Nueva ley de Lorentz

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Nueva ley de Lorentz"

Transcripción

1 Nueva ley de Lorentz Manuel Hernández Rosales 26 de septiembre de 2013 Abstract En este artículo se propone una modicación a la expresión de la fuerza de Lorentz adecuada para explicar el experimento de Trouton Noble sin hacer uso de la herramienta de la relatividad especial. Introducción. El experimento de Trouton Noble consiste en medir la torca predicha por la electrodinámica clásica sobre dos cargas moviendose con velocidad constante v. Como es bien conocido el resultado de este experimento es que la torca es nula. Y esto se arma en completo acuerdo con la teoría de la relatividad. Si bien el resultado de Trouton-Noble para la teoría de la relatividad debería ser negativo el principio de relatividad no se mantiene en el caso de dos cargas no sujetas entre sí por alguna fuerza mecánica. Como bien se sabe el calculo del campo electrico para la carga e 1 en movimiento se calcula a partir de las ecuaciones de Maxwell que en terminos de sus potenciales son: Haciendo: A 1 c 2 t A = 4π 2 c ρ v ϕ 1 c 2 t ϕ = 4π 2 c ρ (1) 1

2 A = v c ϕ (2) se obtiene una solución para ambas ecuaciones cuando soluciones la segunda ecuación que aparece en 1. Tomando en cuenta para el potencial escalar: ϕ = v ϕ (3) t tendremos para la segunda ecuacion en 1: (1 v2 ϕ c 2 ) 2 x ϕ x ϕ = 4πρ (4) x2 cuya solución es (para una particula puntual, vease [1] pp ): ϕ(x, y, z) = e 1 x2 + (1 β 2 )(y 2 + z 2 ) (5) donde β = v c. Cuando calculamos la fuerza sobre la segunda partícula que ejerce e 1 tendremos de acuerdo a la expresión de la fuerza de Lorentz que es: F = e 2 ( E 1 + v c B 1 ) = e 2 ( ϕ + v c ( v c ϕ)) = e 2(1 β 2 ) ϕ (6) y ya que de acuerdo a la expresión 5 las supercies donde el potrencial es constante son: x 2 + (1 β 2 )(y 2 + z 2 ) = cte. (7) tendremos que la fuerza es perpendicular a elipsoides como es mostrado en la gura: 2

3 La torca generada en punto viene dada por la expresión: e 1 e 2 (1 β 2 ) T = r ( r2 ( r ( v/c) 2 ) ) (8) que a primer orden se puede calcular en valor absuluto como: T = e 1e 2 v 2 sen2θ (9) 2rc2 donde θ es el angulo que forma la linea de la segunda particula a la primera respecto a la dirección del movimiento. La explicación al resultado negativo del experimento de Trouton Noble la da la relatividad en estos términos: Debido a que en el experimento las cargas estan sujetas por un objeto mecánico (como una varilla que las conecte): La torca debida a las fuerzas electricas es exactamente compensada por iguales y opuestas torcas debido a fuerzas mecánicas. (vease [1]pp ). Los detalles de como se explican la presencia de estas fuerzas mecánicas estan bien explicitas en la referencia citada. El punto para nosotros es el siguiente: De acuerdo a un principio de relatividad del movimiento como el que enuncia la relatividad especial la torca no debiera observarse aun si no existiera un mecanismo sujetando las cargas. La fuerza de Lorentz en ese sistema debiera de predecir que las cargas se repelen justamente en la dirección de la linea que la une. Sin embargo al desaparecer el mecanismo las cargas debieran moverse de acuerdo a la ecuación 6 sin estar presente una torza que compense el efecto. Es por ello que se torna adecuado el modicar la expresión de la fuerza de Lorentz de tal modo que el efecto de la torca no se haga presente y reconsiderar los pensamientos asociados al movimiento de particulas para el cálculo de las interacciones entre las partículas electricas. Un principio de inercia para los campos electromagnéticos. Enunciaré un nuevo principio de la relatividad en movimientos inerciales aplicado a los campos electromagnéticos: Un campo electromagnético que no tiene inuencias externas se desplaza por el espacio en movimiento rectilineo uniforme o en reposo respecto de un marco de referencia inercial." Este principio parece de primera vista no generar cambios en la estructura de la teoria electromagnética pues es asumido que la relatividad especial pudiera tener esta consecuencia con su armación de que todos los sistemas inerciales son equivalentes para la formulación de las leyes electromagnéticas. Sin embargo esto no es así. Este principio es contradictorio con el cálculo de los campos electromagnéticos tal como lo propugnan tanto la teoria de la relatividad y la electrodinámica clásica. El principio que enunciamos arma que un campo electromagnético como el asociado a una particula en movimiento con velocidad v debería satisfacer las siguientes ecuaciones: 3

4 dϕ dt = ϕ t + v ϕ = 0 da dt = ta + v A = 0 (10) (lo cual debe decirse que también aparece en las deducciones de la introducción) Sin embargo, al colocar una particula prueba en el campo de esta particula la fuerza que siente segun la electrodinámica clásica es: F = q( E + v c B) = q( ϕ 1 c t A + v c ( A)) (11) que depende de la velocidad v de la partícula de prueba respecto al observador y no de la velocidad relativa del campo de la partícula generadora del campo con la partícula de prueba. En este punto la electrodinámica clásica como en la mecánica cuántica el observador está metido en la interacción. Debería ser claro que si las dos particulas, la que genera el campo y la de prueba tienen exactamante la misma velocidad lo que se observa es una repulsión entre ellas segun la ley del inverso al cuadrado en el marco de referencia de las partículas y en cualquier marco de referencia inercial. Las razones anteriores nos obligan a modicar la ley de Lorentz por esta otra (Nueva ley de Lorentz): donde F = q( ϕ 1 c d dt A) (12) d dt = t + v q (13) es la derivada direccional con respecto la velocidad de la carga que recibe la interacción del campo externo. De este modo la ecuación 12dá: F = q( ϕ 1 A c t v q c A) = q( ϕ 1 A c t 1 c v q A+ v q c ( A) = q( E+ v q c B 1 c v q A) (14) de acuerdo a la convención de que: E = ϕ 1 c t A (15) B = A (16) Notemos que si la velocidad de la particula de prueba es igual a la de la particula que produce el campo tendremos por 10 que: F = ϕ (17) 4

5 Y ya que el movimiento de la particula que produce el campo es en realidad es el movimiento del campo electromagnético asociado tendremos: ϕ = que satisface la ecuación primera de 10. Igual que en el caso clásico tendremos que: A = v c ϕ = v c Pero en este caso la fuerza entre las partículas será: e (x vt)2 + y 2 + z 2 (18) e (x vt)2 + y 2 + z 2 (19) e F = r (20) ((x vt) 2 + y 2 + z 2 ) 3 2 donde r = (x vt, y, z) en perfecto acuerdo con el resultado de Trouton Noble y sin tener que considerar una torca mecánica. Consideraciones acerca de este cambio a la fuerza de Lorentz. El cambio introducido a la fuerza de Lorentz nos obliga a reconsiderar los fenómenos electromagnéticos y el cálculo apropiado para cada situación en términos de que la particula cuando se desplaza con movimiento uniforme desplaza al campo con ella en movimiento también rectilineo uniforme. De este modo el campo deja de estar anclado al observador y nos liberamos de la imagen de que cuando una carga se mueve en movimiento rectilineo uniforme tiene su campo deformado como se hace clasicamente. Lo que queremos decir es que: Debemos de liberarnos de la imagen de que el campo se mueve como consecuencia del movimiento de una partícula sino que es al campo al que se le debe asignar el movimiento y la partícula electrica es simplemente la región donde la divergencia del campo electrico es distinto de cero. Despues de todo cual es la imagen que podemos tener de la partícula libre de la información que tenemos de su interacción? Esto como se dará cuenta el lector es justamente contrario a la opinión de Einstein que armaba que no se le puede asignar un vector velocidad al campo. Yo armo justamente lo contrario. El vector velocidad debe asignarse al campo y esto tiene como consecuencia que en las interacciones entre particulas (o entre sus campos) solo tenga que ver las posiciones y velocidades relativas. Esto es: se sostiene el principio de relatividad para fenomenos electromagnétricos con la asignación de un vector velocidad al campo. Este esfuerzo de cambiar el punto de vista proviene del hecho de liberar toda ley física del inujo del observador. Los fenómenos son lo que son independientemente de quien los observe y solo depende de los agentes involucrados en la interacción. 5

6 References [1] Becker, Electromagnetic elds and interactions, Dover 6

Conceptos de Electromagnetismo

Conceptos de Electromagnetismo Estructura de la Materia Conceptos de Electromagnetismo Martha M. Flores Leonar FQ UNAM 30 de enero de 2018 CONTENIDO LEY DE COULOMB LEY DE COULOMB Describe la fuerza de interacción de partículas con carga

Más detalles

I. Hechos históricos. 1.1 Ley de Gravitación de Newton

I. Hechos históricos. 1.1 Ley de Gravitación de Newton I. Hechos históricos 1.1 Ley de Gravitación de Newton Uno de los aspectos importantes de las leyes de Newton, es que se basa en sistemas de referencia inerciales, los cuales se mueven con velocidad constante

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

Teoría de la Relatividad Especial

Teoría de la Relatividad Especial Teoría de la Relatividad Especial Albert Einstein 1.905 Página1 Postulados de la Teoría de la Relatividad Especial Un sistema de referencia es inercial si está en reposo o se mueve con movimiento rectilíneo

Más detalles

Introducción. La masa intrínseca ( m ) y el factor frecuencia ( f ) de una partícula masiva están dados por: . = m o

Introducción. La masa intrínseca ( m ) y el factor frecuencia ( f ) de una partícula masiva están dados por: . = m o UNA FORMULACIÓN INVARIANTE DE LA RELATIVIDAD ESPECIAL A. Blato Licencia Creative Commons Atribución 3.0 (207) Buenos Aires Argentina Este artículo presenta una formulación invariante de la relatividad

Más detalles

FÍSICA RELATIVISTA 1. Relatividad. 2. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación.

FÍSICA RELATIVISTA 1. Relatividad. 2. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación. FÍSICA RELATIVISTA 1. Relatividad.. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación. Física º bachillerato Física relativista 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos

Más detalles

JOEL ROCHA BAROCIO CIÉNEGA DE FLORES N.L.

JOEL ROCHA BAROCIO CIÉNEGA DE FLORES N.L. JOEL ROCHA BAROCIO CIÉNEGA DE FLORES N.L. Alumno: Alan Francisco Hernández Cisneros Grupo: 303 P.S.P. Lic. Miriam de la Rosa Díaz Carrera: Técnico-Bachiller en Informática QUÉ ES LA FÍSICA? Es una ciencia

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA

FISICA 2º BACHILLERATO CAMPO MAGNÉTICO E INDUCCIÓN ELECTROMAGNÉTICA A) CAMPO MAGNÉTICO El Campo Magnético es la perturbación que un imán o una corriente eléctrica producen en el espacio que los rodea. Esta perturbación del espacio se manifiesta en la fuerza magnética que

Más detalles

Universidad Rey Juan Carlos. Prueba de acceso para mayores de 25 años. Física obligatoria. Año 2010. Opción A. Ejercicio 1. a) Defina el vector velocidad y el vector aceleración de un movimiento y escribe

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

CAMPO MAGNÉTICO I ÍNDICE

CAMPO MAGNÉTICO I ÍNDICE CAMPO MAGNÉTICO I ÍNDICE 1. Introducción. 2. Fuerza de Lorentz. 3. Trayectoria de partículas cargadas en presencia de campos magnéticos. 4. Momentos de fuerza sobre espiras de corriente e imanes. Momento

Más detalles

Cargas puntuales en movimiento

Cargas puntuales en movimiento Cargas puntuales en movimiento manuel fernández guasti 8 de agosto de 009 1. potenciales ardados Se debe evaluar el campo o los potenciales tomando en cuenta el tiempo de ardo de la distancia que deben

Más detalles

5 a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta.

5 a) Explique el funcionamiento de un transformador eléctrico. b) Podría funcionar con corriente continua? Justifique la respuesta. 1 a) Fuerza magnética sobre una carga en movimiento. b) En qué dirección se debe mover una carga en un campo magnético para que no se ejerza fuerza sobre ella? 2 Un electrón, un protón y un átomo de helio

Más detalles

Revisión de Relatividad Especial 1

Revisión de Relatividad Especial 1 Revisión de Relatividad Especial 1 Esta entrada está orientada para aquellos que necesitan una presentación breve de los conceptos básicos de la relatividad especial. Por lo tanto, esto es útil para los

Más detalles

MECA EC N A I N CA C A A PL

MECA EC N A I N CA C A A PL Cátedra: MECANICA APLICADA MECANICA Y MECANISMOS 18:51 CINÉTICA DE PARTÍCULAS SEGUNDA LEY DE NEWTON Mecánica Aplicada Mecánica y Mecanismos 2015 Hoja 1 OBJETIVOS 1. Interpretar las leyes de Newton. 2.

Más detalles

Cátedra VI: Notación covariante y 4-velocidad

Cátedra VI: Notación covariante y 4-velocidad Cátedra VI: Notación covariante y 4-velocidad Ya estamos en condiciones de comenzar a estudiar la estructura del espacio-tiempo en forma más profunda. En esta clase introduciremos el concepto de 4-vector

Más detalles

Interaccio n electromagne tica.

Interaccio n electromagne tica. Interaccio n electromagne tica. Introducción. Ciertos minerales de hierro, como la magnetita, tienen la propiedad de atraer pequeños trozos de hierro. A esta propiedad física se le conoce como magnetismo

Más detalles

TEMA 6 ELEMENTOS DE FÍSICA RELATIVISTA

TEMA 6 ELEMENTOS DE FÍSICA RELATIVISTA 2º BACHILLERATO F Í S I C A TEMA 6 ELEMENTOS DE FÍSICA RELATIVISTA 1 2º BACHILLERATO FÍSICA TEMA 6 ELEMENTOS DE FÍSICA RELATIVISTA 6.1. Introducción. Sabemos de cursos anteriores que para hablar de movimiento

Más detalles

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA

CAMPO MAGNÉTICO FCA 06 ANDALUCÍA 1.- Un hilo recto, de longitud 0,2 m y masa 8 10-3 kg, está situado a lo largo del eje OX en presencia de un campo magnético uniforme = 0,5 j a) Razone el sentido que debe tener la corriente para que la

Más detalles

FISICA RELATIVISTA FISICA 2º BACHILLERATO

FISICA RELATIVISTA FISICA 2º BACHILLERATO FISICA RELATIVISTA FISICA º BACHILLERATO En 1905, Albert Einstein, a la edad de 6 años, publica su Teoría Especial de la Relatividad, a cerca del movimiento en sistemas inerciales. En 1916 amplió su teoría

Más detalles

BOLILLA 4 Movimiento Circular y Leyes de Newton

BOLILLA 4 Movimiento Circular y Leyes de Newton BOLILLA 4 Movimiento Circular y Leyes de Newton 1. Movimiento Circular. En ausencia de fuerzas, el movimiento en línea recta y a velocidad constante continúa indefinidamente. El movimiento circular, sin

Más detalles

Una Nueva Formulación de la Mecánica Clásica

Una Nueva Formulación de la Mecánica Clásica Una Nueva Formulación de la Mecánica Clásica Alejandro A. Torassa Buenos Aires, Argentina, E-mail: atorassa@gmail.com Licencia Creative Commons Atribución 3.0 (Copyright 2009) Resumen. Este trabajo expone

Más detalles

en una región del espacio en que coexisten un campo magnético B 0,2k T, se pide:

en una región del espacio en que coexisten un campo magnético B 0,2k T, se pide: CAMPO MAGNÉTICO. SEPTIEMBRE 1997: 1.- Una partícula cargada se introduce con velocidad v vi en una región del espacio en que coexisten un campo magnético B 0,2k T y un campo eléctrico E 100 j N/C. Calcular

Más detalles

Los potenciales electromagnéticos. Tema 8 Electromagnetismo

Los potenciales electromagnéticos. Tema 8 Electromagnetismo Los potenciales electromagnéticos Tema 8 Electromagnetismo Los potenciales electromagnéticos Los potenciales electromagnéticos. Transformaciones de contraste. Ecuación de ondas para los potenciales. Soluciones

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia

Mecánica para Ingenieros: Cinemática. 1. La Mecánica como ciencia Mecánica para Ingenieros: Cinemática 1. La Mecánica como ciencia La Mecánica como ciencia 1. Objeto de la Mecánica 2. Magnitudes físicas y unidades 3. Idealizaciones 4. Leyes de Newton 5. Partes de la

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

BOLETÍN DE TEORÍA CAMPO MAGNÉTICO (trabajo)

BOLETÍN DE TEORÍA CAMPO MAGNÉTICO (trabajo) BOLETÍN DE TEORÍA CAMPO MAGNÉTICO (trabajo) Teoría 1 Dos espiras circulares se sitúan de la manera indicada en la figura con las intensidades de corriente en los sentidos que se indican. Cómo es la interacción

Más detalles

Hoja de Problemas 1. Relatividad 1

Hoja de Problemas 1. Relatividad 1 Hoja de Problemas 1. Relatividad 1 Fundamentos de Física III. Grado en Física. Curso 2015/2016. UAM Grupo 516 27/01/2016 Problema 1 Una barra de longitud propia L se encuentra en reposo en un sistema de

Más detalles

RELATIVIDAD ESPECIAL DE EINSTEIN

RELATIVIDAD ESPECIAL DE EINSTEIN RELATIVIDAD ESPECIAL DE EINSTEIN Deducción de Javier García GILAB / IFAE EL PLAN.- PRINCIPIOS DE LA RELATIVIDAD 2.- TRANSFORMACIÓN DE LORENTZ 3.- DEFINICIÓN DE DISTANCIA EN EL ESPACIO ORDINARIO 4.- DEFINICIÓN

Más detalles

T2. ESPACIO, TIEMPO Y ESPACIOTIEMPO: DIAGRAMAS DE MINKOWSKI

T2. ESPACIO, TIEMPO Y ESPACIOTIEMPO: DIAGRAMAS DE MINKOWSKI T2. ESPACIO, TIEMPO Y ESPACIOTIEMPO: DIAGRAMAS DE MINKOWSKI 1. Introducción: postulados de la relatividad especial 2. Definición de tiempo 2.1 Qué es medir el tiempo? 2.2 Sistema común de tiempos 2.3 Dilatación

Más detalles

SISTEMAS NO INERCIALES EN RELATIVIDAD ESPECIAL

SISTEMAS NO INERCIALES EN RELATIVIDAD ESPECIAL SISTEMAS NO INERCIALES EN RELATIVIDAD ESPECIAL A. Blato Licencia Creative Commons Atribución 3.0 (208) Buenos Aires Argentina Este artículo presenta una nueva formulación de la relatividad especial que

Más detalles

Breves comentarios sobre las ecuaciones de Maxwell para los estudiantes de cálculo de Luis. May 20,

Breves comentarios sobre las ecuaciones de Maxwell para los estudiantes de cálculo de Luis. May 20, Breves comentarios sobre las ecuaciones de Maxwell para los estudiantes de cálculo de Luis asv@cimat; May 20, 20. Preliminares Lema. Sea ϕ una función escalar definida en un subconjunto abierto de R 3

Más detalles

MECANICA CLASICA Coordenadas generalizadas. Grados de libertad. Lagrange.

MECANICA CLASICA Coordenadas generalizadas. Grados de libertad. Lagrange. MECANICA CLASICA Coordenadas generalizadas. Grados de libertad. Lagrange. 1. Se tiene el sistema de la figura, donde x 1, x 2 se miden a partir de las posiciones de equilibrio. Sea q 1 = x 1 + x 2 y q

Más detalles

LA MATERIA Y LA VELOCIDAD DE LA LUZ (PRIMERA PARTE)

LA MATERIA Y LA VELOCIDAD DE LA LUZ (PRIMERA PARTE) LA MATERIA Y LA VELOCIDAD DE LA LUZ (PRIMERA PARTE) La materia no es lo que vemos a simple vista, no, esto solo es una apreciación macroscópica, la materia tiene una composición diferente a lo que nuestro

Más detalles

FÍSICA MODERNA CONCEPTOS

FÍSICA MODERNA CONCEPTOS FÍSICA MODERNA CONCEPTOS Física Clásica Sirve para resolver los diferentes problemas que nos enfrentamos día a día ( sistemas macroscópicos): Movimiento de objetos grandes en relación con los átomos y

Más detalles

Energía potencial gravitatoria (largo alcance) Comparo con el caso general. Se acostumbra tomar nula a la energía potencial gravitatoria cuando r

Energía potencial gravitatoria (largo alcance) Comparo con el caso general. Se acostumbra tomar nula a la energía potencial gravitatoria cuando r Energía potencial gravitatoria (largo alcance) Comparo con el caso general Se acostumbra tomar nula a la energía potencial gravitatoria cuando r 1 Propiedades de los campos de fuerzas conservativos independiente

Más detalles

Resumen (i) Introducción. Dinámica del campo magnetostático. Qué es la electrodinámica? Magnetismo y electricidad: cargas en movimiento

Resumen (i) Introducción. Dinámica del campo magnetostático. Qué es la electrodinámica? Magnetismo y electricidad: cargas en movimiento ELECTRODINÁMICA Resumen (i) Introducción Qué es la electrodinámica? Magnetismo y electricidad: cargas en movimiento Dinámica del campo magnetostático Fuentes del campo magnetostático: corrientes estacionarias

Más detalles

T-2) LA FUERZA DE LORENTZ (10 puntos)

T-2) LA FUERZA DE LORENTZ (10 puntos) T-2) LA FUERZA DE LORENTZ (10 puntos) Un móvil se desliza por un plano inclinado sobre el que pende el conductor cilíndrico AC a una distancia h de la línea de máxima pendiente, tal como indica la figura.

Más detalles

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO

GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO GUÍA N o 1 FÍSICA GENERAL II LEY DE COULOMB Y CAMPO ELÉCTRICO Objetivos de aprendizaje: Esta guía es una herramienta que usted debe usar para lograr los siguientes objetivos: Entender los fenómenos de

Más detalles

FÍSICA - 2º BACHILLERATO CAMPO MAGNÉTICO RESUMEN EVIDENCIA EXPERIMENTAL ACERCA DEL MAGNETISMO

FÍSICA - 2º BACHILLERATO CAMPO MAGNÉTICO RESUMEN EVIDENCIA EXPERIMENTAL ACERCA DEL MAGNETISMO Física 2º Bachillerato Campo Magnético - 1 FÍSICA - 2º BACHILLERATO CAMPO MAGNÉTICO RESUMEN EVIDENCIA EXPERIMENTAL ACERCA DEL MAGNETISMO 1. Existen ciertos cuerpos llamados imanes (naturales y artificiales)

Más detalles

1) Principio de Inercia. Todo cuerpo que se mueve libremente(no está sometido a una fuerza) se mueve en una línea recta(o está en reposo).

1) Principio de Inercia. Todo cuerpo que se mueve libremente(no está sometido a una fuerza) se mueve en una línea recta(o está en reposo). Leyes de Newton Sea = pr mvr el momentum lineal de una partícula.m es la masa (inercial) y la velocidad. vr 1) Principio de Inercia. Todo cuerpo que se mueve libremente(no está sometido a una fuerza) se

Más detalles

El campo magnético de las corrientes estacionarias

El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Introducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

El tiempo se mide con el corazón. Una introducción cardiovascular a la teoría especial de la relatividad

El tiempo se mide con el corazón. Una introducción cardiovascular a la teoría especial de la relatividad El tiempo se mide con el corazón Una introducción cardiovascular a la teoría especial de la relatividad Resumen (i) Experimentando con tiempos propios Transformaciones entre relojes cardiovasculares Observables

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

CINEMÁTICA DE CUERPOS RÍGIDOS (Parte I)

CINEMÁTICA DE CUERPOS RÍGIDOS (Parte I) UNIVERSIDAD JOSÉ ANTONIO PÁEZ FACULTAD DE INGENIERÍA ESCUELA DE INGENIERIA MECÁNICA MECÁNICA DINÁMICA SECCIÓN 204N1 CINEMÁTICA DE CUERPOS RÍGIDOS (Parte I) (Contenido correspondiente a parcial #3) CINEMÁTICA

Más detalles

Campo Magnético en un alambre recto.

Campo Magnético en un alambre recto. Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar

Más detalles

Antecedentes históricos

Antecedentes históricos Dinámica Antecedentes históricos Aristóteles (384-322 AC) formuló una teoría del movimiento de los cuerpos que fue adoptada durante 2 000 años. Explicaba que había dos clases de movimiento: Movimiento

Más detalles

Introducción a la Relatividad Especial. Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga

Introducción a la Relatividad Especial. Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga Introducción a la Relatividad Especial. Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga Marzo 2010 2 La Relatividad Especial es una teoría que se ocupa principalmente

Más detalles

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción

JMLC - Chena IES Aguilar y Cano - Estepa. Introducción Introducción En Magnesia existía un mineral que tenía la propiedad de atraer, sin frotar, materiales de hierro, los griegos la llamaron piedra magnesiana. Pierre de Maricourt (1269) da forma esférica a

Más detalles

Tema 3 : Campo Eléctrico

Tema 3 : Campo Eléctrico Tema 3 : Campo Eléctrico Esquema de trabajo: 1.- Carga eléctrica 2.- Ley de Colulomb 3.- Campo eléctrico. Intensidad de campo eléctrico. 4.- Energía potencial eléctrica. 5.- Potencial eléctrico. Superficies

Más detalles

Auxiliar N o 3 FI33A

Auxiliar N o 3 FI33A Auxiliar N o 3 FI33A Prof. auxiliar: Luis Sánchez L Fecha: 02/04/08 Problema 1 Una varilla delgada de dielectrico de seccion trasversal A se extiende sobre el eje z desde z = 0 hasta z = L. La polarizacion

Más detalles

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg

masa es aproximadamente cuatro veces la del protón y cuya carga es dos veces la del mismo? e = 1, C ; m p = 1, kg MAGNETISMO 2001 1. Un protón se mueve en el sentido positivo del eje OY en una región donde existe un campo eléctrico de 3 10 5 N C - 1 en el sentido positivo del eje OZ y un campo magnetico de 0,6 T en

Más detalles

dt Podemos verificar que la velocidad definida de esta forma no transforma como un vector bajo una T.L. En clases mostramos que el intervalo

dt Podemos verificar que la velocidad definida de esta forma no transforma como un vector bajo una T.L. En clases mostramos que el intervalo 1 Cuadrivectores Hasta ahora hemos hablado de las transformaciones de Lorentz, y cómo estas afectan tanto a las coordenadas espaciales como al tiempo. El vector que define un punto en el espacio-tiempo

Más detalles

Tema 4* Dinámica de la partícula

Tema 4* Dinámica de la partícula Tema 4* Dinámica de la partícula Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dra. Ana Mª Marco Ramírez 1 Índice Introducción. Primer principio de la dinámica:

Más detalles

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular

Campo de un hilo infinito. Fuerzas magnéticas. Teorema de Ampère. Campo magnético de una espira circular El campo magnético de las corrientes estacionarias ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo magnético Teorema de Ampère El potencial vector Ecuaciones

Más detalles

Adriana Herrera Ángel García Pablo Gutiérrez

Adriana Herrera Ángel García Pablo Gutiérrez Adriana Herrera Ángel García Pablo Gutiérrez INDICE Un poco de historia Teoría especial de la relatividad Teoría general de la relatividad Aplicaciones LOS SISTEMAS DE REFERENCIA COMPROBRACIÓN LAS TRANSFORMACIONES

Más detalles

R 1. R 2 ε ε 0 R. Examen de Campos electromagnéticos. 2 o Curso de Ingeniería Industrial. 19 de enero de 2008 PROBLEMA 1

R 1. R 2 ε ε 0 R. Examen de Campos electromagnéticos. 2 o Curso de Ingeniería Industrial. 19 de enero de 2008 PROBLEMA 1 Examen de Campos electromagnéticos. 2 o Curso de Ingeniería Industrial. 19 de enero de 2008 PROBLEMA 1 Un condensador cilíndrico de radios interior y exterior R 1 y R 2 respectivamente, y longitud L, está

Más detalles

CAMPO ELÉCTRICO. JUNIO

CAMPO ELÉCTRICO. JUNIO CAMPO ELÉCTRICO. JUNIO 1997: 1.- Se sitúan tres cargas eléctricas q 1, q 2 y q 3, en los puntos A (0,0,0); B (0,4,0) y C (0,4,3), respectivamente, donde las coordenadas vienen dadas en metros. Se pide:

Más detalles

I. INTRODUCCIÓN MECANICA MECANICA DE CUERPO RIGIDOS MECÁNICA DE CUERPO DEFORMABLE MECÁNICA DE FLUIDOS

I. INTRODUCCIÓN MECANICA MECANICA DE CUERPO RIGIDOS MECÁNICA DE CUERPO DEFORMABLE MECÁNICA DE FLUIDOS I. INTRODUCCIÓN MECANICA MECANICA DE CUERPO RIGIDOS MECÁNICA DE CUERPO DEFORMABLE MECÁNICA DE FLUIDOS ESTATICA DINAMICA CINEMATICA CINETICA II. NOCION DE CINEMATICA La cinemática (del griegoκινεω, kineo,

Más detalles

FÍSICA 2º BACHILLERATO

FÍSICA 2º BACHILLERATO FÍSICA 2º BACHILLERATO PROGRAMA DE SELECTIVIDAD MUY IMPORTANTE! Aquí están las preguntas que entran en Selectividad. No tienes que estudiar todas las preguntas de los apuntes, solo las que aparecen en

Más detalles

Unidad Nº 10. Magnetismo

Unidad Nº 10. Magnetismo Unidad Nº 10 Magnetismo 10.1. Definición y propiedades del campo magnético. Fuerza magnética en una corriente. Movimiento de cargas en un campo magnético. 10.2. Campos magnéticos creados por corrientes.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO TERCERA EVALUACIÓN DE FÍSICA A.

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO TERCERA EVALUACIÓN DE FÍSICA A. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 TERCERA EVALUACIÓN DE FÍSICA A Nombre: Paralelo: PRIMERA PARTE: Preguntas de opción múltiple (3 puntos c/u) 1)

Más detalles

Módulo 7: Fuentes del campo magnético

Módulo 7: Fuentes del campo magnético 7/04/03 Módulo 7: Fuentes del campo magnético Campo magnético creado por cargas puntuales en movimiento Cuando una carga puntual q se mueve con velocidad v, se produce un campo magnético B en el espacio

Más detalles

Física II Ecuaciones de Maxwell. Ingeniería Electrónica Departamento de Ciencias Aplicadas y Tecnología Universidad Nacional de Moreno

Física II Ecuaciones de Maxwell. Ingeniería Electrónica Departamento de Ciencias Aplicadas y Tecnología Universidad Nacional de Moreno Departamento de Ciencias Aplicadas y Tecnología 30 de noviembre de 2015 Índice 1. Repaso de las ecuaciones 1 1.1. ey de Gauss para el campo electrostático....................... 1 1.2. ey de Gauss para

Más detalles

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias

Electromagnetismo. Introducción. Líneas de campo magnético. Experimento de Oersted. El campo magnético de las corrientes estacionarias El campo magnético de las corrientes estacionarias Electromagnetismo Andrés Cantarero Sáez Curso 25-26 Grupo C ntroducción Propiedades diferenciales del campo magnético Propiedades integrales del campo

Más detalles

Introducción. La inercia

Introducción. La inercia Introducción El presente artículo, está basado de la norma de Campo Electromagnético. Las hipótesis que se desarrollan se basan en la Teoría del Electromagnetismo de Maxwell, en el cual no hay sistemas

Más detalles

Momento Lineal, Momento Angular & Momento Radial

Momento Lineal, Momento Angular & Momento Radial Momento Lineal, Momento Angular & Momento Radial Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta el momento lineal, el momento angular y

Más detalles

CINEMÁTICA DE UNA PARTÍCULA. Ing. Ronny Altuve

CINEMÁTICA DE UNA PARTÍCULA. Ing. Ronny Altuve UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA Escuela de Industrial/Computación CINEMÁTICA DE UNA PARTÍCULA Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Junio de 2015 INTRODUCCIÓN MECÁNICA Mecánica

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

CAMPO MAGNÉTICO. El origen del magnetismo.

CAMPO MAGNÉTICO. El origen del magnetismo. CAMPO MAGNÉTICO. El origen del magnetismo. Los imanes atraen fuertemente a metales como el hierro, esto es debido a que son materiales que tienen un campo magnético propio. Vamos a tener en los imanes

Más detalles

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral

Fundamentos Físicos de la Informática. Capítulo 1 Campos electrostáticos. Margarita Bachiller Mayoral Fundamentos Físicos de la Informática Capítulo 1 Campos electrostáticos Margarita Bachiller Mayoral Campos electrostáticos Tipos de carga Fuerza eléctrica Principio de superposición Margarita Bachiller

Más detalles

Una Ecuación Escalar de Movimiento

Una Ecuación Escalar de Movimiento Una Ecuación Escalar de Movimiento Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta una ecuación escalar de movimiento que es invariante bajo

Más detalles

Interacción electromagnética. 3. Calcula la fuerza electromotriz inducida en una espira si el flujo que la atraviesa disminuye uniformemente

Interacción electromagnética. 3. Calcula la fuerza electromotriz inducida en una espira si el flujo que la atraviesa disminuye uniformemente Ley de Gauss Campo Magnético 1. Calcula el flujo magnético a través de una espira de 400 cm 2 de superficie situada en un plano perpendicular a un campo magnético uniforme de 0 2 T. 2. Un solenoide, de

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Preliminares y Tema 1 Departamento de Física

I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos Preliminares y Tema 1 Departamento de Física I. T. Telecomunicaciones Universidad de Alcalá Soluciones a los ejercicios propuestos 2009-10-reliminares y Tema 1 Departamento de Física 1) Dado el campo escalar V ( r) = 2zx y 2, a) determine el vector

Más detalles

Física III clase 21 (07/06/2011) Efecto Compton

Física III clase 21 (07/06/2011) Efecto Compton Física III clase 21 (07/06/2011) Profesor: M. Antonella Cid Departamento de Física, Facultad de Ciencias Universidad del Bío-Bío Carreras: Ingeniería Civil Civil, Ingeniería Civil Mecánica, Ingeniería

Más detalles

Péndulo de torsión y momentos de inercia

Péndulo de torsión y momentos de inercia Práctica 4 Péndulo de torsión y momentos de inercia 4.1 Objetivo.- Determinación de los momentos de inercia de diversos sólidos a partir de la medida de su período de oscilación sobre un péndulo de torsión

Más detalles

Posición y trayectoria de un cuerpo La velocidad La aceleración. Cinemática. Antonio Falcó, Ignasi Rosell. Tema 2

Posición y trayectoria de un cuerpo La velocidad La aceleración. Cinemática. Antonio Falcó, Ignasi Rosell. Tema 2 Tema 2 1 2 3 Dimensiones del espacio Espacio-tiempo Vivimos en un mundo que se caracteriza por tener tres dimensiones espaciales y una temporal. Solo podemos trazar tres lineas perpendiculares entre si

Más detalles

Interacción Electrostática

Interacción Electrostática Interacción Electrostática Área Física Resultados de aprendizaje Reconocer las características de las cargas eléctricas en diversos problemas. Resolver problemas de electrostática mediante las leyes de

Más detalles

3. Se puede resolver de dos formas aplicando consideraciones energéticas y aplicando consideraciones dinámicas.

3. Se puede resolver de dos formas aplicando consideraciones energéticas y aplicando consideraciones dinámicas. ACTIVIDADE RECAPITULACIÓN 5: INTERACCIÓN MAGNÉTICA 1. El campo eléctrico en el interior de un solenoide es prácticamente uniforme y su módulo viene dado por: = N μ I / L N representa el número de espiras

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2018

PRUEBA ESPECÍFICA PRUEBA 2018 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2018 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora. Responder a cuatro de los siguientes cinco ejercicios:

Más detalles

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular

UNIDAD II. 2 Cinemática. 2.1 Movimiento rectilíneo. 2.2 Movimiento bajo aceleración constante. 2.3 Movimiento circular 42 UNIDAD II 2 Cinemática 2.1 Movimiento rectilíneo 2.2 Movimiento bajo aceleración constante 2.3 Movimiento circular 2.4 Movimiento curvilíneo general 43 UNIDAD II 2 CINEMATICA. La Cinemática (del griego

Más detalles

Grau Enginyeria Telecomunicacions

Grau Enginyeria Telecomunicacions - Examen final (16-01-2017) 1 Cognom 1 Nom DNI GRUP 1. Un móvil se está moviendo en la dirección positiva del eje x con una velocidad constante de 3 m/s. En el instante t = 1 s acelera hacia la derecha

Más detalles

21. Efecto fotoeléctrico.

21. Efecto fotoeléctrico. Mecánica Cuántica Avanzada Carlos Pena 21-1 21. Efecto fotoeléctrico. [Ynd 22.6; premio Nobel 1921 (Einstein)] Concepto. Ionización del hidrógeno. Se llama efecto fotoeléctrico a la emisión de electrones

Más detalles

DINÁMICA Primera ley de Newton. Fuerza. Masa. Segunda ley Newton. Unidades de fuerza. Cantidad

DINÁMICA Primera ley de Newton. Fuerza. Masa. Segunda ley Newton. Unidades de fuerza. Cantidad LAS LEYES DE NEWTON DINÁMICA Primera ley de Newton. Fuerza. Masa. Segunda ley de Newton. Unidades de fuerza. Cantidad de movimiento lineal. Generalización de la segunda ley de Newton. Tercera ley de Newton.

Más detalles

El Movimiento de los Cuerpos

El Movimiento de los Cuerpos Física 4to de Media Proyecto # 1 Enero 2015 Prof. Víctor García El Movimiento de los Cuerpos Te imaginas el universo sin movimiento? Cómo sería? Propόsito1 Adentrarse en el estudio de la mecánica analizando

Más detalles

Dinámica relativista: E = mc 2 y movimiento acelerado

Dinámica relativista: E = mc 2 y movimiento acelerado Tema 7 Dinámica relativista: E = mc 2 y movimiento acelerado 7.1 Introducción Hemos visto que conviene considerar el espaciotiempo como un espacio cuadridimensional en el que podemos localizar sucesos

Más detalles

Mecánica Clásica (B) 2do. cuatrimestre de 2017 AD Primer parcial (con soluciones) 12/10

Mecánica Clásica (B) 2do. cuatrimestre de 2017 AD Primer parcial (con soluciones) 12/10 Mecánica Clásica B) do. cuatrimestre de 017 AD Primer parcial con soluciones) 1/10 Problema 1. El marco exterior de un giróscopo rota con velocidad angular constante ω = ωẑ, como muestra la figura, donde

Más detalles

3. Cinemática de la partícula: Sistemas de referencia

3. Cinemática de la partícula: Sistemas de referencia 3. Cinemática de la partícula: Sistemas de referencia 3.1.- Cinemática de la partícula 3.2.- Coordenadas intrínsecas y polares 3.3.- Algunos casos particulares de especial interés 3.1.- Cinemática de la

Más detalles

Momento Lineal, Momento Angular & Momento Radial

Momento Lineal, Momento Angular & Momento Radial Momento Lineal, Momento Angular & Momento Radial Antonio A. Blatter Licencia Creative Commons Atribución 3.0 (2015) Buenos Aires Argentina Este trabajo presenta el momento lineal, el momento angular y

Más detalles

Departamento de Física Laboratorio de Mecánica FUERZA CENTRÍFUGA

Departamento de Física Laboratorio de Mecánica FUERZA CENTRÍFUGA Departamento de Física Laboratorio de Mecánica FUERZA CENTRÍFUGA 1. Objetivos El objetivo de esta práctica es la determinación de la fuerza centrífuga a que es sometido un objeto en trayectoria curvilínea

Más detalles

T9. RELATIVIDAD GENERAL (I): EL PRINCIPIO DE EQUIVALENCIA DE INERCIA Y GRAVEDAD

T9. RELATIVIDAD GENERAL (I): EL PRINCIPIO DE EQUIVALENCIA DE INERCIA Y GRAVEDAD T9. RELATIVIDAD GENERAL (I): EL PRINCIPIO DE EQUIVALENCIA DE INERCIA Y GRAVEDAD 1. Introducción 2. El principio de equivalencia A. La relatividad general B. La igualdad de masa inercial y masa gravitatoria

Más detalles

INTERACCIÓN MAGNÉTICA

INTERACCIÓN MAGNÉTICA INTERACCIÓN MAGNÉTICA 1. Introducción. 2. Definición de campo magnético. uerza de Lorentz sobre una partícula cargada. 3. Movimiento de una partícula cargada en un campo magnético. Aplicaciones. 4. Elemento

Más detalles

I.E.S. FRANCISCO GARCIA PAVÓN. CURSO DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA 2º BACHILLER CONTROL 7 29/03/2012 SOLUCIONADO

I.E.S. FRANCISCO GARCIA PAVÓN. CURSO DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA 2º BACHILLER CONTROL 7 29/03/2012 SOLUCIONADO NOME SOLUCIONADO CUSO: CT TEMA 7. CAMPO MAGNÉTICO TEMA 8. INDUCCIÓN ELECTOMAGNÉTICA NOMAS GENEALES - Escriba a bolígrafo. - No utilice ni típex ni lápiz. - Si se equivoca tache. - Si no tiene espacio suficiente

Más detalles

Física 4 to de Media. Proyecto N o 3 Marzo-abril 2017 Prof. Félix R. Solano S.

Física 4 to de Media. Proyecto N o 3 Marzo-abril 2017 Prof. Félix R. Solano S. Física 4 to de Media. Proyecto N o 3 Marzo-abril 2017 Prof. Félix R. Solano S. La Ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una de las leyes fundamentales de la electrodinámica,

Más detalles

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 1. Un avión en vuelo está sujeto a una fuerza de resistencia del aire proporcional al cuadrado de su rapidez. Sin embargo hay una fuerza de resistencia

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles