IMPLEMENTACIÓN DE LOS MÉTODOS DE DIFERENCIAS FINITAS Y ELEMENTOS FINITOS Curso Hoja 1. La ecuaciónde Poissonendimensión1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IMPLEMENTACIÓN DE LOS MÉTODOS DE DIFERENCIAS FINITAS Y ELEMENTOS FINITOS Curso 2000 2001. Hoja 1. La ecuaciónde Poissonendimensión1"

Transcripción

1 Curso Hoja. La ecuaciónde Poissonendimensión Consideremos el siguiente problema con condiciones de contorno de tipo Dirichlet { u (x+c(xu(x =f(x, a < x < b u(a =α, u(b =β ( donde c(x 0, x (a, b. a Aproximar la solución del problema anterior mediante un programa MATLABque implemente el método de diferencias finitas (utilizando diferencias centradas para la derivada segunda. b En el caso particular en que a =0,b=,u(0 =, u( =,c(x =4x y e f(x =e x la solución exacta del problema de contorno ( es u(x =e x. Para diversos valores del número de puntos de la partición, comparar los valores obtenidos con el valor de la solución exacta en los nodos de la partición. hallar el error cometido en norma infinito. dibujar la solución exacta y los valores aproximados obtenidos. Solución. % Ecuacion de Poisson en dimension uno. Este programa sirve para resolver % la ecuacion % -u (x+c(xu(x=f(x en (a,b % con condiciones de contorno de tipo Dirichlet % u(a=alfa y u(b=beta. % La funciones c(x y f(x tienen que estar definidas previamente en los % ficheros c.m y f.m respectivamente. n=input( Dame el numero de puntos interiores ; a=input( Dame el extremo izquierdo del intervalo ; alfa=input( Dame el valor de la solucion en dicho extremo ; b=input( Dame el extremo derecho del intervalo ; beta=input( Dame el valor de la solucion en dicho extremo ; h=(b-a/(n+; x=a+h:h:b-h; % Construccion de la matriz y el segundo miembro mat=diag(+c(x*h^; for i=:n mat(i-,i=-; mat(i,i-=-; end sm=f(x*h^; sm(=sm(+alfa; sm(n=sm(n+beta; % Resolucion del sistema sol=mat\sm ;

2 % Escritura de la solucion disp( disp( Los valores de la solucion aproximada en los puntos interiores son disp( disp(sol % Caso particular: a=0, b=, u(0=, u(=exp(-, % c(x=4*x^ y f(x=*exp(-x^ % la solucion exacta del problema de contorno considerado es % u(x=exp(-x^ disp( punto aprox. exacta error disp( exact=exp(-x.^; error=abs(sol -exact; disp([x sol exact error ] % Calculo del error en norma infinito [errinf i]=max(error; fprintf( El error en norma infinito vale %7.5e \n,errinf; fprintf( y se alcanza en el punto %.f \n,x(i % Dibujo de la solucion exacta y los valores aproximados fplot( exp(-x^,[a b] hold on plot(x,sol, ro hold off Consideremos el problema de contorno u (x =sen πx 0, 0 <x<0 u(0 = u(0 = 0 cuya solución exacta es u(x = 00 π πx sen 0. a Aplicar el método de las diferencias finitas al problema anterior. Si n N denota el número de puntos interiores de la partición tomando valores de n = 5k, k =,,...,0 dibujar las soluciones exacta y aproximada determinando el error cometido en norma infinito. b Dibujar el error cometido como función del número de puntos utilizados. Qué potencia gobierna la tasa de decaimiento del error a medida que n crece?. Consideremos el siguiente problema con condiciones de contorno homogéneas de tipo Neumann { u (x+cu(x =f(x, 0 <x<0 u (0 = u (0 = 0 ( siendo c R + {0}. a Aplicar el método de las diferencias finitas aproximando u por la diferencia centrada y las condiciones de contorno por: la diferencia centrada introduciendo los puntos fantasma x y x n+ fuera del intervalo. la diferencia progresiva a la izquierda y la regresiva a la derecha. b Comparar los resultados obtenidos en los apartados y para resolver ( en el caso particular en que f(x =x + e x cuando se toman n = 00 puntos interiores experimentando con diferentes valores de c comprendidos entre 0 4 y0 4. Describir cómo cambia la solución en función del parámetro c. c Estudiar la unicidad de solución del problema ( cuando c =0. Cómo se refleja esta situación en los problemas aproximados de los apartados y?.

3 Curso Hoja. La ecuacióndel calor endimensión Consideremos el siguiente problema de valor inicial y de contorno u t (x, t u xx (x, t =0, 0 <x<0, t>0 u(x, 0 = sen πx 0, 0 x 0 u(0,t=u(0,t=0, t 0 cuya solución es u(x, t =e π t πx 00 sen 0. Aproximar dicha solución mediante el método explícito tomando como paso espacial h = 0.5 y como pasos temporales τ = 0., 0.5, 0.6, 0.8. Dibujar la solución exacta junto con cada una de las soluciones aproximadas para los valores de t = s, s, 4s siendo s = τ h. Contrastar con los resultados teóricos. Implementar los métodos explícito, implícito y de Crank Nicolson para la ecuación del calor no homogénea con condiciones de contorno de tipo Dirichlet generales, dibujando las soluciones aproximadas (utilizar el comando surf de MATLAB. Aplicar los programas del Problema para resolver u t (x, t u xx(x, t =x t, 0 <x<, 0 <t< u(x, 0 = 0, 0 x u(0,t=0, t 0 u(,t=t, t 0. ( Calcular el error en norma infinito cometido con cada uno de los tres métodos teniendo en cuenta que la solución exacta de ( es u(x, t =x t. 4 Se considera el problema u t (x, t κu xx (x, t =0, a < x < b, t > 0 (κ>0 u(x, 0 = f(x, a x b u x (a, t =u x (b, t =0, t 0. (4 a Si u(x, t es la solución de (4 determinar lim u(x, t, a x b. t + b Resolver, mediante el método de Crank Nicolson, el problema (4 en el caso particular en que a = 0,b = y κ = para las temperaturas iniciales: f(x = cos πx. f(x =x x +.

4 Curso Hoja. Las ecuaciones de Poisson y del calor en dimensión Consideremos el siguiente problema de contorno u(x, y = (x + y, 0 <x<, 0 <y< u(x, 0 = x, 0 x u(x, = x ++x, 0 x u(0,y=y, 0 y u(,y= y + ( + y, 0 y cuya solución es u(x, y = x y + xy +x + y. a Escribir un programa que sirva para: Aproximar dicha solución mediante el método de Jacobi considerando el mismo número de puntos interiores n tanto en el eje de abscisas como en el de ordenadas y tomando como precisión en el test de parada de las iteraciones el valor de h, siendo h = n +. Determinar el error en norma infinito cometido. Dibujar la gráfica de la solución aproximada obtenida (utilizar el comando surf de MATLAB. b Idem para el método de Gauss Seidel. c Comparar el número de iteraciones necesarias en cada uno de los dos métodos cuando se toma el mismo valor de h. Aplicar un tratamiento análogo al efectuado en el Problema al siguiente problema de contorno u(x, y =π cos πx sen πy, <x<, 0 <y< u(x, 0 = 0, x u(x, = 0, x u(,y= sen πy, 0 y u x (,y=0, 0 y cuya solución es u(x, y = cos πx sen πy. Aplicar el método de Crank Nicolson para resolver el problema u t (x, y, t xy u(x, y, t =yt(x t, 0 <x<0, 0 <y<0, 0 <t< u(x, y, 0 = 0, 0 x 0, 0 y 0 u(0,y,t=0, 0 y 0, 0 t u(0,y,t = 00yt, 0 y 0, 0 t u(x, 0,t=0, 0 x 0, 0 t u(x, 0,t=0x t, 0 x 0, 0 t mediante los métodos de Jacobi y Gauss Seidel, sabiendo que la solución exacta es u(x, y, t =x yt.

5 Curso Hoja 4. Uso básico de la herramienta pdetool de MATLAB Utilizar la herramienta pdetool para resolver, mediante el Método de los Elementos Finitos, los siguientes problemas en los dominios correspondientes. Hacer, en los casos en los que se conoce la solución exacta, un estudio del error cometido en norma infinito. u(x, y = ( (4x +4x +y + e x(x, 0 <x<, 0 <y< u(x, 0 = 0, 0 x u(x, = e x(x, 0 x u(0,y=y, 0 y u(,y=y, 0 y u(x, y =y e x(x. u(x, y = ( (4x +4x +y + e x(x, 0 <x<, 0 <y< u y (x, 0 = 0, 0 x u(x, = e x(x, 0 x u(0,y=y, 0 y u(,y=y, 0 y u(x, y =y e x(x. { div (( + xy u(x, y = (x + y, (x, y B (0 u(x, y =xy, (x, y B (0 siendo B (0 =. {(x, y R : x + y < }. u(x, y =xy. 4 u t (x, y, t xy u(x, y, t =yt(x t, 0 <x<0, 0 <y<0, 0 <t< u(x, y, 0 = 0, 0 x 0, 0 y 0 u(0,y,t=0, 0 y 0, 0 t u(0,y,t = 00yt, 0 y 0, 0 t u(x, 0,t=0, 0 x 0, 0 t u(x, 0,t=0x t, 0 x 0, 0 t u(x, y, t =x yt.

6 5 { u(x, y =0, (x, y Ω u(x, y =0, (x, y Ω donde el dominio Ω viene dado en la siguiente figura u(x, y = 0, (x, y Ω u(x, y =4, (x, y Γ u(x, = 6 + x, x u(x, = 6 + x, x u(,y=9+4y, y u(,y=9+4y, y donde Ω es la región interior al rectángulo y exterior a la elipse que se muestran en la figura, siendo Γ la propia elipse. u(x, y =x +4y.

7 Curso Hoja 5. Uso básico de pdetool (Continuación Utilizar la herramienta pdetool para resolver, mediante el Método de los Elementos Finitos, los siguientes problemas en los dominios correspondientes. Hacer, en los casos en los que se conoce la solución exacta, un estudio del error cometido en norma infinito. (( +x xy div xy +y u(x, y = ( x + y + ( + x + y, (x, y Ω u(x, y =, (x, y Γ u(x, y =+x, (x, y Γ Γ 4 u(x, y =(, y, (x, y Γ donde Γ = {(x, y R : x + y =,x 0}, Γ = {(x, y R : y =, 0 x } Γ = {(x, y R : x =, y }, Γ 4 = {(x, y R : y =, 0 x } y Ω es el dominio interior a estas fronteras. u(x, y =x + y. u t (x, y, t xy u(x, y, t =0, (x, y Ω, 0 <t<0 u(x, y, 0 = 0, (x, y Ω u(x, y, t =0, (x, y Ω, t 0 donde Ω viene dado en la siguiente figura u tt (x, y, t xy u(x, y, t =0, (x, y Ω, 0 <t<0 u(x, y, 0 = 4 (x + y, (x, y Ω u(x, y, t =0, (x, y Ω, t 0 siendo Ω la bola de centro (0, 0 y radio.

8 Curso Hoja 6. Problemas no lineales Utilizar la herramienta pdetool para resolver, mediante el Método de los Elementos Finitos, los siguientes problemas no lineales en los dominios correspondientes. Hacer, en los casos en los que se conoce la solución exacta, un estudio del error cometido en norma infinito. u + u 4 =(x + y u = x + y en Ω = B ((0, 0 u(x, y = x + y. en Ω. ( u div =0 en Ω=B ((0, 0\B 0. ((0, 0 + u u =0 en B 0. ((0, 0 u = x en B ((0, 0. ( div (( + u u+ u =0, (x, y Ω=(0, (0, x + y ( + u(x, 0u y (x, 0 = x, 0 <x< ( + u(x, u y (x, = x( + x, 0 <x< ( + u(0,yu x (0,y=y, 0 <y< ( + u(,yu x (,x=y( + y, 0 <y<. u(x, y =xy. 4 donde es el operador p laplaciano. 4 u =, (x, y Ω=(0, (0, ( x 4, 0 <x< u(x, 0 = 5 u(x, = 5 u(0,y= 5 u(,y= 5 ( (x +, 0 <x< ( y 4, 0 <y< ( ( + y, 0 <y< p u =div ( u p u,p u(x, y = 5 ( (x + y.

MÉTODOS MATEMÁTICOS (Curso 2012-2013) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla

MÉTODOS MATEMÁTICOS (Curso 2012-2013) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla MÉTODOS MATEMÁTICOS (Curso 2012-2013) Cuarto Curso de Ingeniero Industrial Departamento de Matemática Aplicada II. Universidad de Sevilla Lección 7: Métodos Numéricos para Ecuaciones en Derivadas Parciales.

Más detalles

Curso Hoja 1. Análisis de errores

Curso Hoja 1. Análisis de errores Hoja 1. Análisis de errores 1 Teniendo en cuenta que MATLAB trabaja en doble precisión, calcular el número máquina inmediatamente anterior a 1 y comprobar que dista 2 53 de 1. 2 Calcular 1 2 52, 1 2 53,

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

ANALISIS NUMERICO. Práctica 1 - Diferencias Finitas

ANALISIS NUMERICO. Práctica 1 - Diferencias Finitas ANALISIS NUMERICO Práctica 1 - Diferencias Finitas do Cuatrimestre 014 Clasificación de ecuaciones diferenciales en derivadas parciales Eercicio 1 Hallar las regiones donde la ecuación (α + x) u xx + xyu

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

Matemáticas Febrero 2013 Modelo A

Matemáticas Febrero 2013 Modelo A Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte I)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte I) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte I) Contenido Ecuaciones en derivadas parciales Ecuaciones en derivadas parciales elípticas Ecuación de Laplace Aproximación

Más detalles

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación

Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación DIFERENCIAS FINITAS Ayudante: Rodrigo Torres Aguirre El método

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

Métodos en diferencias para problemas de contorno

Métodos en diferencias para problemas de contorno Métodos numéricos de resolución de ecs. en derivadas parciales Curso 2006-07. Prácticas 1 y 2 Métodos en diferencias para problemas de contorno 1 Resultados sobre existencia de solución de un problema

Más detalles

Ampliación de Matemáticas y Métodos Numéricos

Ampliación de Matemáticas y Métodos Numéricos 4. Ampliación de EDP. Resolución numérica Ampliación de Matemáticas y Métodos Numéricos M a Luz Muñoz Ruiz José Manuel González Vida Francisco José Palomo Ruiz Francisco Joaquín Rodríguez Sánchez Departamento

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico

Ecuaciones en Derivadas Parciales y Análisis Numérico Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 3. Diferencias finitas para la ecuación del calor. 3.1 Resolviendo la ecuación del calor Vamos a resolver la ecuación del calor

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico

Ecuaciones en Derivadas Parciales y Análisis Numérico , Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 5. Diferencias finitas para la ecuación de ondas. 5.1 Resolviendo la ecuación de ondas Vamos a resolver la ecuación de ondas utilizando

Más detalles

Diferencias finitas aplicadas a ecuaciones en derivadas parciales

Diferencias finitas aplicadas a ecuaciones en derivadas parciales Diferencias finitas aplicadas a ecuaciones en derivadas parciales Segundo curso Grado en Física Índice Introducción Aproximación de FD de la ecuación de Laplace. Métodos iterativos. Aproximación de FD

Más detalles

Derivación numérica. h 0 h. f)(x) =

Derivación numérica. h 0 h. f)(x) = Derivación numérica Contenidos Derivada primera de funciones de una variable Derivada segunda de funciones de una variable Derivadas de funciones de dos variables Derivada primera de funciones de una variable

Más detalles

3.1 Representación gráfica de curvas bidimensionales.

3.1 Representación gráfica de curvas bidimensionales. Tema 3 Curvas y superficies Versión: 6 de febrero de 29 3. Representación gráfica de curvas bidimensionales. La representación gráfica de una curva en un ordenador es una linea poligonal construida uniendo

Más detalles

EJERCICIOS DE INECUACIONES

EJERCICIOS DE INECUACIONES EJERCICIOS DE INECUACIONES REPASO DE DESIGUALDADES: 1. Dadas las siguientes desigualdades, indicar si son V o F utilizando la recta real. Caso de ser inecuaciones, indicar además la solución mediante la

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices:

Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: Problemas Ampliación de Matemáticas. Sistemas lineales 1.- Encontrar la factorización L U de las siguientes matrices: 5 2 1 1 0 3 1 0 3 3 1 6. 3 1 6 5 2 1 2.- Dada la matriz A = 10 7 8 7 5 6, 8 6 10 hallar

Más detalles

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única.

1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: con el método de diferencias centrales, existe y es única. I. Resolución numérica de Problemas de Contorno en E.D.O.: Métodos en diferencias finitas 1) Determinar qué elección de h asegurará, a priori, que la solución numérica del P.C.: y (x) + 4 sen x y (x) 4

Más detalles

EJERCICIOS PROPUESTOS: Interpolación

EJERCICIOS PROPUESTOS: Interpolación EJERCICIOS PROPUESTOS: Interpolación 1º. Determínese el polinomio de primer grado que en x = 1 toma el valor y en x 1 = toma el valor. Para ello: a) Escríbase el sistema de ecuaciones lineales que proporciona

Más detalles

Clase 8 Sistemas de ecuaciones no lineales

Clase 8 Sistemas de ecuaciones no lineales Clase 8 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2013 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

1. Hallar el número de operaciones en la evaluación de un polinomio p n (x) = a 0 + a 1 x + + a n x n por el método estándar y el de Horner.

1. Hallar el número de operaciones en la evaluación de un polinomio p n (x) = a 0 + a 1 x + + a n x n por el método estándar y el de Horner. Interpolación. Hallar el número de operaciones en la evaluación de un polinomio p n () = a + a + + a n n por el método estándar y el de Horner.. Hallar el polinomio de interpolación de Lagrange y de Newton

Más detalles

EL LÍMITE AL INFINITO EN EL CÁLCULO DE ÁREAS BAJO UNA CURVA

EL LÍMITE AL INFINITO EN EL CÁLCULO DE ÁREAS BAJO UNA CURVA EL LÍMITE AL INFINITO EN EL CÁLCULO DE ÁREAS BAJO UNA CURVA Sugerencias al Profesor: Comentar que uno de los problemas fundamentales que dieron origen al Cálculo Integral es el de acumulación, el cual

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

METODOS NUMERICOS. Curso

METODOS NUMERICOS. Curso Boletín 1 de prácticas. 1. Localizar las raíces de la ecuación F (x) = 0, para los siguientes casos: (a) F (x) = x + e x. (b) F (x) = 0.5 x + 0.2 sen(x). (c) F (x) = x tg(x). (d) F (x) = x 5 3. (e) F (x)

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II)

Método de diferencias finitas para ecuaciones diferenciales parciales elípticas. (Parte II) Método de diferencias finitas para ecuaciones diferenciales parciales elípticas (Parte II) Métodos numéricos para sistemas lineales Solución numérica de EDPs requiere resolver sistemas de ecuaciones lineales

Más detalles

APLICACIONES COMPUTACIONALES

APLICACIONES COMPUTACIONALES APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA ECUACIONES DIFERENCIALES PARCIALES (EDP) MOTIVACIÓN Una ecuación que tiene derivadas parciales de una función desconocida, de dos o más variables

Más detalles

Introducción a los métodos de solución numérica de E.D.P.

Introducción a los métodos de solución numérica de E.D.P. Capítulo 5 Introducción a los métodos de solución numérica de E.D.P. 5.1 Introducción. En lo sucesivo consideramos las notaciones para E.D.P. siguientes: Supongamos una E.D.P. de orden 2 para la función

Más detalles

Práctica 2. Si se quiere indicar el tipo del objeto simbólico se puede escribir: arg1 = sym('arg1','unreal'); arg2 = sym('arg2','unreal');...

Práctica 2. Si se quiere indicar el tipo del objeto simbólico se puede escribir: arg1 = sym('arg1','unreal'); arg2 = sym('arg2','unreal');... PRÁCTICA FUNCIONES DE UNA VARIABLE Prácticas Matlab Práctica 2 Objetivos Dibujar gráficas de funciones definidas a trozos con el comando Plot. Dibujar funciones implícitas con el comando ezplot. Calcular

Más detalles

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano.

Ejemplo Traza la gráfica de los puntos: ( 5, 4), (3, 2), ( 2, 0), ( 1, 3), (0, 4) y (5, 1) en el plano cartesiano. Plano cartesiano El plano cartesiano se forma con dos rectas perpendiculares, cuyo punto de intersección se denomina origen. La recta horizontal recibe el nombre de eje X o eje de las abscisas y la recta

Más detalles

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES

EJERCICIOS RESUELTOS DE SISTEMAS LINEALES EJERCICIOS RESUELTOS DE SISTEMAS LINEALES 1. Dado el sistema de ecuaciones lineales: 2x + 3y 3 4x +5y 6 a) Escribir la expresión matricial del sistema. b) Discutir el sistema. c) Resolver el sistema por

Más detalles

Clase 9 Sistemas de ecuaciones no lineales

Clase 9 Sistemas de ecuaciones no lineales Clase 9 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Marzo, 2016 con dos incógnitas Un sistema de dos ecuaciones en el que al menos una ecuación es no lineal, se llama

Más detalles

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos

Vectores y Matrices. Tema 3: Repaso de Álgebra Lineal Parte I. Contenidos Tema 3: Repaso de Álgebra Lineal Parte I Virginia Mazzone Contenidos Vectores y Matrices Bases y Ortonormailizaciòn Norma de Vectores Ecuaciones Lineales Algenraicas Ejercicios Vectores y Matrices Los

Más detalles

SELECTIVIDAD. Exámenes de PAU de Matemáticas II de la Comunidad de Madrid.

SELECTIVIDAD. Exámenes de PAU de Matemáticas II de la Comunidad de Madrid. SELECTIVIDAD Exámenes de PAU de Matemáticas II de la Comunidad de Madrid. Contenido del fichero: Modelos de examen y pruebas de las convocatorias de junio y septiembre desde el curso 2001-2002 hasta 2012-2013.

Más detalles

Eliminación del ruido mediante filtros no lineales. Minimización

Eliminación del ruido mediante filtros no lineales. Minimización Eliminación del ruido mediante filtros no lineales. Minimización de la variación total Contenidos Minimización mediante el método del gradiente Un ejemplo sencillo Eliminación de ruido en imágenes Difusión

Más detalles

Límites de una función

Límites de una función Límites de una función Introducción Comenzaremos a analizar la definición del límite finito de tendencia finita a través de un ejemplo. Consideremos la función f. Observemos su regla de asignación y su

Más detalles

PRÁCTICA 9. TRANSFORMADA DE FOURIER

PRÁCTICA 9. TRANSFORMADA DE FOURIER PRÁCTICA 9. TRANSFORMADA DE FOURIER Ejercicio. Teorema de la integral de Fourier: sea f una función casi continua en todo intervalo finito del eje x tal que existe la f(x) dx ; sea f (x) la función definida

Más detalles

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca 1. Hallar f(x, y) si f(x + y, x y) = xy + y. Sean u = x + y y v = x y. Resolviendo este sistema se obtiene Luego, x = u + v f(u, v) = u + v u v e y = u v. ( ) u v + = u uv. Finalmente, volviendo a las

Más detalles

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - FACULTAD DE INGENIERIA MECANICA // EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) DURACION: MINUTOS SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO ESCRIBA CLARAMENTE

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0

Más detalles

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com ECUACIONES DIFERENCIALES DE PRIMER ORDEN Sergio Stive Solano 1 Abril de 2013

Más detalles

Materia: Matemática de 5to Tema: La Hipérbola. Marco Teórico

Materia: Matemática de 5to Tema: La Hipérbola. Marco Teórico Materia: Matemática de 5to Tema: La Hipérbola Marco Teórico Las Hipérbolas son las relaciones que tienen dos asíntotas. Al graficar funciones racionales que a menudo producen una hipérbola. En este concepto,

Más detalles

Funciones de varias variables.

Funciones de varias variables. Funciones de varias variables. Definición. Hasta ahora se han estudiado funciones de la forma y = f (x), f :D Estas funciones recibían el nombre de funciones reales de variable real ya que su valor y dependía

Más detalles

Resolución de Sistema de Ecuaciones Lineales

Resolución de Sistema de Ecuaciones Lineales Resolución de Sistema de Ecuaciones Lineales Hermes Pantoja Carhuavilca Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Hermes Pantoja Carhuavilca 1 de

Más detalles

EDP/M2NI/MASTERICCP/UC

EDP/M2NI/MASTERICCP/UC MASTER U. en Ingeniera de Caminos, Canales y Puertos Métodos Matemáticos y Numéricos en Ingeniería CURSO 2014-15 - Bloque I: EDP Hoja 1 - Preliminares: valores propios y desarrollos en serie de Fourier.

Más detalles

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas.

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. 1.- El polinomio p 3 (x) = 2 (x + 1) + x(x + 1) 2x(x + 1)(x 1) interpola a los primeros cuatro datos de la tabla x

Más detalles

Capítulo 10. Ecuaciones y desigualdades

Capítulo 10. Ecuaciones y desigualdades Capítulo 10 Ecuaciones y desigualdades Desigualdades lineales simultáneas con dos variables Un conjunto de dos o más desigualdades de las formas ax+by+c> 0 o ax+by+c

Más detalles

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á

NÚMEROS REALES. Página 27 REFLEXIONA Y RESUELVE. El paso de Z a Q. El paso de Q a Á NÚMEROS REALES Página 7 REFLEXIONA Y RESUELVE El paso de Z a Q Di cuáles de las siguientes ecuaciones se pueden resolver en Z y para cuáles es necesario el conjunto de los números racionales, Q. a) x 0

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 05 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

FUNCIONES CUADRÁTICAS. PARÁBOLAS

FUNCIONES CUADRÁTICAS. PARÁBOLAS FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b 0,el procedimiento de la

METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b 0,el procedimiento de la METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b,el procedimiento de la bisección genera una sucesión (s n ) n convergente siendo s n a n b n ytal 2 que si lim s n s se cumple que f s y n s n

Más detalles

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8)

PROBABILIDAD Y ESTADÍSTICA. Sesión 5 (En esta sesión abracamos hasta tema 5.8) PROBABILIDAD Y ESTADÍSTICA Sesión 5 (En esta sesión abracamos hasta tema 5.8) 5 DISTRIBUCIONES DE PROBABILIDAD CONTINUAS Y MUESTRALES 5.1 Distribución de probabilidades de una variable aleatoria continua

Más detalles

Práctica 3: Diferenciación

Práctica 3: Diferenciación Análisis I Matemática I Análisis II (C) Análisis Matemático I (Q) Primer Cuatrimestre - 03 Práctica 3: Diferenciación Aplicación de algunos resultados de diferenciación en una variable. Vericar que se

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

www.matesxronda.net José A. Jiménez Nieto

www.matesxronda.net José A. Jiménez Nieto NÚMEROS REALES 1. NÚMEROS IRRACIONALES: CARACTERIZACIÓN. En el tema correspondiente a números racionales hemos visto que estos números tienen una característica esencial: su expresión decimal es exacta

Más detalles

SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES Tema 3 SISTEMAS DE ECUACIONES 1.- Se consideran las matrices 1 2 λ A = 1 1 1 y 1 3 B = λ 0, donde λ es cualquier número real. 0 2 a) Encontrar los valores de λ para los que AB es invertible b) Determinar

Más detalles

Práctica: Métodos de resolución de ecuaciones lineales.

Práctica: Métodos de resolución de ecuaciones lineales. Práctica: Métodos de resolución de ecuaciones lineales. Objetivo: Aplicar dos técnicas de resolución de sistemas de ecuaciones lineales: Un método finito basado en la descomposición LU de la matriz de

Más detalles

Complementos de Matemáticas, ITT Telemática

Complementos de Matemáticas, ITT Telemática Introducción Métodos de punto fijo Complementos de Matemáticas, ITT Telemática Tema 1. Solución numérica de ecuaciones no lineales Departamento de Matemáticas, Universidad de Alcalá Introducción Métodos

Más detalles

Práctica 2. Si se quiere indicar el tipo del objeto simbólico se puede escribir: arg1 = sym('arg1','positive'); arg2 = sym('arg2','positive');...

Práctica 2. Si se quiere indicar el tipo del objeto simbólico se puede escribir: arg1 = sym('arg1','positive'); arg2 = sym('arg2','positive');... PRÁCTICA FUNCIONES DE UNA VARIABLE Prácticas Matlab Objetivos Práctica Dibujar gráficas de funciones definidas a trozos con el comando Plot. Dibujar funciones implícitas con el comando ezplot. Calcular

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 5 2.1. Reglas de derivación............................

Más detalles

Boletín I. Cálculo diferencial de funciones de una variable

Boletín I. Cálculo diferencial de funciones de una variable CÁLCULO Boletín I. Cálculo diferencial de funciones de una variable 1. Demuestra que la ecuación x + sin x = Ejercicios básicos 1 x + 3 tiene al menos una raíz en [0, π]. 2. Justifica la existencia de

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones

Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria

METODOS ITERATIVOS. Hermes Pantoja Carhuavilca. Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Facultad de Ingeniería Mecanica Universidad Nacional de Ingenieria Métodos Numéricos Contenido 1 Métodos Iterativos Introducción Definición Métodos Iterativos Método de Jacobi Convergencia Método de Gauss

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

2. Sistemas de ecuaciones lineales

2. Sistemas de ecuaciones lineales 2 Sistemas de ecuaciones lineales 2 Ejercicios resueltos Ejercicio 2 Estudiar el número de condición de Frobenius de la matriz a b A a + ε b Solución: El determinante de A es A ab + ba + ε b ε Si b 0 y

Más detalles

Ecuaciones Diferenciales y Métodos Numéricos

Ecuaciones Diferenciales y Métodos Numéricos NOMBRE...Número... Ecuaciones Diferenciales y Métodos Numéricos 3 er Curso I. Caminos. Ecuaciones en Derivadas Parciales Examen Parcial: 7-XII-2006 Observaciones: Escribir exactamente la solución donde

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

Resolución de ecuaciones no lineales

Resolución de ecuaciones no lineales Resolución de ecuaciones no lineales Contenidos Raíz de una ecuación Método de bisección El método de Newton-Raphson Método de la secante Orden de convergencia Comandos Matlab Ejemplo: una bola que flota

Más detalles

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial

UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Tema 8. Geometría de la Circunferencia

Tema 8. Geometría de la Circunferencia Tema 8. Geometría de la Circunferencia 1. Definición la circunferencia. Ecuación de la circunferencia 1.1 Ecuación de la circunferencia centrada en el origen 1. Ecuación de la circunferencia con centro

Más detalles

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy =

Por el teorema de Green, si llamamos D al interior del cuadrado, entonces. dxdy. y. x P. 1 dx. 1 (4x 3 2y) dy = TEOREMA E GREEN. 1. Calcular y dx x dy, donde es la frontera del cuadrado [ 1, 1] [ 1, 1] orientada en sentido contrario al de las agujas del reloj. Por el teorema de Green, si llamamos al interior del

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer eamen parcial del curso Cálculo de una variable Grupos: Uno y Cinco Período: Inicial del año 00 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

φ(x) u xx +u yy =0 u=0 φ(x) = 100sinh(pi/10)sin(pi x/10)/sinh(pi) ψ (y) = 100sin(pi/10)sinh(pi y/10)/sinh(pi)

φ(x) u xx +u yy =0 u=0 φ(x) = 100sinh(pi/10)sin(pi x/10)/sinh(pi) ψ (y) = 100sin(pi/10)sinh(pi y/10)/sinh(pi) PRÁCTICAS DE CÁLCULO NUMÉRICO III PRÁCTICA 6: la ecuación de Laplace en un dominio rectangular mediante diferencias finitas En esta práctica resolveremos la ecuación de Laplace con condiciones de contorno

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas Tema 4 Aplicaciones de las Derivadas 4.1 Introducción Repasaremos en este Tema algunas de las aplicaciones fundamentales de las derivadas. Muchas de ellas son ya conocidas por tratarse de conceptos explicados

Más detalles

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)

EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE SUS PROCEDIMIENTOS PROHIBIDO EL USO DE CELULARES U OTROS EQUIPOS DE COMUNICACION

Más detalles

Lista de ejercicios # 5

Lista de ejercicios # 5 UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS MA-005 Ecuaciones Diferenciales para Ingeniería ESCUELA DE MATEMÁTICA Segundo Semestre del 206 Lista de ejercicios # 5 Ecuaciones diferenciales en derivadas

Más detalles

Cuaderno de Actividades 4º ESO

Cuaderno de Actividades 4º ESO Cuaderno de Actividades 4º ESO Relaciones funcionales. Estudio gráfico y algebraico de funciones 1. Interpretación de gráficas 1. Un médico dispone de 1hora diaria para consulta. El tiempo que podría,

Más detalles