Matemáticas Febrero 2013 Modelo A

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matemáticas Febrero 2013 Modelo A"

Transcripción

1 Matemáticas Febrero 0 Modelo A. Calcular el rango de a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las siguientes afirmaciones es cierta en un triángulo rectángulo: a) La longitud de la hipotenusa es mayor que la suma de los catetos. b) La longitud de la hipotenusa es mayor que cualquiera de los catetos. c) El ángulo opuesto a la hipotenusa es menos que π/5 radianes.. Hallar la ecuación implícita de la recta que pasa por el punto A = (,) y es perpendicular a x t y t a) x y =. b) x + y = 5. c) x y =. x t ; y t x t ; t y x y ; x x y ; y La ecuación de la perpendicular a la recta y ax b y x ; y x ; x y por el punto x, y es x 0 0 y x y a 0 0

2 y x x y 5. Cuál es la posición relativa de estas dos rectas? x t r: y t z t x p s: y p z p a) Se cortan. Están en el mismo plano, Secantes. b) Son paralelas. c) Se cruzan. Están en distintos plano. Si x x v w y y v w z z v w 0, en tonces Se cruzan. Están en distintos plano. 0

3 6. Para qué valor de α el sistema x y z 5x yz es compatible indeterminado? y z a) α =. b) α = /. c) α = El sistema es compatible indeterminado para.

4 Matemáticas Junio 0 Modelo A. Calcule el valor de α para que el polinomio P(x) = αx x + verifique P( ) = 0. a) α =. b) α = 0. c) α =. P( ) = α( ) ( ) + =. Cuánto es π/5 radianes en grados? a) 8 grados. b) 7 grados. c) 6 grados.. Calcular 0 0. a) 0. b) No se pueden multiplicar ambas matrices. 0 c) 0.. Tiene alguna solución el siguiente sistema? x y x y x y 9 a) No tiene ninguna solución. b) Tiene una única solución. c) Tiene infinitas soluciones. 5. Para cuantos valores de α el módulo del vector v = (α, α, ) es igual a? a) Ningún valor. b) Un único valor. c) Más de un valor.

5 6. La función f x x si x x si x verifica que: a) Es discontinua en x =. b) No está definida en x = 0. c) Es continua en x =. Hay que estudiar los límites laterales en x =. lim f x lim x 0 x x lim f x lim x x x Los límites laterales no coinciden, por lo tanto es discontinua en x =. f xx f x x

6 7. La función f(x) = x x tiene en el punto (, ): a) Un máximo. b) Un punto de inflexión. c) Un mínimo. La derivada de f(x) = x x es: f (x) = x x = 0; x = ±; En y en tenemos un posible máximo o mínimo. La derivada segunda es f (x) = 6x f () = 6 > 0, hay un mínimo. f ( ) = 6 < 0, hay un máximo.

7 x 6 es: x 8. El dominio de la función f x a) { 6,0}. b) [ 6,0) (0,+ ). c) (, 6] (0,+ ).

8 9. El valor del lim x x x a). b) 0. c). x es x x x x x x x x x lim x x x lim lim x x x x x x x x x x x x x x lim lim lim x x lim x x x x x x x x x x x x x x x x x 5

9 0. El valor de x x dx a) b) c) 8 ln 9 ln 8 arctg x x 8 dx dx ln x ln ln ln 8 ln ln x x 6

10 Matemáticas Junio 0 Modelo E. Cuál es el resto de dividir P(x) = x x x entre Q(x) = x +? a) x. b). c) x.. La igualdad sen(π α) = sen(α) es: a) Cierta para cualquier valor de α. b) Es cierta para algunos valores de α y es falso para otros valores de α. c) Es falsa para cualquier valor de α.. Cuánto debe valer α para que a) α = 0. b) α =. c) Para ningún valor de α ?. Para qué valor de α el sistema tiene única solución en la que x =? x y x y a) α = 0. b) α =. c) α =. 5. Cuál es el producto vectorial de v = (,,5) y w = (, 8,7)? a) ( 7, 9,7). b) (, 9,5). c) (7, 9, 7).

11 6. El valor de x x dx a) 7 ln 0. b) 7 0. c). 7 0 x dx x x dx 7 0 x x

12 7. El valor del a). b). c) 0. x0 ln cos x lim sen x es: ln cos x lim, resulta una indeterminación. Aplicamos L hopital x0 sen x tg x 0 lim 0 x0 cos x tg x cos x

13 8. La función f x x x x x si x si x verifica que: a) Para el valor x = es discontinua. b) En x = no está definida. c) Es continua en x =. Hay que estudiar los límites laterales en x =. lim x x lim x x x x Los límites laterales no coinciden, por lo tanto es discontinua en x =.

14 9. El dominio de la función a) {,} b) (,] [,+ ). c) (,) (,+ ). f x x 5x es: El dominio de definición de una función es el conjunto de elementos que tiene imagen. La expresión f x x 5x define una función f : I R, en (,] [,+ ) porque en el dominio de definición de una raíz la expresión que está dentro de la raíz tiene que ser mayor o igual que 0, en el caso que sea negativa no tiene imagen. Por lo tanto tenemos: x 5x b b ac a x x 5

15 0. La gráfica de la función f x a) y =. b) y =. c) x =. x, tiene la asíntota vertical. x Las asíntotas verticales se presentan en aquellos puntos que anulan el denominador. Para f x x en x = hay una asíntota vertical, ya que x = 0 x 6

16 Matemáticas Junio 0 Modelo F x x 5x 6x. El dominio de definición de la función hx es: a) {/}. b) {0,,}. c) {0,,}.. Cuál de estas afirmaciones es verdadera? a) El periodo de la función f(x) = tg(x) es π. b) La función f(x) = tg(x) no está definida para x = π/6 k π/, donde k. c) El periodo de f(x) = tg(x) es π/6.

17 . Sea la función f x a) f x lim 0 x b) f x lim 0 x c) f x lim 0 x x x. Cuál de las siguientes afirmaciones es verdadera?

18 . Sea x f x x x si x < 0 si x 0 si x Entonces: a f es continua en. b f es derivable en {0,}. c) f es derivable en (0, )

19 5. Consideramos la función: f x x 9x x definida en [0,]. Entonces: a) El valor mínimo de f(x) es y se alcanza para x =. b) El valor mínimo de f(x) es 9 y se alcanza para x =. c) El valor mínimo de f(x) es 9 y se alcanza para x = 0. f x x 8x La derivada de f x x 9x x es b b ac a x x En y en tenemos un posible máximo o mínimo. La derivada segunda es f (x) = 6x 8 f () = 6 > 0, hay un mínimo. f () = 6 < 0, hay un máximo.

20 6. Una primitiva de x 5x x x x dx es: x a) ln ln x. x b) ln x x x. x 5x x c) x x x x x x x x x x 5x A B C A( x) ( x) Bx( x) Cx( x) x x x x x x x ( x ) ( x ) x 5x A x x Bx x Cx x x A 0 0 B 0 0 C 0 0 A A x 5 A B C B 6 B x 5 ABC6C C x 5x dx x x x x x x x x x x ln xln x ln x ln ln xk x 5

21 Matemáticas Junio 0 Modelo J. La función definida por f x x, para todo x, verifica a) Está acotada. b) Está acotada inferiormente. c) Está acotada superiormente.. En el intervalo (0,π/) el valor exacto de la expresión tg (arc sen (/)) es a) b) c)...

22 0 si x 0 si x 0 verdadera?:. Sean f x a g f es continua en. b) f es continua en x = 0. c) g es continua en x =. y gx x si x < x si x Cuál de las siguientes afirmaciones es

23 . El valor de a). b) e. c). x lim x x x x x es: Utilizaremos el número e en el cálculo de límite de expresiones x sucesión y n tiende a la fórmula es: y lim ( ) lim n y n x n n x e n y n n, cuando la base tiende a y la x x x x xx x lim lim x x x x x lim x lim x x x x x x x x x x x x x e e e e e x lim x x x

24 5. Decir si la función f x x x, presenta alguna de las siguientes simetrías: x a) Respecto del eje Y. b) Respecto al origen. c) No es par ni impar. 6. El valor de x 0 xe dx es a) e. b). c) e. Hacemos un cambio de variable. x = t, xdx = dt Si x = 0 t = 0 Si x = t = x t t xe dx e dt e e 0 0 0

25 Matemáticas Septiembre 0 Modelo A. Cuál es el resto de dividir P(x) = x x x entre Q(x) = x +? a). b). c) 0.. Sea x un valor real positivo Existe un triángulo rectángulo cuyos catetos midan x y x, y la hipotenusa mida x? a) Sí, para cualquier x positivo. b) Para un único x. c) No, para ningún x.. Supongamos que α es un número real tal que 0 0, entonces se verifica que: 0 a) α debe ser un valor menor que 0. b) α debe ser un valor mayor que 0. c) No existe tal α.. La solución del sistema a) x <. b) y <. c) z >. x yz x y x y z 0 verifica: 5. Cuál es el producto vectorial de u = (,, ) y v = (, 0, )? a) (,,). b) (,, 6). c) (,0,). e uv e 0 ee 6e e, 6 e

26 6. El valor de x x edx 0 es a) 0. b). c) e. u xu x x ve v e x x x x x x ( ) ( ) 0 xedx xe e xee e x e e (0 ) 0 ( ) 0 0 0

27 7. El valor de a). b). c) 0. x0 lim ln cos x sin x es x0 ln cos x lim sen x, resulta una indeterminación. Aplicamos L hopital tg x cos x x0 tg x 0 lim 0 cos x

28 8. La función f x x x x x si x si x verifica que: a) Para el valor x = es discontinua. b) En x = no está definida. c) Es continua en x =. Hay que estudiar los límites laterales en x =. lim x x lim x x x x Los límites laterales no coinciden, por lo tanto es discontinua en x =.

29 9. La función f x x x tiene en el punto (0,0): a) Un máximo. b) Un mínimo. c) Un punto de inflexión. x x x x x xx x x x f x x x x x x x x x 8x x x fx x 8x 8x x x 8x x x 8x x x x 8x 8x x x x x x x x8x 8x 6x 0x 0 x x 5

30 0. La gráfica de la función f x a) y =. b) y =. c) x =. x, tiene la asíntota vertical: x Asíntotas verticales, se presentan en aquellos puntos que anulan el denominador. x + = 0; x = 6

31 Matemáticas Septiembre 0 Modelo C x. Descomponga en fracciones simples x. a) b) c) x x. x x. x x.. Cuánto es π/ + π/ radianes en grados? a) 0 grados. b) 0 grados. c) 50 grados.. Calcular 0 0. a) 0. 0 b). 0 c) No se pueden multiplicar ambas matrices.. Para qué valor de α el sistema xyz x y z es compatible indeterminado? x yz a) α =. b) α = /. c) α = Cuál es la distancia del punto A = (,) a la recta x y + = 0? a) b) /5 5 c)

32 6. La función f x x es creciente en: a) (,). b) (,). c) (,). Miramos dos puntos a ver cómo se comporta la función. O también, Si f es una función definida y derivable en un intervalo I: Los intervalos de crecimiento coinciden con los intervalos en que f 0. Los intervalos de decrecimiento coinciden con los intervalos en que f 0. x x x x x 0 0 f 6 6 f f 0 0 En el intervalo (,0), la función crece. Recordar que no puedo comprobar en x = porque no está definida.

33 7. El valor de x x dx a) b) c) 7 ln 5 7 ln 5 7 ln 5 x x 7 dx dx lnx ln ln ln7 ln5 ln x x 5

34 8. La función f x x si x x si x verifica que: a) Es continua en x =. b) Es discontinua en x =. c) No está definida en x =. Hay que estudiar los límites laterales en x =. lim f x lim x 7 x x lim f x lim x x x Los límites laterales no coinciden, por lo tanto es discontinua en x =.

35 9. El valor del a). b). c) 0. x0 ln cos x lim sen x es: x0 ln cos x lim sen x, resulta una indeterminación. Aplicamos L hopital tg x cos x x0 tg x 0 lim 0 cos x 5

36 0. El dominio de la función f x x 5x 6 es: a) (,) (,+ ). b) {,}. c) (,). Asíntotas verticales, se presentan en aquellos puntos que anulan el denominador. x 5x 6 b b ac a x x 6

37 Matemáticas Septiembre 0 Modelo D. Calcule el coeficiente que acompaña a x al desarrollar (x + ). a) 6. b). c).. En un triángulo rectángulo un cateto mide 6 y el ángulo opuesto mide π/6, Cuánto vale la hipotenusa? a) 0 6. b). c).. Calcular el rango de. a) b) c). Tiene alguna solución el siguiente sistema? x y 0 x y x y 9 a) No tiene ninguna solución. b) Tiene una única solución. c) Tiene infinitas soluciones. 5. Hallar la ecuación implícita de la recta que pasa por el punto A = (,) y es perpendicular a x t y t a) x y = 0. b) x + y =. c) x + y =. t x ; x y ; y x t y La ecuación de la perpendicular a la recta y ax b y x ; y x; yx 0 por el punto x, y es x 0 0 y x y a 0 0

38 6. La función f x a) Es discontinua en x =. b) No está definida en x = 0. c) Es continua en x =. x si x verifica que: x si x Hay que estudiar los límites laterales en x =. lim f x lim x x x lim f x lim x 5 x x Los límites laterales no coinciden, por lo tanto es discontinua en x =.

39 7. La función f(x) = x 9x + x tiene en el punto (,9): a) Un máximo relativo. b) Un máximo absoluto. c) Un mínimo. La derivada de f(x) = x 9x + x es: f (x) = x 8x + x 8x + = 0; x = y en x = tenemos un posible máximo o mínimo. La derivada segunda es f (x) = 6x 8 f () = 6 8 = 6 < 0, hay un máximo. f () = 6 8 = 6 > 0, hay un mínimo.

40 x 6 es: x 8. El dominio de la función f x a) { 6,0}. b) [ 6,0) (0,+ ). c) (, 6] (0,+ ). Asíntotas verticales, se presentan en aquellos puntos que anulan el denominador. x 6 x Para f x, en x = 0, tenemos una asíntota vertical. Y además como tenemos una raíz tenemos que mirar que pasa en el numerador x + 6 = 0. Para valores mayores o iguales de 6 la función está definida excepto para x = 0.

41 9. El valor de a) /. b). c). lim x x x x x 5 es: lim x x x x lim x x x x x5 x x 5 0 x x x x x

42 0. El valor de x x dx a) b) c) 8 ln 9 ln 8 arctg x x 8 dx dx ln x ln ln ln 8 ln ln x x 6

43 Matemáticas Febrero 0 Modelo A. Calcule el coeficiente que acompaña a x y al desarrollar (x + y) 5. a) 0. b) 0. c) 0.. Sea x un valor real positivo Existe un triángulo rectángulo cuyos catetos midan y, y cuya hipotenusa mida 5x? a) Sí, para cualquier x positivo. b) Únicamente cuando x =. c) No, para ningún x.. Si A 0 Qué afirmación e cierta? a) A = A. b) A = A. c) A = A.. Cuándo el sistema x yz y z z es compatible determinado? a) Si α = 0. b) Si α 0. c) Para ningún valor de α es compatible determinado.

44 5. Qué recta que pasa por el punto A = (,) y es perpendicular a x 7 t? y t a) x + y =. b) x y = 0. c) 7x y =. x 7 t ; y t t x7 ; x 7 y ; y x t y La ecuación de la perpendicular a la recta y ax b y x ; y x ; yx por el punto x, y es x 0 0 y x y a Cuál es la distancia del punto A = (,,) al plano x + y + z = 0? a). b). c).

45 Matemáticas Febrero 0 Modelo B. Cuál es el cociente de dividir P(x) = x + x + 5x + 9x + 6 entre Q(x) = x +? a) x + x + 5x 9. b) x + x + x + 6. c) x + 5x + 9x Sea T un triángulo rectángulo que tiene sus dos catetos de igual longitud. Sea h la longitud de la hipotenusa de T y sea c la longitud de cada uno de los catetos de T. Entonces: a) Siempre se tiene que h < c. b) Siempre se tiene que h = c. c) Siempre se tiene que h > c.. Si 0 A 0 y O Qué afirmación e cierta? a) A = A. b) A A. c) A = O.. Cuándo el sistema x yz yz z es incompatible? a) Si β = 0. b) Si β 0. c) Para ningún valor de β es incompatible. 5. Cuál es la distancia del punto A = (,5) a la recta x =? a). b). c). 6. Consideramos los vectores u = (,,α), v = (,,β), w = (,,γ). Entonces: a) Para todo α, β y γ los vectores u, v y w son linealmente dependientes. b) Para todo α, β y γ los vectores u, v y w son linealmente independientes. c) No se da ninguna de las dos circunstancias anteriores.

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

Tema 1. Cálculo diferencial

Tema 1. Cálculo diferencial Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada (Modelo del 01) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 011-01 Opción A Ejercicio 1, Opción A, Modelo de 01 Sea la

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).

TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q). TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si

Más detalles

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0

Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0 Funciones continuas Funciones continuas Continuidad de una función Si x 0 es un número, la función f(x) es continua en este punto si el límite de la función en ese punto coincide con el valor de la función

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 05 Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo

Más detalles

SELECTIVIDAD. Exámenes de PAU de Matemáticas II de la Comunidad de Madrid.

SELECTIVIDAD. Exámenes de PAU de Matemáticas II de la Comunidad de Madrid. SELECTIVIDAD Exámenes de PAU de Matemáticas II de la Comunidad de Madrid. Contenido del fichero: Modelos de examen y pruebas de las convocatorias de junio y septiembre desde el curso 2001-2002 hasta 2012-2013.

Más detalles

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD

DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)

Más detalles

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A

IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.

Más detalles

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.

Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)

Más detalles

5. Al simplificar. expresión se obtiene:

5. Al simplificar. expresión se obtiene: ARITMÉTICA. [ ( 7 ) 9 ( 7 )] es igual a : 5. El resultado de simplificar la expresión. 5 5 5 7 7, 6 + es igual a: 5 9 7 6 5 5. El valor de 75 6 5 5 ( 5 )( 65 ) log es igual a: 5 5 5. Al simplificar Mayo

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

Examen de Junio de 2011 (Común) con soluciones (Modelo )

Examen de Junio de 2011 (Común) con soluciones (Modelo ) Opción A Junio 011 común ejercicio 1 opción A ['5 puntos] Se desea construir un depósito cilíndrico cerrado de área total igual a 54 m. Determina el radio de la base y la altura del cilindro para que éste

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN

FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN FUNCIONES.FUNCIONES ELEMENTALES. LÍMITES DE UNA FUNCIÓN 1 FUNCIONES FUNCIÓN REAL DE VARIABLE REAL Una función real de variable real es una relación que asocia a cada número real, (variable independiente),

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

1. Ejercicios 3 ; 7 4 6, 270 75, 28

1. Ejercicios 3 ; 7 4 6, 270 75, 28 1. Ejercicios 1. Ordena de menor a mayor los siguientes números racionales y represéntalos en una recta numérica: 9 4 ; 2 3 ; 6 5 ; 7 3 ; 7 4 2. Determina, sin hacer la división de numerador por denominador,

Más detalles

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto

2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv

Más detalles

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD

PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD Considera la función f(x)= x 3 + px donde p es un número real. Escribir (en función de p) la ecuación de la recta tangente a la grafica f(x) en el punto de abscisa

Más detalles

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)

Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2) Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

5.1. Recta tangente, normal e intersección de curvas. Recta tangente

5.1. Recta tangente, normal e intersección de curvas. Recta tangente 5. Aplicaciones de la Derivada 5.1. Recta tangente, normal e intersección de curvas Recta tangente Desde la escuela primaria se sabe que la recta tangente en un punto de una circunferencia es aquella recta

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

CÁLCULO DIFERENCIAL 9. UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS

CÁLCULO DIFERENCIAL 9. UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS CÁLCULO DIFERENCIAL 9 UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS SOLUCIONES DE LA COLECCIÓN DE PROBLEMAS - CAPÍTULO 3 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD

Más detalles

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad

Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales

Más detalles

ANDREA CALVO GARCÍA Nº 6 2º C

ANDREA CALVO GARCÍA Nº 6 2º C FUNCIONES ANDREA CALVO GARCÍA Nº 6 2º C Bach. INDICE FUNCIONES... 3 1. Funciones reales de variable real.... 4 2. Clasificación de funciones.... 6 3. Puntos de corte con los ejes.... 9 4. Signo de una

Más detalles

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B

Concepto de función. Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B Concepto de función Dados dos conjuntos A y B, llamamos función a la correspondencia de A en B en la cual todos los elementos de A tienen a lo sumo una imagen en B, es decir una imagen o ninguna. Función

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel

TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel TIPOS DE FUNCIONES Repasar los conceptos de dominio, rango, gráfica, elementos esenciales y transformaciones de las funciones: lineal, cuadrática, racional, trigonométrica, exponencial y logarítmica. FUNCIONES

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

GEOMETRÍA: ESPACIO AFÍN

GEOMETRÍA: ESPACIO AFÍN GEOMETRÍA: ESPACIO AFÍN.- ECUACIONES DE LA RECTA EN EL PLANO..- Ecuación vectorial Sea Pab (, ) un punto de la recta r, v = ( v, v) dirección que r, y, sea (, ) en el siguiente dibujo: un vector, no nulo,

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.4: La derivada y sus propiedades básicas. La Regla de la cadena. El concepto de derivada aparece en muchas situaciones en la ciencias: en matemáticas

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN

INSTRUCCIONES GENERALES Y VALORACIÓN UNIVERSIDADES P ÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO 215-216 MATERIA: MATEMÁTICAS II MODELO INSTRUCCIONES GENERALES Y VALORACIÓN Después

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Enunciados) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Enunciados) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Enunciados) Isaac Musat Hervás 28 de septiembre de 2016 2 Índice general 1. Año 2000 7 1.1. Modelo 2000 - Opción A.....................

Más detalles

N = {1, 2, 3, 4, 5,...}

N = {1, 2, 3, 4, 5,...} Números y Funciones.. Números Los principales tipos de números son:. Los números naturales son aquellos que sirven para contar. N = {,,, 4, 5,...}. Los números enteros incluyen a los naturales y a sus

Más detalles

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 3.- FUNCIONES ELEMENTALES

1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 3.- FUNCIONES ELEMENTALES 1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 3.- FUNCIONES ELEMENTALES 1 1.- FUNCIONES. CARACTERÍSTICAS Concepto de función. Una función es una forma de hacerle corresponder a un valor x un único

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

Aplicaciones de las Derivadas

Aplicaciones de las Derivadas Tema 4 Aplicaciones de las Derivadas 4.1 Introducción Repasaremos en este Tema algunas de las aplicaciones fundamentales de las derivadas. Muchas de ellas son ya conocidas por tratarse de conceptos explicados

Más detalles

5 DIVISIÓN DE POLINOMIOS. RAÍCES

5 DIVISIÓN DE POLINOMIOS. RAÍCES EJERCICIOS PARA ENTRENARSE División y regla de Ruffini 5.26 Realiza estas divisiones. a) (12x 2 yz 6xy 3 8xyz 2 ) (2xy) b) (15x 4 3x 3 9x 2 ) (3x 2 ) c) (5a 3 b 2 10ab 2 15a 3 b 4 ) (5ab 2 ) a) (12x 2

Más detalles

Cálculo diferencial DERIVACIÓN

Cálculo diferencial DERIVACIÓN DERIVACIÓN Definición de límite Entorno Definición. Se le llama entorno o vecindad de un punto a en R, al intervalo abierto (a - δ, a + δ ) = {a a - δ < x < a + δ }, en donde δ es semiamplitud a radio

Más detalles

Curvas en paramétricas y polares

Curvas en paramétricas y polares Capítulo 10 Curvas en paramétricas y polares Introducción Después del estudio detallado de funciones reales de variable real expresadas en forma explícita y con coordenadas cartesianas, que se ha hecho

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

RESUMEN TEÓRICO DE CLASES

RESUMEN TEÓRICO DE CLASES Página 1 RESUMEN TEÓRICO DE CLASES Página 2 Tema 1. Inecuaciones Las inecuaciones son desigualdades algebraicas en la que sus dos miembros se relacionan por uno de estos signos: >; ;

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 3. Trigonometría TRIGONOMETRÍA La trigonometría se inicia estudiando la relación entre los ángulos y los lados de un triángulo, surgiendo las razones trigonométricas de un ángulo y a partir de ellas las funciones trigonométricas.

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

GEOMETRÍA EN EL ESPACIO.

GEOMETRÍA EN EL ESPACIO. GEOMETRÍA EN EL ESPACIO. Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

Teoría Tema 9 Representación gráfica de funciones

Teoría Tema 9 Representación gráfica de funciones página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de

Más detalles

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI

3.2 DIVIDIR UN POLINOMIO POR x a. REGLA DE RUFFINI TEMA 3 ÁLGEBRA MATEMÁTICAS CCSSI 1º BACH 1 TEMA 3 ÁLGEBRA 3.1 DIVISIÓN DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio por otro monomio de grado inferior es un nuevo monomio cuyo grado es

Más detalles

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1

RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 RELACIÓN ENTRE LA GRÁFICA DE UNA FUNCIÓN f y LA DE SU INVERSA f -1 Sabemos que la función inversa 1 Si f a b, entonces f b a 1 f (o recíproca) de f cumple la siguiente condición: Por lo tanto: 1 f f 1

Más detalles

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2

UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2 UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como

Más detalles

Matemáticas 4 Enero 2016

Matemáticas 4 Enero 2016 Laboratorio #1 Vectores I.- Calcule el producto escalar de los dos vectores y el coseno del ángulo entre ellos. 1) u = 3i + 2j 4k; v = i + 5j 3k 2) u = i + 2j 3k; v = 1i 2j + 3k 3) u = 1 2 i + 1 3 j +

Más detalles

Problemas de 4 o ESO. Isaac Musat Hervás

Problemas de 4 o ESO. Isaac Musat Hervás Problemas de 4 o ESO Isaac Musat Hervás 5 de febrero de 01 Índice general 1. Problemas de Álgebra 7 1.1. Números Reales.......................... 7 1.1.1. Los números....................... 7 1.1.. Intervalos.........................

Más detalles

Ecuaciones. 3º de ESO

Ecuaciones. 3º de ESO Ecuaciones 3º de ESO El signo igual El signo igual se utiliza en: Igualdades numéricas: 2 + 3 = 5 Identidades algebraicas: (x + 4) x = x 2 + 4 4x Fórmulas: El área, A,, de un círculo de radio r es: A =

Más detalles

RESUMEN DE TRIGONOMETRÍA

RESUMEN DE TRIGONOMETRÍA RESUMEN DE TRIGONOMETRÍA Definición: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados del ángulo. El origen común es el vértice.

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

Anexo C. Introducción a las series de potencias. Series de potencias

Anexo C. Introducción a las series de potencias. Series de potencias Anexo C Introducción a las series de potencias Este apéndice tiene como objetivo repasar los conceptos relativos a las series de potencias y al desarrollo de una función ne serie de potencias en torno

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por

Más detalles

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre:

EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre: EXAMEN DE MATEMATICAS II ª ENSAYO () Apellidos: Nombre: Curso: º Grupo: A Día: CURSO 05 Instrucciones: a) Duración: HORA y 0 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de

Más detalles

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo

Más detalles

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com.

EJERCICIOS PAU MAT II CC SOC. ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com. FUNCIONES 1- a) Dada la función:, Definida para 0, 0, encontrar el punto (x,y) que maximiza f sujeto a la restricción x+y=36. b) Calcular: Aragón 2014 Opción A Junio 2- Dada la función: Calcular: a) Dominio

Más detalles

TEMA 12. RECTAS Y PLANOS. INCIDENCIA.

TEMA 12. RECTAS Y PLANOS. INCIDENCIA. TEMA 12. RECTAS Y PLANOS. INCIDENCIA. Un sistema de referencia en el espacio está formado por un punto y tres vectores linealmente independientes. A partir de ahora consideraremos el sistema de referencia

Más detalles

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f)

1. Aplique el método de inducción matemática para probar las siguientes proposiciones. e) f) es divisible por 6. a) b) c) d) e) f) 1. Aplique el método de inducción matemática para probar las siguientes proposiciones. a) b) c) d) e) f) es divisible por 6. g) 2. Halle la solución de las siguientes desigualdades de primer orden. g)

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

f (x) (1+[f (x)] 2 ) 3 2 κ(x) =

f (x) (1+[f (x)] 2 ) 3 2 κ(x) = MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714)

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 1 (FUNCIONES) Profesora: Yulimar Matute Octubre 2011 Función Constante: Se

Más detalles

Cálculo Diferencial - Parcial No. 2

Cálculo Diferencial - Parcial No. 2 Cálculo Diferencial - Parcial No. 2 Departamento de Matemáticas - Universidad de los Andes Marzo 18 de 2010 Juro solemnemente abstenerme de copiar o de incurrir en actos que puedan conducir a la trampa

Más detalles

Ecuaciones diferenciales lineales con coeficientes constantes

Ecuaciones diferenciales lineales con coeficientes constantes Tema 4 Ecuaciones diferenciales lineales con coeficientes constantes Una ecuación diferencial lineal de orden n tiene la forma a 0 (x)y (n) + a 1 (x)y (n 1) + + a n 1 (x)y + a n (x)y = b(x) (41) Vamos

Más detalles

Proyecciones. Producto escalar de vectores. Aplicaciones

Proyecciones. Producto escalar de vectores. Aplicaciones Proyecciones La proyección de un punto A sobre una recta r es el punto B donde la recta perpendicular a r que pasa por A corta a la recta r. Con un dibujo se entiende muy bien. La proyección de un segmento

Más detalles

EJERCICIOS RESUELTOS DE TRIGONOMETRÍA

EJERCICIOS RESUELTOS DE TRIGONOMETRÍA EJERCICIOS RESUELTOS DE TRIGONOMETRÍA 1. Escribir las razones trigonométricas del ángulo de 3456º en función de las de un ángulo positivo menor que 45º. Al representar el ángulo de 3456º en la circunferencia

Más detalles

VECTORES EN EL ESPACIO

VECTORES EN EL ESPACIO VECTORES EN EL ESPACIO Página 133 REFLEXIONA Y RESUELVE Relaciones trigonométricas en el triángulo Halla el área de este paralelogramo en función del ángulo a: cm a cm Área = sen a = 40 sen a cm Halla

Más detalles

Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo

Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo página 1/9 Teoría Tema 1 Propiedades de funciones elementales. Ejemplos exponencial y logaritmo Índice de contenido Dominio de una función...2 Rango o recorrido de una función...3 Simetría...4 Periodicidad...5

Más detalles

Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j,

Ecuaciones de rectas y planos. Un punto O y una base B B = { i, j, Ecuaciones de rectas y planos. Coordenadas en el espacio. Planos coordenados. El vector OP tiene unas coordenadas( x, y, z ) respecto de la base B, que se pueden tomar como coordenadas del punto P respecto

Más detalles

REACTIVOS MATEMÁTICAS 3

REACTIVOS MATEMÁTICAS 3 REACTIVOS MATEMÁTICAS 3 1.- Una es una igualdad en la cual hay términos conocidos y términos desconocidos. El término desconocido se llama incógnita y se representa por letras. a) Literal. b) Ecuación.

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del examen final del curso Cálculo de una variable Grupo: Once Período: Inicial del año Prof: Rubén D. Nieto C. PUNTO. (x ) sen(x )

Más detalles

Ecuaciones Diferenciales, Fracciones Parciales y Fórmulas de Heaviside

Ecuaciones Diferenciales, Fracciones Parciales y Fórmulas de Heaviside Ecuaciones Diferenciales, Fracciones Parciales y Fórmulas de Heaviside Dr. Julián Gpe. Tapia Aguilar E S F M Instituto Politécnico Nacional julianpe@yahoo.com.mx Agosto de 2008 Índice 1. Introducción 1

Más detalles

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77

MATE 3031. Dr. Pedro Vásquez UPRM. P. Vásquez (UPRM) Conferencia 1 / 77 MATE 3031 Dr. Pedro Vásquez UPRM P. Vásquez (UPRM) Conferencia 1 / 77 P. Vásquez (UPRM) Conferencia 2 / 77 Qué es una función? MATE 3171 En esta parte se recordará la idea de función y su definición formal.

Más detalles

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA 1 MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA Ejercicio 1. (Junio 2006-A) Considera el plano π de ecuación 2x + y z + 2 = 0 y la recta r de ecuación x 5 z 6 = y =. 2 m (a) [1 punto] Halla la posición

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

CÁLCULO DIFERENCIAL Muestras de examen

CÁLCULO DIFERENCIAL Muestras de examen CÁLCULO DIFERENCIAL Muestras de examen Febrero 2012 T1. [2] Demostrar que la imagen continua de un conjunto compacto es compacto. T2. [2.5] Definir la diferencial de una función en un punto y demostrar

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas

Bloque 2. Geometría. 2. Vectores. 1. El plano como conjunto de puntos. Ejes de coordenadas Bloque 2. Geometría 2. Vectores 1. El plano como conjunto de puntos. Ejes de coordenadas Para representar puntos en un plano (superficie de dos dimensiones) utilizamos dos rectas graduadas y perpendiculares,

Más detalles

sen sen sen a 2 a cos cos 2 a

sen sen sen a 2 a cos cos 2 a BLOQUE I: TRIGONOMETRÍA Y TRIÁNGULOS.- Sabiendo que tg g y cot, calcular tg y cos( ).- Demostrar razonadamente las fórmulas del seno, coseno y tangente del ángulo mitad.- Demostrar las siguientes igualdades:

Más detalles

1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:

1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica: Pàgina 1 de 6 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje

Más detalles