de 4 m/s 2. Halla la masa del cuerpo. Qué aceleración adquirirá si se aplica una fuerza de 100

Más detalles

F2 Bach. Movimiento armónico simple

F2 Bach. Movimiento armónico simple F Bach Movimiento armónico simple 1. Movimientos periódicos. Movimientos vibratorios 3. Movimiento armónico simple (MAS) 4. Cinemática del MAS 5. Dinámica del MAS 6. Energía de un oscilador armónico 7.

Más detalles

1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg.

1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg. Ejercicios de física: cinemática y dinámica 1º Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. Sol: 4 kg. 2º Calcular la masa de un cuerpo que aumenta

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Fuerzas 1(8) Ejercicio nº 1 Una fuerza de 45 N actúa sobre un cuerpo de 15 kg, inicialmente en reposo, durante 10 s. Calcular la velocidad final del cuerpo. Ejercicio nº 2 Sobre un cuerpo de 75 kg actúa una fuerza

Más detalles

4.- Cómo clasificarías las fuerzas teniendo en cuenta la interacción de los cuerpos?

4.- Cómo clasificarías las fuerzas teniendo en cuenta la interacción de los cuerpos? 1.- Qué es una fuerza? 2.- Cómo se identifican las fuerzas? 3.- Cómo pueden interaccionarse los cuerpos? 4.- Cómo clasificarías las fuerzas teniendo en cuenta la interacción de los cuerpos? 5.- Qué entiendes

Más detalles

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO

FISICA I HOJA 5 ESCUELA POLITÉCNICA DE INGENIERÍA DE MINAS Y ENERGIA 5. DINÁMICA FORMULARIO 5. DINÁMICA FORMULARIO 5.1) Una grúa de puente, cuyo peso es P = 2x10 4 N, tiene un tramo de L = 26 m. El cable, al que se cuelga la carga se encuentra a una distancia l = 10 m de uno de los rieles. Determinar

Más detalles

Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos

Fuerzas PROBLEMAS DE FÍSICA DE LOS PROCESOS BIOLÓGICOS RELACIÓN 2. Aula Integral de Física de los Procesos Biológicos Fuerzas 1. Al igual que las demás fuerzas, las fuerzas gravitatorias se suman vectorialmente. Considerar un cohete que viaja de la Tierra a la Luna a lo largo de una línea recta que une sus centros. (a)

Más detalles

1- Determina el módulo y dirección de la resultante de los siguientes

1- Determina el módulo y dirección de la resultante de los siguientes PROBLEMAS DE DINÁMICA 1- Determina el módulo y dirección de la resultante de los siguientes r sistemas r r de r fuerzas: r r r r r r r r r r r a) F 1 = 3i + 2j ; F 2 = i + 4j ; F 3 = i 5j b) F 1 = 3i +

Más detalles

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato

Mecánica Cuestiones y Problemas PAU 2002-2009 Física 2º Bachillerato Mecánica Cuestiones y Problemas PAU 00009 Física º Bachillerato 1. Conteste razonadamente a las siguientes a) Si la energía mecánica de una partícula permanece constante, puede asegurarse que todas las

Más detalles

GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL

GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL GUIA DE EJERCICIOS DE FISICA TERCER PARCIAL 1.- Un helicóptero contra incendios transporta un recipiente para agua de 620kg en el extremo de un cable de 20m de largo, al volar de regreso de un incendio

Más detalles

Guía de Repaso 1: Introducción

Guía de Repaso 1: Introducción Guía de Repaso 1: Introducción 1- La distancia de la Tierra al Sol es casi 104 veces mayor que el diámetro de la Tierra. Al estudiar el movimiento de ésta alrededor del Sol, diría usted que la podemos

Más detalles

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el

k. R: B = 0,02 i +0,03 j sobre un conductor rectilíneo por el FUERZAS SOBRE CORRIENTES 1. Un conductor de 40 cm de largo, con una intensidad de 5 A, forma un ángulo de 30 o con un campo magnético de 0,5 T. Qué fuerza actúa sobre él?. R: 0,5 N 2. Se tiene un conductor

Más detalles

BLOQUE 2. DINÁMICA Y ENERGÍA.

BLOQUE 2. DINÁMICA Y ENERGÍA. BLOQUE 2. DINÁMICA Y ENERGÍA. Dinámica básica. Fuerzas y leyes de Newton. 1. Calcular la masa de un cuerpo que al recibir una fuerza de 20 N adquiere una aceleración de 5 m/s 2. 2. Calcular la masa de

Más detalles

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO

EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO EJERCICIOS SOBRE DINÁMICA: FUERZAS Y MOVIMIENTO 1.- Sobre una partícula de masa 500 g actúan las fuerzas F 1 = i 2j y F 2 = 2i + 4j (N). Se pide: a) Dibuje dichas fuerzas en el plano XY. b) La fuerza resultante

Más detalles

CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II

CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II CUADERNO DE TRABAJO INVESTIGACIÓN DE DE FÍSICA II ANÍBAL CADENA E. CATEDRÁTICO DE LA UNIVERSIDAD 1 INTRODUCCIÓN A lo largo del curso, usted trabajara la parte teórica mediante la elaboración de mapas mentales

Más detalles

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA

FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA FISICA GENERAL CURSADA 2015 Trabajo Práctico Nº 2: DINÁMICA Prof. Olga Garbellini Dr. Fernando Lanzini Para resolver problemas de dinámica es muy importante seguir un orden, que podemos resumir en los

Más detalles

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que

Respecto a la fuerza neta que actúa sobre un cuerpo, es correcto afirmar que Guía práctica Dinámica I: fuerza y leyes de Newton Física Estándar Anual Nº Ejercicios PSU Para esta guía considere que la magnitud de la aceleración de gravedad (g) es 10 1. 2. GUICES016CB32-A16V1 m.

Más detalles

DINÁMICA DE SISTEMAS DE PUNTOS.- Sobre un vagón que se mueve a i m/s con respecto a la vía viaja un cañón que dispara una bala de Kg con una velocidad respecto al suelo de (400 i + 00 j) m/s. Si la masa

Más detalles

FICHA 5_1. LEYES DE NEWTON.

FICHA 5_1. LEYES DE NEWTON. 1. Si un cuerpo observamos que se mueve con velocidad constante, podemos asegurar que sobre él no actúan fuerzas? Explicación. No. Si un cuerpo se mueve con velocidad constante, lo que sabemos es que su

Más detalles

Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos

Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos Unidad III Movimiento de los Cuerpos (Cinemática) Ejercicios Matemáticos Ing. Laura Istabhay Ensástiga Alfaro. 1 Ejercicios de movimiento Horizontal. 1. Un automóvil viaja inicialmente a 20 m/s y está

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Energía y trabajo 1(7) Ejercicio nº 1 Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. Ejercicio

Más detalles

1) Un móvil parte del reposo y acelera a razón de 10 m/s 2.

1) Un móvil parte del reposo y acelera a razón de 10 m/s 2. 1) Un móvil parte del reposo y acelera a razón de 10 m/s 2. a) Cuanto demora en recorrer 44,1 m. b) Qué rapidez tiene a los 2 s c) Qué distancia recorre a los 2 s d) Qué rapidez desarrolla cuando a recorrido

Más detalles

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR

TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR TEMA 1 CINEMATICA MOVIMIENTOS EN DOS DIMENSIONES MOVIMIENTO CIRCULAR CONTENIDOS REPASO DEL ÁLGEBRA VECTORIAL Proyección, componentes y módulo de un vector Operaciones: suma, resta, producto escalar y producto

Más detalles

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2

FÍSICA GENERAL I GUIA DE TRABAJOS PRÁCTICOS Nº 2 FÍSICA GENERAL I - 2017 GUIA DE TRABAJOS PRÁCTICOS Nº 2 Problema 1: Dos cuerdas A y B soportan un cuerpo cúbico de 20 cm de lado y una masa de 100 kg. Un extremo de la cuerda A está unido a una pared y

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios de energía

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios de energía 1(5) 1.- Calcula la altura a la que debe encontrarse una persona de 60 kg para que su energía potencial sea la misma que la de un ratón de 100 g que se encuentra a 75 m del suelo. 2.- A qué altura debe

Más detalles

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo.

CAMPO GRAVITATORIO. 9. Define el concepto de momento angular. Deduce el teorema de conservación del mismo. 1. A qué altura sobre la superficie de la Tierra colocaremos un satélite para que su órbita sea geoestacionaria sobre el un punto del Ecuador? RT = 6370 Km (R h= 36000 Km) 2. La Luna en su movimiento uniforme

Más detalles

P B. = 1,89 m/s Un cuerpo de masa m se encuentra suspendido de un hilo. Se desvía éste de la vertical un ángulo φ

P B. = 1,89 m/s Un cuerpo de masa m se encuentra suspendido de un hilo. Se desvía éste de la vertical un ángulo φ UNIVERSIDD DE OVIEDO Escuela olitécnica de Ingeniería de Gijón urso 3-4 Sabiendo que los bloques y llegan al suelo un segundo después de que el sistema en reposo se abandone a sí mismo, dedúzcanse los

Más detalles

CINEMÁTICA. Es la línea imaginaria que describe el móvil durante o su movimiento.

CINEMÁTICA. Es la línea imaginaria que describe el móvil durante o su movimiento. CINEMÁTICA DEFINICIONES BÁSICAS MOVIMIENTO Se dice que un cuerpo está en movimiento si cambia su posición con el tiempo con respecto a un punto que consideramos fijo (sistema de referencia). La parte de

Más detalles

Universidad Mayor de San Simón Facultad de Ciencias y Tecnología

Universidad Mayor de San Simón Facultad de Ciencias y Tecnología PRACTICA # 2 DE FISICA PROPEDEUTICO II/2007 1. En los siguientes sistemas se desprecia el rozamiento. Determinar la aceleración del sistema: a) m = 2 Kg, F = 10 N b) m 1 = 2 Kg,m 2 = 1.5 Kg c) m 1 = m

Más detalles

=2,5 i +4,33 j N ; F 2

=2,5 i +4,33 j N ; F 2 Dinámica. 1. Calcula la aceleración de un cuerpo de 0 5 kg de masa sobre el que actúan las siguientes fuerzas: F 1 = 5 j ; F 2 = 2 i ; F 3 =4 i 6 j Sol: a=4 i 2 j 2. Descomponer en sus componentes las

Más detalles

Julián Moreno Mestre tlf

Julián Moreno Mestre  tlf www.juliweb.es tlf. 69381836 Ejercicios de dinámica, fuerzas (º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: kg º

Más detalles

10. Cuánto vale la fuerza de rozamiento que actúa sobre un objeto en reposo? Justifica tu respuesta.

10. Cuánto vale la fuerza de rozamiento que actúa sobre un objeto en reposo? Justifica tu respuesta. Leyes de la Dinámica 1. Enuncia la segunda ley de la Dinámica y contesta a las siguientes cuestiones: a) Cómo influye la masa en la aceleración que adquiere un cuerpo cuando actúa sobre él una fuerza impulsora?

Más detalles

2. Calcula la aceleración del sistema formado por una masa de 10 kg situada en un plano inclinado 30 y con un coeficiente de rozamiento de 0,1.

2. Calcula la aceleración del sistema formado por una masa de 10 kg situada en un plano inclinado 30 y con un coeficiente de rozamiento de 0,1. DINÁMICA 1. Dibuja el diagrama de fuerzas, incluyendo la fuerza de rozamiento, si existiera, de cada sistema. Dar el valor de la aceleración de cada sistema. La pelota no rueda, desliza. 2. Calcula la

Más detalles

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante

Ejercicios de Física. Dinámica. J. C. Moreno Marín y S. Heredia Avalos, DFISTS Escuela Politécnica Superior Universidad de Alicante Ejercicios de Física Dinámica, . Un bloque de 5 kg está sostenido por una cuerda y se tira de él hacia arriba con una aceleración de m/ s. a) Cuál es la tensión de la cuerda? b) Una vez que el bloque se

Más detalles

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto

FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto FISICA I Cursada 2014 Trabajo Práctico N 3: Dinámica del Punto 1 1. EJERCICIOS 1.1 Una caja se desliza hacia abajo por un plano inclinado. Dibujar un diagrama que muestre las fuerzas que actúan sobre ella.

Más detalles

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO

LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO LANZAMIENTO HACIA ARRIBA POR UN PLANO INCLINADO 1.- Por un plano inclinado de ángulo y sin rozamiento, se lanza hacia arriba una masa m con una velocidad v o. Se pide: a) Fuerza o fuerzas que actúan sobre

Más detalles

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido

Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende

Más detalles

A) 40 m/s. B) 20 m/s. C) 30 m/s. D) 10 m/s.

A) 40 m/s. B) 20 m/s. C) 30 m/s. D) 10 m/s. ESPOL Actividades en clase Taller Nombre: Paralelo 1) Cuál de las siguientes no es una cantidad vectorial? 1) A) aceleración. B) rapidez. C) todas son cantidades vectoriales D) velocidad. 2) Un avión vuela

Más detalles

ACTIVIDADES REPASO ( Física) 1º BACHILLERATO ( verano) Curso 10-11

ACTIVIDADES REPASO ( Física) 1º BACHILLERATO ( verano) Curso 10-11 ACTIVIDADES REPASO ( Física) 1º BACHILLERATO ( verano) Curso 10-11 1. Se lanza verticalmente hacia arriba una pelota con una rapidez de 30 m/s; a) Cuál es la velocidad y la posición de la pelota después

Más detalles

RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO

RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO RELACIÓN DE PROBLEMAS DINÁMICA 1º BACHILLERATO 1. Una persona arrastra una maleta ejerciendo una fuerza de 400 N que forma un ángulo de 30 o con la horizontal. Determina el valor numérico de las componentes

Más detalles

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s.

a) el momento de inercia de la rueda, b) el momento de la fuerza de fricción y c) el número total de revoluciones hechas por la rueda en los 110 s. Dinámica de sistemas en rotación 1) Momento y aceleración angular. Sobre una rueda actúa durante 10 s un momento constante de 20 N m, y durante ese tiempo la velocidad angular de la rueda crece desde cero

Más detalles

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática

Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Ejercicios de recuperación de 4º de ESO 1ª Evaluación. Cinemática Descripción del movimiento 1.- Enumera todos aquellos factores que te parezcan relevantes para describir un movimiento. 2.- Es verdadera

Más detalles

REPASO VERANO FÍSICA

REPASO VERANO FÍSICA REPASO VERANO FÍSICA 1.- Dos puntos A y B se encuentran separados 60 m. Un móvil se aleja de A hacia B con velocidad constante de 20 m/s y otro móvil se aleja de B hacia A con velocidad de 40 m/s. Si ambos

Más detalles

PROBLEMAS DE DINÁMICA

PROBLEMAS DE DINÁMICA PROBLEMAS DE DINÁMICA 1.- Un bloque de 450 kg de masa se encuentra en reposo sobre un plano horizontal, cuando comienzan a actuar sobre él las fuerzas F 1 = 7000 N ( en dirección horizontal) y F 2 = 4000

Más detalles

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g

a) Trazamos el diagrama del sólido libre correspondiente a todo el sistema y aplicamos la ecuación fundamental de la Dinámica: N C m g 1. res bloques A, B y C de masas 3, 2 y 1 kg se encuentran en contacto sobre una superficie lisa sin rozamiento. a) Qué fuerza constante hay que aplicar a A para que el sistema adquiera una aceleración

Más detalles

PROBLEMAS RESUELTOS TEMA: 2

PROBLEMAS RESUELTOS TEMA: 2 PROBLEMAS RESUELTOS TEMA: 2 1. a) Tenemos una cuerda que pasa por una polea. En un extremo de la cuerda cuelga un peso de 5 N y por el otro se aplica una fuerza de 10 N. Hallar la aceleración del peso.

Más detalles

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h? UNIDAD 5. DINÁMICA 4º ESO - CUADERNO DE TRABAJO - FÍSICA QUÍMICA Ejercicio 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 kg si le ha comunicado una velocidad de 90 km/h?

Más detalles

Ejercicios de momento lineal y conservación de la cantidad de movimiento: 1º Demostrar que: F = dt

Ejercicios de momento lineal y conservación de la cantidad de movimiento: 1º Demostrar que: F = dt Ejercicios de momento lineal y conservación de la cantidad de movimiento: 1º Demostrar que: d p F = dt 2º Calcula la velocidad de retroceso de un cañón de una t al disparar una granada de 10 kg con una

Más detalles

PROBLEMAS Y EJERCICIOS VARIADOS DE FCA DE 4º DE ESO-

PROBLEMAS Y EJERCICIOS VARIADOS DE FCA DE 4º DE ESO- PROBLEMAS Y EJERCICIOS VARIADOS DE FCA DE 4º DE ESO- ) Di si las siguientes frases o igualdades son V o F y razona tu respuesta: a) La velocidad angular depende del radio en un m. c. u. b) La velocidad

Más detalles

PROBLEMAS CINEMÁTICA

PROBLEMAS CINEMÁTICA 1 PROBLEMAS CINEMÁTICA 1- La ecuación de movimiento de un cuerpo es, en unidades S.I., s=t 2-2t-3. Determina su posición en los instantes t=0, t=3 y t=5 s y calcula en qué instante pasa por origen de coordenadas.

Más detalles

TALLER DE TRABAJO Y ENERGÍA

TALLER DE TRABAJO Y ENERGÍA TALLER DE TRABAJO Y ENERGÍA EJERCICIOS DE TRABAJO 1. Un mecánico empuja un auto de 2500 kg desde el reposo hasta alcanzar una rapidez v, realizando 5000 J de trabajo en el proceso. Durante este tiempo,

Más detalles

2. Teniendo en cuenta una rueda que gira alrededor de un eje fijo que pasa por su centro, cuál de las siguientes premisas es correcta?

2. Teniendo en cuenta una rueda que gira alrededor de un eje fijo que pasa por su centro, cuál de las siguientes premisas es correcta? 1. Una persona de masa 70 kg se encuentra sobre una báscula en el interior de un ascensor soportado por un cable. Cuál de las siguientes indicaciones de la báscula es correcta?. a) La indicación es independiente

Más detalles

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: LEYES DE NEWTON GUÍA: 1104 ESTUDIANTE: FECHA:

ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: LEYES DE NEWTON GUÍA: 1104 ESTUDIANTE:   FECHA: ÁREA DE FÍSICA GUÍA DE APLICACIÓN TEMA: LEYES DE NEWTON GUÍA: 1104 ESTUDIANTE: E-MAIL: FECHA: ESTÁTICA 1. Calcular para la fuerza de la figura y tomando 1 cm = 5 N: a) Hallar gráficamente las componentes

Más detalles

UNIDAD 13: EL MOVIMIENTO Y LAS FUERZAS

UNIDAD 13: EL MOVIMIENTO Y LAS FUERZAS UNIDAD 13: EL MOVIMIENTO Y LAS FUERZAS Lee atentamente: 1. EL MOVIMIENTO Decimos que un cuerpo se mueve cuando cambia de posición respecto a un sistema de referencia que se considera fijo. Por ejemplo:

Más detalles

Ejercicio de Física 20/5/03 Seminario de Física y Química

Ejercicio de Física 20/5/03 Seminario de Física y Química Ejercicio de Física 20/5/03 Seminario de Física y Química Colegio Claret Nombre: Curso: 1ºC,nº: 1. a) Un bloque de 2 kg de masa está unido a un muelle (de K=150N/m) comprimido una longitud de 20 cm. Si

Más detalles

DINÁMICA DEL PUNTO Solución: Solución: Solución: Solución: Solución: Solución:

DINÁMICA DEL PUNTO Solución: Solución: Solución: Solución: Solución: Solución: DINÁMICA DEL PUNTO 1.- Se aplica una fuerza constante de 25 N a un cuerpo de 5 Kg, inicialmente en reposo. Qué velocidad alcanzará y qué espacio habrá recorrido al cabo de 10 segundos? Solución: v = 50

Más detalles

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (11h30-13h30)

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (11h30-13h30) PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (11h30-13h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN

Más detalles

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (08h30-10h30)

PRIMERA EVALUACIÓN. FÍSICA Junio 19 del 2014 (08h30-10h30) PRIMERA EVALUACIÓN DE FÍSICA Junio 19 del 2014 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSIÓN

Más detalles

Física I-Ingeniería. PROBLEMAS DE SEGUNDAS PRUEBAS Coordinación Asignatura física I. Física I Ingeniería

Física I-Ingeniería. PROBLEMAS DE SEGUNDAS PRUEBAS Coordinación Asignatura física I. Física I Ingeniería Física I-Ingeniería PROBLEMAS DE SEGUNDAS PRUEBAS 2007-2010 Coordinación Asignatura física I. Física I Ingeniería 2 Primer Semestre 2007 1.- Un proyectil es lanzado desde la cima de un cerro de 50[m] de

Más detalles

DINÁMICA EJERCIOS DE LEYES DE NEWTON

DINÁMICA EJERCIOS DE LEYES DE NEWTON CUARTO TALLER DE REPASO 015-01 DINÁMICA EJERCIOS DE LEYES DE NEWTON 1. En C se amarran dos cables y se cargan como se muestra en la figura. Si se sabe que α=0, determine la tensión en los cables AC y BC.

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética

Seminario de Física. 2º bachillerato LOGSE. Unidad 3. Campo magnético e Inducción magnética A) Interacción Magnética sobre cargas puntuales. 1.- Determina la fuerza que actúa sobre un electrón situado en un campo de inducción magnética B = -2 10-2 k T cuando su velocidad v = 2 10 7 i m/s. Datos:

Más detalles

FÍSICA Y QUÍMICA 4º ESO Apuntes: Fuerzas

FÍSICA Y QUÍMICA 4º ESO Apuntes: Fuerzas 1(21) 1 LAS FUERZAS Y EL MOVIMIENTO. DINÁMICA 1.1 Fuerzas Las fuerzas son interacciones entre cuerpos que modifican su estado de movimiento o producen deformaciones. Pueden ejercerse por contacto o a distancia

Más detalles

física física conceptual aplicada MétodoIDEA Leyes del movimiento de Newton Entre la y la 1º de Bachillerato Félix A.

física física conceptual aplicada MétodoIDEA Leyes del movimiento de Newton Entre la y la 1º de Bachillerato Félix A. Entre la y la física física conceptual aplicada MétodoIDEA Leyes del movimiento de Newton 1º de Bachillerato Félix A. Gutiérrez Múzquiz Contenidos 1. PRIMERA LEY DE EWTO : I ERCIA 2. SEGU DA LEY DE EWTO

Más detalles

A) Composición de Fuerzas

A) Composición de Fuerzas A) Composición de Fuerzas 2. Representa las fuerzas que actúan mediante vectores y halla la fuerza resultante en cada caso: a) Dos fuerzas de la misma dirección y sentido contrario de 5 N y 12 N. b) Dos

Más detalles

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES

I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES I - ACCIÓN DEL CAMPO SOBRE CARGAS MÓVILES 1.- Un conductor rectilíneo indefinido transporta una corriente de 10 A en el sentido positivo del eje Z. Un protón que se mueve a 2 105 m/s, se encuentra a 50

Más detalles

Movimiento Circular Movimiento Armónico

Movimiento Circular Movimiento Armónico REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN LICEO BRICEÑO MÉNDEZ S0120D0320 DPTO. DE CONTROL Y EVALUACIÓN PROFESOR: gxâw á atätá 4to Año GUIA # 9 /10 PARTE ( I ) Movimiento

Más detalles

5. APLICACIONES DE LAS LEYES DE NEWTON

5. APLICACIONES DE LAS LEYES DE NEWTON 5. APLICACIONES DE LAS LEYES DE NEWTON En este capítulo extenderemos las leyes de Newton al estudio del movimiento en trayectorias curvas e incluiremos los efectos cuantitativos del rozamiento Rozamiento

Más detalles

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar

Física I. Estática y Dinámica. Leyes de Newton. Ejercicios. Ing. Alejandra Escobar Física I Estática y Dinámica. Leyes de Newton. Ejercicios UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA Ing. Alejandra Escobar 15 cm 10 cm 6 cm GUÍA DE EJERCICIOS 1. Encontrar

Más detalles

Actividades del final de la unidad

Actividades del final de la unidad Actividades del final de la unidad SOLUCIOES DE FIAL DE UIDAD DE LA UIDAD 5. Sabiendo que las masas del Sol y de la Tierra son,99 0 30 kg y 5,98 0 4 kg, respectivamente, y que la distancia entre la Tierra

Más detalles

SEGUNDO TALLER DE REPASO

SEGUNDO TALLER DE REPASO SEGUNDO TALLER DE REPASO ASIGNATURA: BIOFÍSICA TEMA: DINÁMICA 1. Una fuerza le proporciona a una masa de 4.5kg, una aceleración de 2.4 m/s 2. Calcular la magnitud de dicha fuerza en Newton y dinas. Respuestas:

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Cinemática 1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. R1 = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil, que tiene un

Más detalles

FÍSICA Y QUÍMICA Cinemática

FÍSICA Y QUÍMICA Cinemática 1(7) Ejercicio nº 1 Los vectores de posición de un móvil en dos instantes son Calcula el vector desplazamiento y el espacio recorrido. v R1 r r v r r = -i + 10j y R2 = 2i + 4 j Ejercicio nº 2 Un móvil,

Más detalles

CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS.

CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS. CAMPO GRAVITATORIO. CUESTIONES Y PROBLEMAS. E4A.S2013 Un satélite artificial de 1200 kg se eleva a una distancia de 500 km de la superficie de la Tierra y se le da un impulso mediante cohetes propulsores

Más detalles

Ejercicios Dinámica. R. Tovar.

Ejercicios Dinámica. R. Tovar. Ejercicios Dinámica. R. Tovar. 1.- La figura muestra a un hombre que tira de una cuerda y arrastra un bloque m 1 = 5 [kg] con una aceleración de 2 [m/s 2 ]. Sobre m 1 yace otro bloque más pequeño m 2 =

Más detalles

TEMA 3.- Campo eléctrico

TEMA 3.- Campo eléctrico Cuestiones y problemas resueltos de Física º Bachillerato Curso 013-014 TEMA 3.- Campo eléctrico CUESTIONES 1.- a) Una partícula cargada negativamente pasa de un punto A, cuyo potencial es V A, a otro

Más detalles

PROBLEMAS DE TRABAJO Y ENERGÍA

PROBLEMAS DE TRABAJO Y ENERGÍA 1 PROBLEMAS DE TRABAJO Y ENERGÍA 1- Una caja de 10 kg descansa sobre una superficie horizontal. El coeficiente de rozamiento entre la caja y la superficie es 0,4. Una fuerza horizontal impulsa la caja

Más detalles

c) No se caen porque la velocidad que llevan hace que traten de seguir rectos, al estar dentro de la vagoneta, se aprietan contra ella.

c) No se caen porque la velocidad que llevan hace que traten de seguir rectos, al estar dentro de la vagoneta, se aprietan contra ella. Unidad 2. FUERZAS Y PRINCIPIOS DE LA DINÁMICA 4º F/Q Ejercicio 36: a) Debido a la velocidad de la vagoneta. b) Sobre el pasajero de 60 kg actúan dos fuerzas, la de su peso-hacia abajo-, y la de la reacción

Más detalles

LEYES FUNDAMENTALES DE LA DINÁMICA

LEYES FUNDAMENTALES DE LA DINÁMICA LEYES FUNDAMENTALES DE LA DINÁMICA 1. a) Para las siguientes situaciones, identifica y dibuja las fuerzas que actúan sobre los objetos móviles: b) Indica si son verdaderas o falsas las siguientes afirmaciones

Más detalles

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato

Aplicaciones de los Principios de la Dinámica. 1 Bachillerato Aplicaciones de los Principios de la Dinámica 1 Bachillerato INDICE 1. TIPOS DE FUERZAS. 2. EL PESO 3. FUERZA NORMAL. 4. LA FUERZA DE ROZAMIENTO 5. FUERZA ELÁSTICA. 6. TENSIONES. 7. FUERZA CENTRÍPETA.

Más detalles

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select)

PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) FÍSICA IES Los Álamos PROBLEMAS: DINÁMICA_ENERGÍA_1 (Select) 1. Explique y razone la veracidad o falsedad de las siguientes afirmaciones: a. El trabajo realizado por todas las fuerzas que actúan sobre

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2011

PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2011 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada

Más detalles

EJERCICIOS TRABAJO,POTENCIA Y ENERGÍA.

EJERCICIOS TRABAJO,POTENCIA Y ENERGÍA. EJERCICIOS TRABAJO,POTENCIA Y ENERGÍA. 1. Un objeto se desplaza una distancia de 20 m, al actuar sobre él una fuerza de 14 N. Calcule el trabajo realizado sobre el objeto cuando la fuerza: a) Tiene el

Más detalles

I.E.S. Juan Gris Departamento de Física y Química Física y Química 1º Bachillerato

I.E.S. Juan Gris Departamento de Física y Química Física y Química 1º Bachillerato Unidad 3: Dinámica 3.1 Fuerza o interacción: Características de las fuerzas. Carácter vectorial. Efectos dinámico y elástico de una fuerza. Ley de Hooke. Dinamómetros. Tipos de fuerzas: a distancia, por

Más detalles

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS

UNIVERSIDAD NACIONAL DE SAN LUIS FACULTAD DE INGENIERIA Y CIENCIAS AGROPECUARIAS FÍSICA I TRABAJO PRÁCTICO N o 5: TRABAJO Y ENERGÍA Ing. Electromecánica-Ing. Electrónica-Ing. Industrial-Ing. Química-Ing. Alimentos-Ing. Mecatrónica ESTRATEGIAS PARA LA SOLUCIÓN DE PROBLEMAS 1. Se define

Más detalles