MODELIZACIÓN DE LA RENTABILIDAD EN LOS MERCADOS DE VALORES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MODELIZACIÓN DE LA RENTABILIDAD EN LOS MERCADOS DE VALORES"

Transcripción

1 University of Santiago de Compostela. Faculty of Economics. Econometrics * Working Paper Series Economic Development. nº 58 MODELIZACIÓN DE LA RENTABILIDAD EN LOS MERCADOS DE VALORES María Eugenia ESCUDERO Doctora en Economía Analista de Bolsa Published 2 Resumen: En la medida en que el proceso de diversificación nos permite crear carteras de títulos en las que sea únicamente el movimiento de mercado en su conjunto el único riesgo a tener en cuenta, entonces la rentabilidad esperada de cualquier cartera deberá depender del riesgo de mercado, también llamado riesgo sistemático. Existe una dependencia lineal entre el rendimiento del índice, como indicador del mercado, y la rentabilidad de los valores que nos medirá el riesgo sistemático mediante la estimación de las betas de cada acción. Siguiendo esta idea, elaboramos un modelo econométrico que nos permite analizar la sensibilidad de los movimientos de los precios de las acciones de las principales compañías que cotizan en la Bolsa española con respecto a las variaciones del índice Ibex-35 y, por tanto, nos permite conocer el riesgo de mercado para cada uno de los valores objeto de estudio. Analizamos además la volatilidad de cada de los títulos durante el año JEL Classification: C5, C51, G1 INDICE: Página 1. INTRODUCCIÓN METODOLOGÍA ESTIMACIÓN DEL MODELO Y ANÁLISIS DE RESULTADOS EVALUACIÓN DE LA CAPACIDAD PREDICTIVA CONCLUSIONES ANEXO. RESULTADO DE LAS ESTIMACIONES BIBLIOGRAFÍA * In colaboration with the Euro-American Association of Economic Development Studies

2 E.Escudero.Mercado de Valores. Economic Development n.58. MODELIZACIÓN DE LA RENTABILIDAD EN LOS MERCADOS DE VALORES 1. INTRODUCCIÓN María Eugenia ESCUDERO El mercado de valores español vive el período de expansión más importante de su historia y que ya ha situado a la Bolsa de Madrid entre las diez primeras del mundo por su volumen de contratación en En los seis primeros meses del presente año el Indice General de la Bolsa de Madrid (IGBM) se revalorizó más de un 48 por ciento y el valor de las empresas que cotizan en el mercado representaba más del 5 por ciento del PIB. Los principales causantes de esta trayectoria ascendente de la demanda de acciones en los últimos tiempos parecen haber sido: la bajada de los tipos de interés, los buenos resultados de las compañías, las privatizaciones realizadas por el Estado de sus empresas más representativas, la inclusión en el mercado de nuevas sociedades que antes no cotizaban - en 1997 se admitieron 4 (más que en todo el período 91-96)-, y especialmente la inminente aparición del euro. Todos estos factores parecen ser los causantes de que la contratación en renta variable de la Bolsa de Madrid en 1997 superase los billones de pesetas, cifra que duplica a la correspondiente al año anterior. En lo que va de año la Bolsa va camino de batir nuevos récords y supone, a pesar de las crisis financiera vivida en los meses de agosto y septiembre, un importante atractivo para todo tipo de inversores, privados o institucionales, para los que la renta fija ha perdido el interés. El objetivo de este trabajo es analizar a través de métodos cuantitativos la sensibilidad de los movimientos de las cotizaciones de las acciones de las principales compañías con respecto a las variaciones diarias del índice Ibex-35. Para ello, estudiaremos los 35 valores más importantes del la Bolsa española en cuanto su volumen de contratación y el índice que ellos mismos componen, el Ibex-35, ya que es el mejor indicador del mercado. Para explicar el movimiento, en términos de rentabilidad, de un valor como función de las variaciones de rentabilidad del Ibex, utilizaremos el concepto de betas. Las betas de los valores nos indican la sensibilidad de la cotización con respecto a los movimientos del Ibex 35 y se obtiene a partir de una regresión lineal entre la serie de rentabilidades diarias del índice y la serie de rentabilidades diarias del precio de la acción objeto de estudio. Es la pendiente de la recta de regresión obtenida. Su valor puede ser igual a 1 para acciones cuyas rentabilidades oscilan de la misma forma que el Ibex-35, mayor que 1 para valores que amplifican los movimientos del índice, ya sea al alza o a la baja, son los llamados valores ofensivos, o menor que 1, a este grupo pertenecen los valores denominados defensivos que son aquellos que atenúan los movimientos del índice.

3 E.Escudero.Mercado de Valores. Economic Development n.58. Será necesario calificar la bondad de las betas. Para ello se utiliza el coeficiente R 2 que mide el grado de bondad del ajuste a la recta de regresión. Este coeficiente representa en que medida el movimiento del precio del valor está explicado por el movimiento del índice. La validez de las betas dependerá de lo elevado que sea su coeficiente de correlación. Estudiaremos, también, el riesgo de cada valor a través de la dispersión de sus rentabilidades diarias respecto a la media, a este parámetro se le denomina volatilidad y es la desviación típica de la serie de rentabilidades diarias multiplicada por la raíz cuadrada de 365 (volatilidad anualizada). Por último veremos si la serie de rentabilidades de cada valor y del Ibex-35 se distribuyen normalmente o no. Y lo que significa en cada caso. Además evaluaremos la capacidad predictiva de nuestro modelo, como método de corroborar su validez, para lo que seleccionaremos aquellos regresandos en cuyo ajuste se halla obtenido un mejor R 2 y realizaremos predicciones sobre los mismos y las compararemos con las observaciones reales de las variables. 2. METODOLOGÍA La relación entre rentabilidad y riesgo, según MARKOWIZ (1952) en su teoría de la elección óptima de activos financieros, es una relación positiva ya que un activo financiero guarda una relación positiva entre la rentabilidad esperada y el riesgo de éste. Este autor mostró además como un inversor puede reducir el riesgo o volatilidad de su cartera, la desviación típica de las rentabilidades de la misma, eligiendo acciones cuyas oscilaciones no sean paraleas, en una palabra, diversificándola adecuadamente. En la medida en que el proceso de diversificación nos permita crear carteras de títulos en las que sea únicamente el movimiento de mercado en su conjunto el único riesgo a tener en cuenta, entonces la rentabilidad esperada de cualquier cartera deberá depender del riesgo de mercado o riesgo sistemático. SHARPE (1964) en su modelo de valoración de activos financieros CAPM establece que existe una dependencia estadística de tipo lineal entre el rendimiento del índice, como indicador de mercado, y la rentabilidad de los valores que nos medirá el riesgo sistemático. Siguiendo esta idea, nosotros elaboramos un modelo en el que establecemos una variable independiente que será la serie de rentabilidades diarias del Ibex-35 durante el año 1997 y una variable dependiente que estará compuesta por las rentabilidades diarias de cada uno de los valores objeto de nuestro estudio. Según esta hipótesis, el rendimiento de una acción viene determinado por la siguiente expresión: R α + β. R + ε v = Ibex

4 E.Escudero.Mercado de Valores. Economic Development n.58. Que es simplemente el planteamiento de un Modelo de Regresión Lineal donde las variables Rv y Ribex, serie de rentabilidades diarias del valor y del Ibex, ya las conocemos. Los parámetros de la ecuación, α y β, son desconocidos y será lo que necesitamos calcular en nuestro análisis, se suponen constantes en toda la muestra. El coeficiente β es lo que llamamos beta de la acción y el coefiente α es el llamado rendimiento autónomo del título que no depende del mercado, según la teoría CAPM, la existencia de algún α distinto de cero se deberá a algún problema en la formación del precio del título y tenderá a desaparecer. Por su parte, ε es la perturbación aleatoria y representa la diferencia entre el valor esperado y el valor real de la variable dependiente de partida se supone que cumple las propiedades de ruido blanco. Esta relación puede expresarse matricialmente del modo siguiente: Rv = R β + ε * El vector Rv incluye las 251 observaciones de rentabilidades diarias del valor durante el año 97. * R es la matriz de observaciones de los regresores: la variable explicativa con las 251 observaciones de rentabilidades del IBEX-35 y el regresor ficticio x t = 1 para todo t. * ß es el vector de parámetros. * ε es el vector de perturbaciones. De este modo, habremos logrado nuestro primer objetivo: el cálculo de las betas del mercado. Conoceremos las betas de los valores y su sensibilidad con respecto a los movimientos del IBEX-35. Tendremos que calificar la bondad del ajuste las medidas habituales hará ello son el coeficiente de determinación o R 2 del que ya hemos hablado. Los valores que puede tomar el coeficiente de determinación tienen límites que están entre cero y la unidad, siendo su valor más próximo a cero cuanto peor sea el ajuste y siendo su valor más próximo a uno cuanto mejor sea el ajuste. El coeficiente de determinación lineal que hemos hallado nos medirá el grado de acierto en la utilización de la regresión, o lo que es lo mismo, R 2 nos dará el porcentaje de variabilidad de la rentabilidad de un valor que queda explicada por nuestro modelo. Una vez determinada la beta de mercado también deberemos conocer el riesgo total de cada valor. Este otro concepto que nos ayudará a conocer mejor los movimientos del mercado es la volatilidad, este estadístico mide el riesgo de cada valor como dispersión de sus rentabilidades diarias respecto a la media. El riesgo medido por este indicador es la probabilidad de no obtener la rentabilidad esperada bien sea positiva o negativa, la palabra riesgo, por tanto, no significa pérdida sino variación tanto positiva como negativa. Su cálculo se realiza multiplicando la desviación típica de la serie de rentabilidades diarias por la raíz cuadrada del número de días del año para obtener el valor anualizado de la volatilidad. También se podría hallar multiplicando la desviación típica por la raíz cuadrada

5 E.Escudero.Mercado de Valores. Economic Development n.58. del número de sesiones anuales, pero en este caso no recogería los movimientos de los valores y de los tipos de interés que ocurren cuando el mercado está cerrado en una de las plazas bursátiles y no lo está en otra, o cuando ocurren importantes acontecimientos internacionales y es un festivo o un fin de semana. En nuestro análisis utilizaremos el año completo para el cálculo. νt v = ( R R ) v v 365 Además de calcular las betas del mercado para cada uno de los 35 valores que componen el IBEX, de ver la bondad de las mismas mediante al cálculo del coeficientes de determinación R 2 y de la medición del riesgo de cada valor a través del cálculo de la volatilidad, veremos si las series de rentabilidad de los valores se distribuyen normalmente. La forma más sencilla para aceptar o rechazar dicha hipótesis es la del cálculo de los coeficientes de asimetría y curtosis o apuntalamiento. Coeficiente de asimetría. Si una hipótesis es simétrica existe el mismo número de valores a la derecha que a la izquierda de R v, y, por lo tanto, el mismo número de desviaciones con signo positivo que con signo negativo, siendo la suma de las desviaciones positivas igual a la suma de las desviaciones negativas. Si se parte de las desviaciones ( Rv R v ), lo más sencillo sería utilizar: ( R R ) v v n Pero como esta expresión es cero y no podemos utilizar las potencias pares porque perderíamos los signos, se toma una potencia impar de dichas desviaciones. La media aritmética podría ser el promedio de dichas desviaciones elevadas a la potencia impar más simple: En este caso m = ( R R ) v v 3 n

6 E.Escudero.Mercado de Valores. Economic Development n.58. si m 3 = la distribución es simétrica si m 3 < la distribución es asimétrica negativa si m > la distribución es asimétrica positiva 3 Esta medida estaría expresada en las mismas unidades que las de la variable, pero elevadas al cubo, por lo que no es invaginare ante un cambio de escala: Para conseguir un indicador adimensional se divide la expresión anterior por una cantidad que venga en sus mismas unidades de medida y que es el cubo de la desviación típica ( Rv Rv ) n248 m g = = 1 S ( R R ) v v 2 n Como S es mayor que cero ya que es la desviación típica, el signo de g 1 es el mismo que el de m y por lo tanto los criterios serán los mismos que los señalados para m. 3 3 Las medidas de curtosis estudian la distribución de frecuencias en la zona central de la distribución. La mayor o menor concentración de frecuencias alrededor de la media dará lugar a una distribución más o menos apuntalada en la zona central. Este coeficiente estudia, por tanto, la deformación en sentido vertical con respecto a la normal de una distribución. El coeficiente será: Y su distribución será: Si g 2 = mesocúrtica o normal. Si g 2 > leptocúrtica Si g 2 < platicúrtica g 2 m4 = S 4 3 En el caso de la distribución normal, los valores g y 1 g2 deben ser muy próximos a cero, como ya hemos visto. De este modo veremos si las distribuciones son normales o no lo son. En nuestro análisis la curtosis de la normal no está referido al valor cero, sino a tres. Se puede realizar también un contraste conjunto que combina ambas medidas que el Jarque-Bera, este estadístico toma la forma siguiente: 3 2 asimetría JB = ( curtosis 3) 24 2 que sigue, bajo la hipótesis nula de normalidad de la variable, una distribución χ 2 grados de libertad. con dos

7 E.Escudero.Mercado de Valores. Economic Development n.58. Si aceptamos la hipótesis de normalidad podríamos conocer en el 95 por ciento de los casos el intervalo en el que se movería la rentabilidad diaria obtenida por un inversor para cada valor estudiado. En el caso en el que nos diese como resultado la no existencia de normalidad, para conocer el intervalo en el que se movería la rentabilidad diaria del valor aplicaremos la desigualdad de Tchebyheff. En este caso conoceríamos, en el 75 por ciento de los casos, el intervalo de rentabilidad diaria en el que se movería el valor ya que esta desigualdad dice que: Para K=2 P ξ µ 2σ 1/ 4=,25 P ξ µ < 2σ 3/ 4=,75 A continuación, realizaremos los resultados obtenidos mediante el análisis que hemos explicado. En el anaxo final se encuentran las regresiones individuales para cada uno de los valores que componen el IBEX-35 excepto para Puleva ya que no disponíamos de los datos adecuados para hacerlo. Los resultados que se publican acerca de este valor a lo largo del trabajo nos han sido facilitados, ya elaborados, por el Servicio de Estudios de la Bolsa de Madrid. 3. ESTIMACIÓN DEL MODELO Y ANÁLISIS DE RESULTADOS El modelo planteado en la sección anterior lo aplicamos a continuación a la Bolsa Española, utilizando los siguientes datos: - Variables endógenas: series de rentabilidades diarias de los componentes del Ibex-35 Los valores objeto de estudio son los que componían el IBEX-35 a 29 de diciembre de 1997: - Acesa (ACE) - Fomento de Construcciones y Contratas - Acerinox (ACX) (FCC) - Aguas de Barcelona (AGS) - Fuerzas Eléctricas de Cataluña (FEC) - Corporación Financiera Alba (ALB) - Iberdrola (IBE) - Amper (AMP) - Corporación Mapfre (MAP) - Argentaria (ARG) - Banco Popular Español (POP) - Autopistas del Mare Nostrum (AUM) - Centros Comerciales Pryca (PRY) - Asturiana del Zinc (AZC) - Puleva (PUL) - Banco Bilbao Vizcaya (BBV) - Repsol (REP) - Banco Central Hispano (BCH) - Banco de Santander (SAN) - Bankinter (BKT) - Sevillana de Electricidad (SEV) - Banesto (BTO) - Sol Meliá (SOL) - Hidroeléctrica del Cantábrico (CAN) - Tabacalera (TAB) - Continente (CTE) - Telefónica (TEF) - Gas Natural (CTG) - Tubacex (TUB) - Dragados y Construcciones (DRC) - Unión Eléctrica Fenosa (UNF) - Endesa (ELE) - Uralita (URA) - Vallehermoso (VAL)

8 E.Escudero.Mercado de Valores. Economic Development n Viscofán (VIS) - Variable exógena: serie de rentabilidades diarias del Ibex-35 El Ibex-35 es el índice oficial del Mercado continuo de la Bolsa Española. Se trata de un índice ponderado por su capitalización y que está compuesto por los 35 empresas más liquidas entre todas las que cotizan en el Mercado Continuo. El Ibex-35 además de ser un fiel reflejo del mercado está diseñado para actuar como activo subyacente en el mercado de opciones y futuros de renta variable. Los valores que componen el Ibex-35 representan un amplio porcentaje del volumen total contratado en el Mercado Continuo y suponen más del 61 por ciento de la capitalización bursátil de renta variable de la Bolsa de Madrid. Los datos de los que partimos para la elaboración del análisis han sido facilitados por la Sociedad de Bolsas y son las cotizaciones diarias en pesetas a cierre de mercado del índice Ibex-35 y de sus componentes durante Antes de presentar los resultados de la estimación del modelo analizamos la volatilidad de cada uno de los componentes del IBEX-35. La volatilidad o el riesgo de cada uno de los valores. Como se ha comentado al principio, cualquier poseedor de acciones de una compañía se enfrenta a un riesgo, tanto de subida como de bajada, lo que significa que en un futuro pueden darse situaciones distintas a las esperadas en su cartera de valores. La volatilidad mide el riesgo total de la cartera. Si la volatilidad de una acción es alta quiere decir que el rendimiento que se obtendrá de la acción, tanto positivo como negativo, en un futuro puede variar en un intervalo relativamente amplio. Una volatilidad baja implica que el rendimiento futuro de la acción diferirá poco del valor esperado. En el siguiente cuadro se recogen las volatilidades de los valores que componen el Ibex-35 en los años 96 y 97 y también la del propio índice: Valor Volatilidad Valor Volatilidad Valor Volatilidad ACE 31,71 26,44 CAN 28,85 21,45 REP 26,17 21,1 ACX 38,78 31,45 CTE 43,37 29,65 SAN 39,17 22,73 AGS 25,93 21,9 CTG 44,9 33,7 SEV 3,95 28,26 ALB 3,57 24,93 DRC 4,5 27,6 SOL 38,78 AMP 46,62 44,87 ELE 34,58 22,65 TAB 36,87 34,53 ARG 31,14,25 FCC 42,6 29,92 TEF 33,62 21,61 AUM 29,42 23,81 FEC 37,83 25,95 TUB 54,45 33,34 AZC 55,6 42,92 IBE 31,52 3,21 UNF 24,65 27,99 BBV 33,82 18,55 MAP 37,6 23,93 URA 44,13 31,52 BCH 37,64 21,54 POP 36,3 21, VAL 36,11 27,81 BKT 34,58,17 PRY 42,6 28,49 VIS 41,27 37,58

9 BTO 43,37 19,21 PUL 56,13 44,74 IBEX-35 25,79 De la observación del cuadro, la conclusión principal que se extrae es la confirmación de la teoría de MARKOWITZ(1952) acerca de la diversificación de carteras, según la cual un inversor puede reducir las desviación típica de las rentabilidades de su cartera, es decir su riesgo o volatilidad, diversificando su cartera. Como se puede ver en el cuadro, la volatilidad del Ibex-35, que como ya se ha dicho está compuesto por los 35 valores estudiados y por lo tanto es una cartera formada éstos, es inferior a cualquiera de las volatilidades individuales de los valores que lo componen. La diversificación, por tanto, reduce el riesgo. En cuanto a las volatilidades individuales de los valores objeto de nuestro estudio, se puede decir que en el año 97 las volatilidades fueron bastante elevadas y en todos los casos han sido superiores a las del año 96, esto ha sido debido fundamentalmente a las fuertes oscilaciones habidas en el mercado el mes de octubre. Los bancos analizados, ARG; BBV, BCH, BTO, BKT, POP, SAN y MAP, nos muestran que el sector de bancos y financieras, que históricamente era un sector con escaso nivel de riesgo, pasa a convertirse en uno de los que mayor volatilidad han experimentado durante el año 97 lo que los ha situado en una posición ofensiva dentro del mercado. Las rentabilidades de estos valores han sido acordes con sus volatilidades y en el grupo señalado anteriormente están los tres valores que han obtenido un mayor nivel de rentabilidad de todos los estudiados durante el año 97. El BCH obtuvo una rentabilidad de un 128,31 por ciento, la mayor de todas; seguido por BBV cuya rentabilidad ascendió a un 115,6 por ciento. y SAN con una rentabilidad de un 88,75 por ciento. En el cuadro siguiente se pueden ver las rentabilidades obtenidas por los valores que componen el Ibex-35 durante el año 97. Valor Rentabilidad Valor Rentabilidad Valor Rentabilidad ACE 19,42 CAN 38,59 REP 32,38 ACX 24,22 CTE 12,35 SAN 88,75 AGS 16,73 CTG 6,18 SEV 4,4 ALB 23,46 DRC 69,9 SOL 42,19 AMP 48,2 ELE 19,56 TAB 124,14 ARG 62,63 FCC 95,78 TEF 45,24 AUM 36,59 FEC 4,96 TUB 86,5 AZC 76,83 IBE 17,6 UNF 13,18 BBV 115,6 MAP 3,99 URA 74,52 BCH 128,31 POP 7,4 VAL 67,99 BKT 31,44 PRY -13,85 VIS 98,19 BTO 48,51 PUL 139,4 IBEX-35 44,58 El resto de los valores con mayores volatilidades son, además de los bancos, los pertenecientes a los sectores de construcción y alimentación. Que se han traducido, al igual que en 9

10 el caso anterior en elevadas rentabilidades. Este es el caso de Tabacalera que con una volatilidad de un 36,87 alcanzó una rentabilidad de un 124,14 por ciento o Puleva con una volatilidad de un 56,13 y cuya rentabilidad ascendió a más de un 139 por ciento, la más alta de todos los valores estudiados. También fueron elevadas las rentabilidades de Viscofán,, un 98,19 por ciento; Fomento de Construcciones y Contratas, un 95,78 por ciento; DRC con un 69,9 por ciento, Uralita con un 74,52 por ciento o Vallehermoso con un 67,99 por ciento. Todos estos valores han obtenido rentabilidades superiores a la del mercado, medida ésta por la rentabilidad del Ibex-35. Además de ellas también han superado al mercado en su nivel de rentabilidad Amper, Asturiana del Zinc, Telefónica y Tubacex. En este caso, los inversores que durante el pasado año hayan optado por valores con elevadas volatilidades habrán obtenido también elevadas rentabilidades por el entorno alcista en el que se encuentra el mercado en estos momentos, en un entorno bajista el inversor no debe optar por valores con volatilidades muy elevadas o en todo caso y, como se señaló al principio, debe diversificar su cartera para reducir su riesgo ya que sinó tendría muchas probabilidades de obtener importantes pérdidas en su inversión. El único valor con una elevada volatilidad pero que se comportó de manera inversa al mercado durante el año 97 fue Pryca que obtuvo una rentabilidad negativa. Si el inversor hubiese apostado por este valor únicamente, a pesar de la situación alcista del mercado, hubise obtenido una pérdida de un 13,85 por ciento de su inversión. Las betas en el mercado. Las betas de cada uno de los valores nos indicarán la sensibilidad de cada uno de ellos a los movimientos del mercado, nos mostrarán, por tanto, el riesgo sistemático o de mercado de cada una de las acciones estudiadas. Este riesgo, como ya hemos comentado, no se puede eliminar diversificando la cartera. El conocimiento por parte de un inversor de las betas de cada valor es fundamental a la hora de realizar su inversión ya que dispondrá de mejor información para paliar su mayor fuente de incertidumbre que es conocer si el mercado sube o baja y en qué medida esto arrastrará a su inversión. Los valores de las betas nos indicarán el tipo de valor que estamos analizando. Así, si el valor tiene betas iguales a 1, quiere eso decir que ese valor oscila de la misma forma que el mercado y será un valor neutro. Si las betas son superiores a 1, se trata de valores que amplifican los movimientos del mercado, son los valores llamados ofensivos. Cuando las betas son menores que 1, se trata de valores que atenúan los movimientos del mercado y se encuadrarán dentro del grupo de los valores defensivos. En el cuadro siguiente nos muestra las betas de los valores que componen el Ibex 35 calculadas en un periodo de un año resultantes de la regresión. Los resultados completos de las regresiones efectuadas figuran en la sección 6. Valor Beta Valor Beta Valor Beta 1

11 ACE,82 CAN,74 REP,73 ACX,91 CTE,98 SAN 1,2 AGS,63 CTG 1,25 SEV,78 ALB,57 DRC 1,1 SOL,89 AMP 1,15 ELE 1,2 TAB,75 ARG,81 FCC 1,13 TEF 1,11 AUM,66 FEC 1,9 TUB 1,35 AZC 1,22 IBE,87 UNF,52 BBV 1,11 MAP 1,1 URA 1,2 BCH 1,14 POP,95 VAL,93 BKT,92 PRY 1,5 VIS,9 BTO,95 PUL 1,2 IBEX-35 1 De los 35 valores estudiados se pueden calificar de ofensivos un total de 11, correspondientes a compañías cuyos títulos han amplificado los movimientos del índice con betas superiores a 1,1, como se puede ver en el cuadro. Es importante destacar que entre estas compañías se sitúan tres bancos, Santander, BBV Y BCH, que indica un cambio de tendencia del sector que pasa de ser tradicionalmente defensivo a situar se en posiciones ofensivas inducido por los bancos con más peso dentro del mismo. Estos bancos también han sido los que han obtenido mayores rentabilidades tanto dentro de su sector como en el contexto general de la Bolsa. El valor con la beta más ofensiva en el 97 ha sido Tubacex con 1,35. Los valores neutros, cuya trayectoria ha sido pareja a la del índice, con betas entre,9 y 1,1 han sido también han sido 11. Estas compañías replican en el movimiento de sus precios el movimiento del índice. Los trece valores restantes han tenido un comportamiento atenuador de los movimientos del mercado con betas inferiores a las del índice, algunas tan defensivas como Corporación financiera Alba o Unión Fenosa con betas de,57 y,52, respectivamente, han sido los valores más defensivos de todos los estudiados. Una vez que conocemos las betas del mercado, será necesario calificar su bondad a través del coeficiente de determinación. El coeficiente de determinación R 2 nos indicará en qué medida el movimiento del valor está explicado por el mercado. El valor de este coeficiente se mueve entre cero y uno, cuanto más próximo a cero peor será el ajuste y cuanto más próximo a uno mejor será éste. En función de los resultados de este coeficiente sabremos en que porcentaje la beta que hemos calculado con anterioridad es significativa en el movimiento del valor o no lo es. Una beta muy alta con un coeficiente de determinación muy bajo no es influyente en el movimiento del precio de la acción que estamos analizando. Valor R 2 Valor R 2 Valor R 2 ACE,44 CAN,43 REP,52 11

12 ACX,36 CTE,34 SAN,62 AGS,4 CTG,51 SEV,42 ALB,23 DRC,49 SOL,35 AMP,4 ELE,57 TAB,28 ARG,45 FCC,46 TEF,72 AUM,33 FEC,55 TUB,41 AZC,31 IBE,5 UNF,29 BBV,7 MAP,49 URA,35 BCH,61 POP,45 VAL,44 BKT,47 PRY,41 VIS,32 BTO,31 PUL,28 IBEX-35 1 En nuestro caso consideramos que tiene un buen ajuste con el mercado los valores cuyos R 2 superan el,5, mientras que consideramos que el ajuste no es bueno cuando los R 2 son inferiores al,25. En el cuadro siguiente se pueden ver los R 2 de cada uno de los valores objeto de estudio. De la observación del cuadro nos encontramos con nueve valores cuyos R 2 se sitúan por encima del,5 lo que nos indica que sus betas explican más de la mitad del movimiento del título. La correlación más alta entre el movimiento del precio de un valor con respecto al movimiento del Ibex-35 durante 1997 la han tenido las acciones de Telefónica con un R 2 de un,72 y las del BBV cuyo R 2 ascendió a,7. Esto quiere decir que la beta calculada para cada uno de estos valores, en ambos casos de 1,11 tiene influencia sobre el 7 y el 72 por ciento de movimiento del precio de cada uno de éstos valores, respectivamente. En el extremo contrario, con el R 2 más bajo de todos los estudiados se sitúa Corporación Financiera Alba con una correlación con respecto al índice de un,23, la única de todos los valores estudiados que se sitúa por debajo del umbral del,25. En este caso la beta correspondiente a este valor, una beta con claro carácter defensivo de,57, solo es significativa para el 23 por ciento del movimiento del precio del valor. Un ejemplo de una beta (1,22) con claro carácter ofensivo que, sin embargo, pierde su importancia al tener un bajo R 2 (,31) es la de Asturiana del Zinc. Ya que su incidencia solo es significativa para un 3 por ciento del movimiento del precio del valor. La distribución normal de las rentabilidades. Veremos también si las distribuciones de rentabilidades diarias de cada uno de los valores siguen una distribución normal. En el caso de que así fuese podríamos conocer, en el 95 por ciento de los casos, el intervalo de rentabilidad diaria en la que se movería un inversor, para ello se utiliza el intervalo que describe la desviación típica multiplicada por dos y por menos dos. En el caso de que la distribución no fuese normal, podríamos conocer, en el 75 por ciento de los casos, el intervalo de rentabilidades diarias en el que movería un inversor utilizando la desigualdad de Tchebycheff. 12

13 Los valores cuyas rentabilidades diarias siguen una distribución normal son diez, en su caso conocemos el intervalo de rentabilidad diaria en el que se pueden mover los precios de sus valores en el 95 por ciento de los casos. Para el resto de los valores, incluido el índice, las rentabilidades diarias no describen una distribución normal por lo que conoceremos el intervalo de rentabilidad diaria de sus precios en el 75 por ciento de los casos. En el siguiente cuadro se recogen los comportamientos de cada uno de los valores estudiados con respecto a estas pautas: Valor Normal Intervalo Valor Normal Intervalo ACE SI +/-3,32% FEC NO +/-3,96% ACX SI +/-4,6% IBE SI +/3,3% AGS NO +/-2,7% MAP NO +/-3,88% ALB NO +/-3,2% POP NO +/3,8% AMP NO +/-4,88% PRY NO +/-4,46% ARG SI +/-3,26% PUL NO +/-6,2% AUM SI +/-3,8% REP SI +/-2,74% AZC NO +/-5,82% SAN NO +/-4,1% BBV NO +/-3,54% SEV SI +/-3,24% BCH NO +/-3,94% SOL NO +/-4,6% BKT NO +/-3,62% TAB NO +/-3,86% BTO NO +/-4,54% TEF NO +/-3,52% CAN NO +/-3,2% TUB NO +/-5,7% CTE NO +/-4,54% UNF NO +/-2,58% CTG SI +/-4,7% URA NO +/-4,62% DRC NO +/-4,24% VAL SI +/-3,78% ELE SI +/-3,62% VIS NO +/-4,32% FCC NO +/-%4,46 IBEX-35 NO +/-2,7% 4. EVALUACIÓN DE LA CAPACIDAD PREDICTIVA Como método de validación de nuestro análisis, vamos a valorar la capacidad predictiva del modelo. Nos gustaría conocer la capacidad que tiene nuestro modelo de predecir el movimiento de los precios de las acciones objeto de nuestro estudio. Para ello, el mejor modo de hacerlo será la comparación entre predicciones y observaciones reales de las variables. Vamos a predecir los movimientos de los precios de aquellos valores cuyo coeficiente de correlación es superior a,5 y, por lo tanto, lo que tienen un mejor ajuste: Valor Beta R 2 BBV 1,11,7 BCH 1,14,61 CTG 1,25,51 ELE 1,2,57 13

14 FEC 1,9,55 IBE,87,5 REP,73,52 SAN 1,2,62 TEF 1,11,72 Una vez seleccionadas las variables dependientes que vamos a utilizar en nuestro análisis, haremos las regresiones individuales entre cada una de ellas y las variaciones diarias del Ibex-35 para todo el periodo estudiado, el año 1997, excepto las tres sesiones correspondientes a la última semana del año, en concreto a los días lunes 29, martes 3 y miércoles 31 de diciembre. Realizaremos, entonces, una predicción sobre esas tres observaciones y las compararemos con el valor real de las mismas. Para evaluar la capacidad predictiva del modelo utilizamos el coeficiente de Theil y sus componentes de sesgo y de varianza, ambas nos indicarían una naturaleza sistémica de la inexactitud de la predicción; y de covarianza. Este último componente, según el profesor José María Otero, es el más importante ya que refleja una desigualdad entre predicciones y realizaciones cuya corrección no es posible por su naturaleza asistémica, mientras que los dos primeros términos al tener naturaleza sistémica podrían corregirse. Los resultados de las predicciones y su evaluación están en los cuadros siguientes: Observaciones BBV BBV(predicción) 249 3,48 3,68 25,83 1, ,84-1,9 Theil Inequality Coefficient Bias Proportion Varianc Proportion Covariance Proportion Las predicciones de las rentabilidades de BBV con respecto al movimiento real del precio de sus acciones no son del todo malas, el modelo predice casi exactamente la primera de las observaciones y es muy cercana en la segunda, mientras que no es capaz de predecir adecuadamente la última. En este caso, según el modelo de Theil, la naturaleza de la inexactitud de la predicción tiene un componente sistemático, el componente de sesgo y el de la varianza son los,25, y un componente de naturaleza asistemático, según indica el componente de covarianza. Observaciones BCH BCH(predicción) 249 5,4 3,78 25,42 1, ,73-1,11 14

15 Theil Inequality Coefficient Bias Proportion.4493 Variance Proportion.382 Covariance Proportion La predicción del movimiento de las precios del BCH es bastante buena para las dos primeras observaciones, sin embargo, no lo es para la tercera ya que no refleja el cambio de tendencia sufrido por la cotización del título. En este caso la inexactitud parte de las componentes de sesgo y de covarianza y, por lo tanto, tiene naturaleza sistémica y también asistémica. Observaciones CTG CTG(predicción) 249 5,23 3, ,75, ,1-1,52 Theil Inequality Coefficient Bias Proportion.191 Variance Proportion Covariance Proportion En el caso de Gas natural, la predicción no es mala, se parece bastante la primera observación, siendo errónea la segunda en cuanto a la tendencia, mientras que de nuevo vuelve a ser buena la tercera de las predicciones. La naturaleza del error de predicción tiene componente sistético causado por el componenete de varianza, pero sobre todo componenete asistémico causado por el componente de covarianza. Observaciones ELE ELE(Predicción) 249 4,12 3, ,6, ,16-1,16 Theil Inequality Coefficient Bias Proportion Variance Proportion Covariance Proportion.7671 En el caso de Endesa, las predicciones son buenas en la primera y la tercera de las observaciones ya que son capaces de predecir la tendencia de los precios en ambos casos. La peor de las estimaciones es la segunda ya que el modelo no predice el cambio de tendencia. En este caso, la inexactitud de la predicción parece tener por completo naturaleza sistémica, lo que significa que puede ser corregida. Observaciones FEC FEC(predicción) 249 1,59 3,37 15

16 25 1, 17, ,17-1,34 Theil Inequality Coefficient Bias Proportion Variance Proportion Covariance Proportion La predicción del movimiento de los precios de Fecsa es bastante buena en todos los casos ya que predicen adecuadamente la tendencia para las tres observaciones. La inexactitud de la predicción tiene tanto naturaleza sistémica, como asistemica según se desprende del resultado del coeficiente de Theil y sus componentes. Observaciones IBE IBE(predicción) 249 3,28 2,69 25,74, ,24-1,1 Theil Inequality Coefficient Bias Proportion Variance Proportion Covariance Proportion.112 La predicción del movimiento de los precios de Iberdrola durante las tres últimas sesiones del año 97 es excelente. No solo predice con precisión la tendencia en todos los casos sinó que también los valores son muy próximos a los reales. En este caso, el coeficiente de Theil es muy próximo a cero y la inexactitud solo tienen componenetes sistémicos. Observaciones REP REP(predicción) 249 1,41 2, ,23, ,31 -,81 Theil Inequality Coefficient Bias Proportion.7118 Variance Proportion.5315 Covariance Proportion Las predicciones de los movimientos de los precios de Repsol en la última semana del año 97 son buenas, en todos los casos las predicciones tienen la tendencia adecuada y los valores son bastante aproximados. La inexactitud de la predicción en este caso tiene naturaleza tanto sistémica, como asistémica. Observaciones SAN SAN(predicción) 249 4,4 3, ,32 1, ,99-1,27 16

17 Theil Inequality Coefficient Bias Proportion Variance Proportion Covariance Proportion También son buenas las predicciones de los movimientos de los precios de las acciones del Banco Santander, sobre todo en la primera y segunda observación. En el caso de la tercera observación el modelo no predice adecuadamente el cambio de tendencia de los precios. La inexactitud de la predicción tiene tanto componenete sistémico, como asistémico Observaciones TEF TEF(predicción) 249 1,79 3, ,87, ,26-1,21 Theil Inequality Coefficient Bias Proportion Variance Proportion Covariance Proportion La predicción del movimiento de los precios de las acciones de Telefónica es muy buena en cuanto a que, en todos los casos, predice adecuadamente la tendencia de los precios de las acciones de la compañía, pero, no lo es tanto, en cuanto a su valoración real. Esta inexactitud de predicción tiene tanto componente sistémico, como asistémico. En todos los casos, los resultados de las predicciones son bastante buenos ya que a pesar de no coincidir exactamente las variaciones reales de los precios con las estimadas, si predice, en buena parte de los casos, la tendencia seguida de crecimiento o disminución del regresando. La mejor de las predicciones es, sin lugar a dudas, la de Iberdrola con un coeficiente de Theil muy próximo a cero y sin componente asistémico de inexactitud. Este valor es junto con Endesa los únicos que no tienen componentes de inexactitud asistémicos. Para el resto de las predicciones, sus inexactitudes tienen tanto componente sistémico, como asistémico. El primero de ellos podría corregirse mientras que el segundo, al estar fuera del modelo no podría ser corregido. Esta componente asistémica podría estar influenciada, incluso, por la fecha que hemos elegido para realizar las predicciones, la última semana del año, ya que esta es una fecha especial en la que se produce el efecto fin de año en el que en las compras y ventas de acciones juegan además de los criterios habituales otros como pueden ser los fiscales. Además, en el último día del año 97 las acciones de BBV y Telefónica fueron objeto de una extraña práctica que provocó una caída importante de sus cotizaciones. La Comisión Nacional del Mercado de Valores abrió una investigación para conocer en profundidad lo que había ocurrido en el mercado. 17

18 5. CONCLUSIONES 1. La primera conclusión que se extrae tras la realización del análisis de los 35 valores que componen el Ibex es la confirmación de la teoría de MARKOWITZ (1952) acerca de la diversificación de carteras, según la cual un inversor puede reducir las desviación típica de las rentabilidades de su cartera, es decir su riesgo o volatilidad, diversificando su cartera. Según los resultados que hemos obtenido, la volatilidad del Ibex-35 es inferior a cualquiera de las volatilidades individuales de los valores que lo componen. La diversificación, por tanto, reduce el riesgo. 2. En cuanto a las volatilidades individuales de los valores objeto de nuestro estudio, se puede decir que en el año 97 las volatilidades fueron bastante elevadas y en todos los casos han sido superiores a las del año 96, esto ha sido debido fundamentalmente a las fuertes oscilaciones habidas en el mercado el mes de octubre. En general, los inversores que durante el pasado año hayan optado por valores con elevadas volatilidades habrán obtenido también elevadas rentabilidades por el entorno alcista en el que se encuentra el mercado en estos momentos. 3. De los 35 valores estudiados se pueden calificar de ofensivos un total de 11, correspondientes a compañías cuyos títulos han amplificado los movimientos del índice con betas superiores a 1,1. Es importante destacar que entre estas compañías se sitúan tres bancos, Santander, BBV Y BCH, que indica un cambio de tendencia del sector que pasa de ser tradicionalmente defensivo a situarse en posiciones ofensivas inducido por los bancos con más peso dentro del mismo. Estos bancos también han sido los que han obtenido mayores rentabilidades tanto dentro de su sector como en el contexto general de la Bolsa. El valor con la beta más ofensiva en el 97 ha sido Tubacex con 1, Tras el análisis nos encontramos con nueve valores cuyos R 2 se sitúan por encima del,5 lo que nos indica que sus betas explican más de la mitad del movimiento del título. La correlación más alta entre el movimiento del precio de un valor con respecto al movimiento del Ibex-35 durante 1997 la han tenido las acciones de Telefónica con un R 2 de un,72 y las del BBV cuyo R 2 ascendió a,7. Esto quiere decir que la beta calculada para cada uno de estos valores, en ambos casos de 1,11 tiene influencia sobre el 7 y el 72 por ciento de movimiento del precio de cada uno de éstos valores, respectivamente. En el extremo contrario, con el R 2 más bajo de todos los estudiados se sitúa Corporación Financiera Alba con una correlación con respecto al índice de un, La valoración de la capacidad predictiva del modelo, como método de validación de nuestro análisis, nos indica que, en todos los casos, los resultados de las predicciones son bastante buenos ya que a pesar de no coincidir exactamente las variaciones reales de los precios con las estimadas, si predice, en buena parte de los casos, la tendencia seguida de crecimiento o disminución del regresando. El análisis cuantitativo, como el que hemos utilizado para la realización de este trabajo, es un instrumento fundamental para la toma de decisiones de inversión por los analistas del mercado de valores. 18

19 6. ANEXO. RESULTADO DE LAS ESTIMACIONES A continuación presentamos resultados detallados de cada una de las regresiones. Se han efectuado par 34 de los 35 valores. LS // Dependent Variable is ACE C IBEX R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion.4462 Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic). 19

20 Series: ACE Mean Median. Maximum Minimum Std. Dev Skewness Kurtosis Jarque-Bera Probability LS // Dependent Variable is ACX C IBEX R-squared Mean dependent var Adjusted R-squared S.D. dependent var S.E. of regression Akaike info criterion Sum squared resid Schwarz criterion Log likelihood F-statistic Durbin-Watson stat Prob(F-statistic) Series: ACX Mean Median Maximum Minimum Std. Dev Skewness Kurtosis LS // Dependent Variable is AGS C IBEX R-squared Mean dependent var Adjusted R-squared.4217 S.D. dependent var Jarque-Bera Probability

ECONOMETRÍA II PRÁCTICAS DE ORDENADOR. Práctica 2

ECONOMETRÍA II PRÁCTICAS DE ORDENADOR. Práctica 2 ECONOMETRÍA II PRÁCTICAS DE ORDENADOR Práctica 2 El fichero epflic.wf1 contiene una submuestra de hogares de la Encuesta de Presupuestos Familiares 1990/91 formada por parejas con o sin hijos en los que

Más detalles

CIIF CENTRO INTERNACIONAL DE INVESTIGACION FINANCIERA

CIIF CENTRO INTERNACIONAL DE INVESTIGACION FINANCIERA I E S E Universidad de Navarra CIIF CENTRO INTERNACIONAL DE INVESTIGACION FINANCIERA VOLATILIDADES, BETAS Y ALFAS DE EMPRESAS ESPAÑOLAS PERIODOS 99-996 Y 986-989 Pablo Fernández* DOCUMENTO DE INVESTIGACION

Más detalles

Las variables incluidas en el modelo se interpretan de la siguiente forma:

Las variables incluidas en el modelo se interpretan de la siguiente forma: PRÁCTICA 4: EL MODELO LINEAL DE PROBABILIDAD - Estimar un modelo lineal de probabilidad - Interpretar los coeficientes estimados - Obtener las probabilidad estimadas - Contrastar la normalidad de las perturbaciones

Más detalles

ECONOMETRÍA I. Licenciatura de admón. y Dcción de Empresas Grupos 3A1 y 3A2 Convocatoria de septiembre de 2002 Profesor Rafael de Arce NOMBRE GRUPO

ECONOMETRÍA I. Licenciatura de admón. y Dcción de Empresas Grupos 3A1 y 3A2 Convocatoria de septiembre de 2002 Profesor Rafael de Arce NOMBRE GRUPO ECONOMETRÍA I. Licenciatura de admón. y Dcción de Empresas Grupos 3A1 y 3A2 Convocatoria de septiembre de 2002 Profesor Rafael de Arce NOMBRE GRUPO 1. Cuáles son los distintos usos que se le pueden dar

Más detalles

Caballero, Cabello, Cano y Ruiz. 1.- Introducción

Caballero, Cabello, Cano y Ruiz. 1.- Introducción 1.- Introducción Partiendo de los estudios de Markowitz (1959) y de trabajos posteriores, como el de Sharpe (1963), en nuestro trabajo, una vez seleccionada la cartera, pretendemos dar un paso más, realizando

Más detalles

Diversificación en renta variable: cuestión de cantidad o de calidad de los activos? Segunda parte.

Diversificación en renta variable: cuestión de cantidad o de calidad de los activos? Segunda parte. Diversificación en renta variable: cuestión de cantidad o de calidad de los activos? Segunda parte. Dr. José B. Sáez Madrid* Dr. Francesc Ortí Celma* Dr. Jesús López Zaballos** * Departamento de Matemática

Más detalles

1. Determine la validez de los contrastes de significatividad individual en los siguientes supuestos:

1. Determine la validez de los contrastes de significatividad individual en los siguientes supuestos: EXAMEN ECONOMETRÍA 1 PROF. RAFAEL DE ARCE 23 de enero de 2009 NOMBRE: DNI: 1. Determine la validez de los contrastes de significatividad individual en los siguientes supuestos: a) Presencia de variables

Más detalles

Ministerio de Hacienda y Crédito Público Dirección General de Inversiones Públicas FACTOR DE CORRECCIÓN SOCIAL (FCS) TIPO DE CAMBIO DE MERCADO

Ministerio de Hacienda y Crédito Público Dirección General de Inversiones Públicas FACTOR DE CORRECCIÓN SOCIAL (FCS) TIPO DE CAMBIO DE MERCADO Ministerio de Hacienda y Crédito Público Dirección General de Inversiones Públicas FACTOR DE CORRECCIÓN SOCIAL (FCS) TIPO DE CAMBIO DE MERCADO NICARAGUA JUNIO 2010 ÍNDICE 1. FCS VIGENTE TIPO DE CAMBIO

Más detalles

ILUSTRACIÓN DEL PROBLEMA DE LA IDENTIFICABILIDAD EN LOS MODELOS MULTIECUACIONALES

ILUSTRACIÓN DEL PROBLEMA DE LA IDENTIFICABILIDAD EN LOS MODELOS MULTIECUACIONALES ILUSTRACIÓN DEL PROBLEMA DE LA IDENTIFICABILIDAD EN LOS MODELOS MULTIECUACIONALES El objetivo de este documento es ilustrar matemáticamente, y con un caso concreto, el problema de la identificación en

Más detalles

Working Paper Series Economic Development. Econometrics. Faculty of Economics and Business. University of Santiago de Compostela No.

Working Paper Series Economic Development. Econometrics. Faculty of Economics and Business. University of Santiago de Compostela No. Working Paper Series Economic Development. Econometrics. Faculty of Economics and Business. University of Santiago de Compostela No. 77 MODELOS ECONOMETRÍCOS DEL EMPLEO EN ESPAÑA: ANÁLISIS COMPARATIVO

Más detalles

Autor: M. en C. Miguel Ángel Martínez García

Autor: M. en C. Miguel Ángel Martínez García Instituto Politécnico Nacional Escuela Superior de Economía Sección de Estudios de Posgrado e Investigación Análisis de la Balanza Comercial a través de la función de exportaciones y la función de importaciones

Más detalles

El indicador Precio/Cash Flow mínimo como criterio bursátil

El indicador Precio/Cash Flow mínimo como criterio bursátil II International Conference on Industrial Engineering and Industrial Management XII Congreso de Ingeniería de Organización September 3-5, 2008, Burgos, Spain 1 El indicador Precio/Cash Flow mínimo como

Más detalles

IESE Universidad de Navarra Barcelona-Madrid

IESE Universidad de Navarra Barcelona-Madrid Barcelona-Madrid 0- EL INDICE GENERAL DE LA BOLSA DE MADRID Y EL IBEX-35. Enero 1987 Septiembre 1993 (*) La Figura 1 muestra la evolución del IGBM y del IBEX-35 en el período transcurrido entre enero de

Más detalles

Como construir carteras eficientes a medida

Como construir carteras eficientes a medida Un caso práctico desarrollado por el programa EFE 2000 de la empresa SciEcon Como construir carteras eficientes a medida El diseño de carteras eficientes involucra siempre un proceso de optimización. Si

Más detalles

Análisis comparativo entre los indicadores fundamentales de rendimiento como estrategia de inversión

Análisis comparativo entre los indicadores fundamentales de rendimiento como estrategia de inversión X Congreso de Ingeniería de Organización Valencia, 7 y 8 de septiembre de 2006 Análisis comparativo entre los indicadores fundamentales de rendimiento como estrategia de inversión Joan Coll Solà 1, Ariadna

Más detalles

Fondos de Inversión Renta 4. Renta 4 Bolsa FI Perspectivas renta variable española para segundo semestre 2008

Fondos de Inversión Renta 4. Renta 4 Bolsa FI Perspectivas renta variable española para segundo semestre 2008 Fondos de Inversión Renta 4 Renta 4 Bolsa FI Perspectivas renta variable española para segundo semestre 2008 Política de inversión Fondo: Renta Variable Española Estilo de Inversión: Stock picking de valores

Más detalles

DETERMINAR LA VALIDEZ DEL MODELO FINALMENTE SELECCIONADO. Econometría I. 3º LADE Prof. Rafael de Arce Enero 2003 rafael.dearce@uam.

DETERMINAR LA VALIDEZ DEL MODELO FINALMENTE SELECCIONADO. Econometría I. 3º LADE Prof. Rafael de Arce Enero 2003 rafael.dearce@uam. A PARTIR DE LA INFORMACIÓN SUMINISTRADA EN LAS SIGUIENTES HOJAS, CONTRASTAR EL CUMPLIMIENTO DE LAS HIPÓTESIS DEL MBRL Y JUSTIFICAR LAS SUCESIVAS ELECCIONES DE LAS REGRESIONES 1ª, 2ª, 3ª Y DEFINITIVA. DETERMINAR

Más detalles

Fuensanta Galán Herrero RIESGO, RENTABILIDAD Y EFICIENCIA DE CARTERAS DE VALORES

Fuensanta Galán Herrero RIESGO, RENTABILIDAD Y EFICIENCIA DE CARTERAS DE VALORES Fuensanta Galán Herrero RIESGO, RENTABILIDAD Y EFICIENCIA DE CARTERAS DE VALORES Índice Prólogo.................................................. 11 I. Rentabilidad y riesgo de los títulos negociables............

Más detalles

ESTUDIO DEL RENDIMIENTO DE LOS FONDOS DE INVERSIÓN CÓMO SE DETERMINA LA RENTABILIDAD DE UN FONDO?

ESTUDIO DEL RENDIMIENTO DE LOS FONDOS DE INVERSIÓN CÓMO SE DETERMINA LA RENTABILIDAD DE UN FONDO? ESTUDIO DEL RENDIMIENTO DE LOS FONDOS DE INVERSIÓN CÓMO SE DETERMINA LA RENTABILIDAD DE UN FONDO? El precio, o valor de mercado, de cada participación oscila según la evolución de los valores que componen

Más detalles

Cómo utilizar los warrants?: Principales Estrategias

Cómo utilizar los warrants?: Principales Estrategias Cómo utilizar los warrants?: Principales Estrategias El Warrant frente a la acción: el apalancamiento La principal diferencia entre la inversión en warrants y la inversión directa en acciones radica en

Más detalles

4 Varianza y desviación típica. 6 Covarianza y correlación. 9 Regresión lineal mínimo cuadrática. 22 Riesgo

4 Varianza y desviación típica. 6 Covarianza y correlación. 9 Regresión lineal mínimo cuadrática. 22 Riesgo MÓDULO 1: GESTIÓN DE CARTERAS Índice Conceptos estadísticos Media aritmética y esperanza matemática 4 Varianza y desviación típica 6 Covarianza y correlación 9 Regresión lineal mínimo cuadrática Rentabilidad

Más detalles

Universidad Autónoma de Estado de México. Uso de un modelo CAPM para la evaluación de los rendimientos y riesgos financieros en la BMV.

Universidad Autónoma de Estado de México. Uso de un modelo CAPM para la evaluación de los rendimientos y riesgos financieros en la BMV. Universidad Autónoma de Estado de México Unidad Académica y Profesional Cuautitlán Izcalli Uso de un modelo CAPM para la evaluación de los rendimientos y riesgos financieros en la BMV Autor: Gabriel Delgado

Más detalles

Métodos de reducción de la volatilidad

Métodos de reducción de la volatilidad Métodos de reducción de la volatilidad Los autores estiman como esencial una combinación adecuada de análisis fundamental y análisis técnico D La labor del gestor de carteras se profesionaliza y buen ejemplo

Más detalles

CRECIMIENTO ECONÓMICO LOS DATOS

CRECIMIENTO ECONÓMICO LOS DATOS CRECIMIENTO ECONÓMICO LOS DATOS Crecimiento económico es relevante: Esperanza de vida y consumo per cápita aumentan con renta y proporción de pobres disminuyen con renta per cápita CPC & RPC 180 Países

Más detalles

Aula Banca Privada. La importancia de la diversificación

Aula Banca Privada. La importancia de la diversificación Aula Banca Privada La importancia de la diversificación La importancia de la diversificación La diversificación de carteras es el principio básico de la operativa en mercados financieros, según el cual

Más detalles

El IBEX-35. Benjamín Hernández Blázquez

El IBEX-35. Benjamín Hernández Blázquez Benjamín Hernández Blázquez Ecuación de Micawber: Renta de una persona 20 libras; gasto 19 libras y 6 peniques = Ahorro y felicidad; Renta de una persona 20 libras; gasto 20 libras y 6 peniques = Despilfarro

Más detalles

UCM. Autores: Juan E. Tettamanti Xin Jing [ANÁLISIS DE VARIABLES DE POSIBLE INFLUENCIA EN EL PRECIO DE LAS ACCIONES DE ALUAR]

UCM. Autores: Juan E. Tettamanti Xin Jing [ANÁLISIS DE VARIABLES DE POSIBLE INFLUENCIA EN EL PRECIO DE LAS ACCIONES DE ALUAR] UCM Autores: [ANÁLISIS DE VARIABLES DE POSIBLE INFLUENCIA EN EL PRECIO DE LAS ACCIONES DE ALUAR] Madrid, 27 de Abril de 2013 Página1 Í ndice Introducción... 2 Análisis... 2 Contrastación de Hipótesis...

Más detalles

HASTA DONDE LAS FINANZAS SE PUEDEN CONTAR. Asamblea Xeral da SGPAEIO 16 de febrero de 2013

HASTA DONDE LAS FINANZAS SE PUEDEN CONTAR. Asamblea Xeral da SGPAEIO 16 de febrero de 2013 HASTA DONDE LAS FINANZAS SE PUEDEN CONTAR Asamblea Xeral da SGPAEIO 16 de febrero de 2013 Silvia Barco Tato Directora de Control Financiero y Middle Office en Banco Gallego Introducción ÍNDICE Finanzas

Más detalles

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3

Capítulo 3. Análisis de Regresión Simple. 1. Introducción. Capítulo 3 Capítulo 3 1. Introducción El análisis de regresión lineal, en general, nos permite obtener una función lineal de una o más variables independientes o predictoras (X1, X2,... XK) a partir de la cual explicar

Más detalles

CAPITAL HUMANO Y RENDIMIENTOS EDUCACIÓN

CAPITAL HUMANO Y RENDIMIENTOS EDUCACIÓN CAPITAL HUMANO Y RENDIMIENTOS EDUCACIÓN José L. Raymond UAB 1 Índice de la presentación 1. La medición de los rendimientos de la educación Aproximación estándar rendimiento educación Dos interpretaciones

Más detalles

MODELOS DE VALORACION DE ACCIONES EN EL MERCADO DE CAPITALES ESPAÑOL (Experiencia empírica)

MODELOS DE VALORACION DE ACCIONES EN EL MERCADO DE CAPITALES ESPAÑOL (Experiencia empírica) MODELOS DE VALORACION DE ACCIONES EN EL MERCADO DE CAPITALES ESPAÑOL (Experiencia empírica) por Fernando Gómez-Bezares Comunicación presentada a la ponencia española en el Congreso nº 16 de la FEAAF (Federación

Más detalles

- se puede formular de la siguiente forma:

- se puede formular de la siguiente forma: Multicolinealidad 1 Planteamiento Una de las hipótesis del modelo de regresión lineal múltiple establece que no existe relación lineal exacta entre los regresores, o, en otras palabras, establece que no

Más detalles

FONDOS DE INVERSIÓN: MANEJO ACTIVO VS. PASIVO

FONDOS DE INVERSIÓN: MANEJO ACTIVO VS. PASIVO PONTIFICIA UNIVERSIDAD CATOLICA ARGENTINA FACULTAD DE CIENCIAS SOCIALES Y ECONOMICAS LICENCIATURA EN ECONOMIA TESIS DE GRADO FONDOS DE INVERSIÓN: MANEJO ACTIVO VS. PASIVO MARIA ALEJANDRA PERNICONE Registro:

Más detalles

LECCION 1ª Introducción a la Estadística Descriptiva

LECCION 1ª Introducción a la Estadística Descriptiva LECCION 1ª Introducción a la Estadística Descriptiva La estadística descriptiva es una ciencia que analiza series de datos (por ejemplo, edad de una población, altura de los estudiantes de una escuela,

Más detalles

Métodos clave para calcular el Valor en Riesgo

Métodos clave para calcular el Valor en Riesgo [.estrategiafinanciera.es ] Caso de Estudio Métodos clave para calcular el Valor en Riesgo La actividad tesorera es especialmente susceptible al riesgo de mercado llegando a provocar en los últimos tiempos

Más detalles

INDICE Parte I. Productos 2. Fondos de Inversión Mobiliaria

INDICE Parte I. Productos 2. Fondos de Inversión Mobiliaria INDICE Prólogo XV Prólogo del Autor y Agradecimientos XVII Parte I. Productos 1.1. Introducción 3 1.2. Características generales 3 1.2.1. Qué es una acción 3 1.2.2. Qué es la bolsa (Stock Exchange) 4 1.2.3.

Más detalles

Creación de valor para los accionistas INDICE

Creación de valor para los accionistas INDICE INDICE Agradecimientos Introducción Capitulo 1. Conceptos básicos sobre la creación de valor para los accionistas 1.1. Aumento de la capitalización de las acciones 1.2. Aumento del valor para los accionistas

Más detalles

IESE Universidad de Navarra Barcelona-Madrid

IESE Universidad de Navarra Barcelona-Madrid Barcelona-Madrid 0- ESTUDIOS EMPIRICOS SOBRE EL IBEX-35 La presente nota técnica pretende explorar aspectos diversos y lograr un conocimiento más profundo del índice bursátil IBEX-35. Sobre una serie de

Más detalles

Empresarial y Financiero

Empresarial y Financiero Curso de Excel Empresarial y Financiero SESIÓN : REGRESIÓN Rosa Rodríguez Relación con el Mercado Descargue de yahoo.com los Datos de precio ajustado de cierre de las acciones de General Electric (GE),

Más detalles

Mercados de expectativas

Mercados de expectativas Rossi, Andrés M. Tesis de Licenciatura en Economía Facultad de Ciencias Sociales y Económicas Mercados de expectativas Este documento está disponible en la Biblioteca Digital de la Universidad Católica

Más detalles

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009

DIPLOMADO EN RELACIONES LABORALES Estadística Asistida por Ordenador Curso 2008-2009 Índice general 6. Regresión Múltiple 3 6.1. Descomposición de la variabilidad y contrastes de hipótesis................. 4 6.2. Coeficiente de determinación.................................. 5 6.3. Hipótesis

Más detalles

DESCRIPCIÓN DE LA METODOLOGÍA UTILIZADA EN EL PROGRAMA DE CESTAS REDUCIDAS ÓPTIMAS

DESCRIPCIÓN DE LA METODOLOGÍA UTILIZADA EN EL PROGRAMA DE CESTAS REDUCIDAS ÓPTIMAS DESCRIPCIÓN DE LA METODOLOGÍA UTILIZADA EN EL PROGRAMA DE CESTAS REDUCIDAS ÓPTIMAS Replicar un índice Formar una cartera que replique un índice (o un futuro) como el IBEX 35, no es más que hacerse con

Más detalles

Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM

Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM Aplicación 3: Rendimiento y riesgo de los activos financieros: el modelo CAPM Idea de las modernas t as de finanzas: Relacionar el riesgo y el rdto (esperado) de un activo Más concretamente: explicar el

Más detalles

Planteamiento de una función de demanda turística para Bogotá y Pronóstico de turistas nacionales e internacionales pernoctados

Planteamiento de una función de demanda turística para Bogotá y Pronóstico de turistas nacionales e internacionales pernoctados Observatorio de turismo de Bogotá 1 CONTENIDO 1. INTRODUCCIÓN... 4 2. ANTECEDENTES... 4 3. MODELO DE DEMANDA TURISTICA PARA COLOMBIA Y ELEMENTOS PARA LA DEMANDA TURISTICA PARA BOGOTÁ.... 13 a. Modelo...

Más detalles

Colección Mercados M-2

Colección Mercados M-2 El VaR Pablo García Estévez Diciembre 2008. M-2 1. Introducción VaR son las siglas de Valor en el Riesgo (Value at Risk) y fue desarrollado por la división RiskMetric de JP Morgan en 1994. El VaR es una

Más detalles

http://www.meffrv.es E-mail: meffrv@meffrv.es

http://www.meffrv.es E-mail: meffrv@meffrv.es Pza. Pablo Ruiz Picasso, s/n Torre Picasso, Planta 26 28020 MADRID Tel.: 91 585 08 00 Fax. 91 571 95 42 http://www.meffrv.es E-mail: meffrv@meffrv.es LAS 30 PREGUNTAS MAS FRECUENTES SOBRE OPCIONES 28 de

Más detalles

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales

Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Capítulo 17 Análisis de correlación lineal: Los procedimientos Correlaciones bivariadas y Correlaciones parciales Cuando se analizan datos, el interés del analista suele centrarse en dos grandes objetivos:

Más detalles

Capítulo 1. Conceptos estadísticos

Capítulo 1. Conceptos estadísticos Programa de Asesor Financiero Nivel II Módulo 1: GESTIÓN DE CARTERAS Capítulo 1. Conceptos estadísticos Capítulo. Rentabilidad y Riesgo Capítulo 3. Teoría de Carteras Capítulo 4. Asignación de activos

Más detalles

MERCADOS FINANCIEROS: LOS FONDOS DE INVERSIÓN II

MERCADOS FINANCIEROS: LOS FONDOS DE INVERSIÓN II MERCADOS FINANCIEROS: LOS FONDOS DE INVERSIÓN II 28 febrero de 2012 Javier Marchamalo Martínez Universidad Rey Juan Carlos SABER INTERPRETAR LOS RATIOS SIGNIFICATIVOS EN LA GESTIÓN POR BENCHMARK Ratio

Más detalles

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL

UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL UNIDAD 4: MEDIDAS DE TENDENCIA CENTRAL Objetivo terminal: Calcular e interpretar medidas de tendencia central para un conjunto de datos estadísticos. Objetivos específicos: 1. Mencionar las características

Más detalles

Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE

Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE 1. Fórmulas utilizadas en la simulación de la evolución del precio de una acción

Más detalles

ECONOMETRÍA II PRÁCTICA 2. 1.- Tome los datos de WAGE2.XLS para este ejercicio.

ECONOMETRÍA II PRÁCTICA 2. 1.- Tome los datos de WAGE2.XLS para este ejercicio. ECONOMETRÍA II PRÁCTICA 2 1.- Tome los datos de WAGE2.XLS para este ejercicio. 1.1 Estime el modelo log ( wage) = β0 + β1educ + β2exper + β3age + β4married + + β black + β south + β urban + u 5 6 7 Date:

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

La operativa en Opciones y Futuros requiere una vigilancia constante de la posición. Estos instrumentos comportan un alto riesgo si no se gestionan

La operativa en Opciones y Futuros requiere una vigilancia constante de la posición. Estos instrumentos comportan un alto riesgo si no se gestionan La operativa en Opciones y Futuros requiere una vigilancia constante de la posición. Estos instrumentos comportan un alto riesgo si no se gestionan adecuadamente. Un beneficio puede convertirse en pérdida

Más detalles

IBEX 35: 1992-2007 RENTABILIDAD Y CREACION DE VALOR. Pablo Fernández Vicente J. Bermejo

IBEX 35: 1992-2007 RENTABILIDAD Y CREACION DE VALOR. Pablo Fernández Vicente J. Bermejo CIIF Documento de Investigación DI nº 725 Enero, 2008 IBEX 35: 1992-2007 RENTABILIDAD Y CREACION DE VALOR Pablo Fernández Vicente J. Bermejo IESE Business School Universidad de Navarra Avda. Pearson, 21

Más detalles

RIESGO REDUCIR EL INVERSIONES. Cómo. de sus. Santiago Fernández Valbuena

RIESGO REDUCIR EL INVERSIONES. Cómo. de sus. Santiago Fernández Valbuena Cómo REDUCIR EL RIESGO de sus INVERSIONES Santiago Fernández Valbuena Santiago Fernández Valbuena es Doctor y Master en Economía por la Northeastern University de Boston y Licenciado en Ciencias Económicas

Más detalles

Doctorado en Finanzas de Empresa (ISSN: 1698-8183) EL EFECTO TAMAÑO EN LA BOLSA DE VALORES DE MADRID

Doctorado en Finanzas de Empresa (ISSN: 1698-8183) EL EFECTO TAMAÑO EN LA BOLSA DE VALORES DE MADRID Doctorado en Finanzas de Empresa (ISSN: 1698-8183) Universidad Complutense Documento de Trabajo 0803 Universidad Autónoma EL EFECTO TAMAÑO EN LA BOLSA DE VALORES DE MADRID Autora: Karina VALLEJOS CASTILLO

Más detalles

NT8. El Valor en Riesgo (VaR)

NT8. El Valor en Riesgo (VaR) NT8. El Valor en Riesgo (VaR) Introducción VaR son las siglas de Valor en el Riesgo (Value at Risk) y fue desarrollado por la división RiskMetric de JP Morgan en 1994. es una manera de medir el riesgo

Más detalles

LAS CARTERAS EN LA BOLSA DE BILBAO (1.980-1.987)

LAS CARTERAS EN LA BOLSA DE BILBAO (1.980-1.987) LAS CARTERAS EN LA BOLSA DE BILBAO (1.980-1.987) por Fernando Gómez-Bezares y Javier Santibáñez Publicado en Actualidad Financiera, nº 28, Julio, 1.991, págs. F547-F559 1. INTRODUCCION En las líneas que

Más detalles

OPCIONES Y FUTUROS EJEMPLO

OPCIONES Y FUTUROS EJEMPLO LAS OPCIONES Y FUTUROS FINANCIEROS RECIBEN LA DENOMINACION DE DERIVADOS PORQUE SU PRECIO O COTIZACION SE DERIVA DEL PRECIO O COTIZACION DEL ACTIVO SUBYACENTE EN EL QUE ESTAN BASADOS UN FUTURO ES UN CONTRATO

Más detalles

IBEX 35: 1991-2010 RENTABILIDAD Y CREACION DE VALOR

IBEX 35: 1991-2010 RENTABILIDAD Y CREACION DE VALOR Documento de Investigación DI-890, 2011 IBEX 35: 1991-2010 RENTABILIDAD Y CREACION DE VALOR Pablo Fernández Javier Aguirreamalloa Luis Corres IESE Business School Universidad de Navarra Avda. Pearson,

Más detalles

ECONOMETRÍA FINANCIERA

ECONOMETRÍA FINANCIERA ECONOMETRÍA FINANCIERA CONTENIDO 1 2 3 4 5 6 7 Objetivo Introducción Las betas Financieras Capital Asset Pricing Model CAPM Arbitrage Princing Model APT Predicción con el Método de Montecarlo Solución

Más detalles

Estudio del dividendo como predictor del rendimiento total en acciones cotizadas

Estudio del dividendo como predictor del rendimiento total en acciones cotizadas Estudio del dividendo como predictor del rendimiento total en acciones cotizadas Joan Coll Solà 1, Jordi Olivella Nadal 1 1 Grupo de Investigación INNOVA PQ. Departamento de Organización de Empresas. Universidad

Más detalles

CARLOS FORNER RODRÍGUEZ Departamento de Economía Financiera y Contabilidad, UNIVERSIDAD DE ALICANTE

CARLOS FORNER RODRÍGUEZ Departamento de Economía Financiera y Contabilidad, UNIVERSIDAD DE ALICANTE ApunA tes de Ingeniería Financiera TEMA 2: Forwards y Futuros II: Formación de Precios y Aplicaciones Prácticas CARLOS FORNER RODRÍGUEZ Departamento de Economía Financiera y Contabilidad, UNIVERSIDAD DE

Más detalles

Guía básica de temas del 2º parcial: Econometría. 4º Curso de Economía. USC. Curso 2009-2010. Profesora María-Carmen Guisán

Guía básica de temas del 2º parcial: Econometría. 4º Curso de Economía. USC. Curso 2009-2010. Profesora María-Carmen Guisán Guía básica de temas del 2º parcial: Econometría. 4º Curso de Economía. USC. Curso 2009-2010. Profesora María-Carmen Guisán Tema 6. Econometría Aplicada. Introducción. Lectura recomendada: Documento 95:

Más detalles

TIPO DE CAMBIO REAL DETERMINANTES Y EFECTOS SOBRE LA CUENTA CORRIENTE. EXPORTACIONES NO TRADICIONALES

TIPO DE CAMBIO REAL DETERMINANTES Y EFECTOS SOBRE LA CUENTA CORRIENTE. EXPORTACIONES NO TRADICIONALES TIPO DE CAMBIO REAL DETERMINANTES Y EFECTOS SOBRE LA CUENTA CORRIENTE. EXPORTACIONES NO TRADICIONALES JEISON ANDRES BUITRAGO DANIEL ARAGON URREGO CARLOS ANDRES ZAPATA UNIVERSIDAD DEL TOLIMA FACULTAD DE

Más detalles

El reporting integrado en las entidades financieras y sus aportaciones al inversor. CREADO POR Dirección de Responsabilidad Social Corporativa

El reporting integrado en las entidades financieras y sus aportaciones al inversor. CREADO POR Dirección de Responsabilidad Social Corporativa El reporting integrado en las entidades financieras y sus aportaciones al inversor CREADO POR Dirección de Responsabilidad Social Corporativa FECHA DE CREACIÓN 7 de julio de 2015 1. La gestión de los intangibles

Más detalles

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA

INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA INTRODUCCIÓN A LA ECONOMETRÍA E INFORMÁTICA MODELOS ECONOMÉTRICOS E INFORMACIÓN ESTADÍSTICA Eva Medina Moral (Febrero 2002) EXPRESIÓN DEL MODELO BASICO DE REGRESIÓN LINEAL La expresión formal del modelo

Más detalles

Capítulo 1. Conceptos estadísticos

Capítulo 1. Conceptos estadísticos Programa de Asesor Financiero Nivel II Módulo 1: GESTIÓN DE CARTERAS Capítulo 1. Conceptos estadísticos Capítulo. Rentabilidad y Riesgo Capítulo 3. Teoría de Carteras Capítulo 4. Asignación de activos

Más detalles

A veces pueden resultar engañosas ya que según el método de cálculo, las rentabilidades pasadas pueden ser diferentes. Un ejemplo:

A veces pueden resultar engañosas ya que según el método de cálculo, las rentabilidades pasadas pueden ser diferentes. Un ejemplo: MÉTODOS DE GESTIÓN DE UNA CARTERA DE VALORES RENTABILIDAD Y VOLATILIDAD RENTABILIDAD La rentabilidad de un activo es la suma de las plusvalías generadas y cobradas y los dividendos pagados, es decir puede

Más detalles

Rdto c = Ponda x Rdto A + Pondb x Rdto. B = 0,75 x 5% + 0,25 x 8% = 5,75%.

Rdto c = Ponda x Rdto A + Pondb x Rdto. B = 0,75 x 5% + 0,25 x 8% = 5,75%. DIVERSIFICACIÓN DEL RIESGO Un principio básico en las finanzas es que un inversionista no debería colocar todos sus recursos en un solo activo o en un número relativamente pequeño de activos, sino en un

Más detalles

FUNDAMENTOS DEL MERCADO DE DERIVADOS

FUNDAMENTOS DEL MERCADO DE DERIVADOS 1 FUNDAMENTOS DEL Precio de la Acción MERCADO DE DERIVADOS Autor: Roberto Gómez López 1 1 Roberto Gómez López es Doctor en Economía (Administración y Dirección de Empresas) por la Universidad de Málaga

Más detalles

La Bolsa y la Estadística!

La Bolsa y la Estadística! Ideas y Recursos para el Aula La Bolsa y la Estadística! Gabriel Ruiz Garzón Resumen Utilizando la prensa económica como recurso didáctico, el objetivo de este artículo es mostrar curiosas e interesantes

Más detalles

TEMA 6: La valoración de opciones y futuros

TEMA 6: La valoración de opciones y futuros TEMA 6: La valoración de opciones y futuros Índice 1. Introducción 2. Definición de futuros y opciones 2.1. Elementos en un contrato de opciones 2.2. Tipos de opciones 3. Funcionamiento de las opciones

Más detalles

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 Introducción al VaR

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: 1988-1878 Introducción al VaR Juan Mascareñas Universidad Complutense de Madrid Versión inicial: mayo 1998 - Última versión: mayo 2008 - El valor en riesgo (VaR), 2 - El método histórico, 3 - El método varianza-covarianza, 6 - El método

Más detalles

Cuándo opera el Ibex 35?

Cuándo opera el Ibex 35? El Ibex 35 es un índice Bursátil que sirve de referencia en la Bolsa Española, y está formado por las 35 empresas que se consideran más representativas. El Ibex 35 no es el único índice bursátil de la

Más detalles

Es el comercio exterior de bienes la solución a la crisis en España? Trabajo Fin de Grado

Es el comercio exterior de bienes la solución a la crisis en España? Trabajo Fin de Grado Es el comercio exterior de bienes la solución a la crisis en España? Trabajo Fin de Grado 4 de Septiembre 2014 Universidad Politécnica de Cartagena. Facultad de Ciencias de la Empresa. Departamento de

Más detalles

EL RIESGO DE TIPO DE INTERÉS: EXPERIENCIA ESPAÑOLA Y SOLVENCIA II Francisco Cuesta Aguilar

EL RIESGO DE TIPO DE INTERÉS: EXPERIENCIA ESPAÑOLA Y SOLVENCIA II Francisco Cuesta Aguilar EL RIESGO DE TIPO DE INTERÉS: EXPERIENCIA ESPAÑOLA Y SOLVENCIA II Francisco Cuesta Aguilar Introducción Algunos seguros de vida son operaciones con garantía de tipo de interés a muy largo plazo. La aparición

Más detalles

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal

Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Capítulo 18 Análisis de regresión lineal El procedimiento Regresión lineal Introducción El análisis de regresión lineal es una técnica estadística utilizada para estudiar la relación entre variables. Se

Más detalles

Adrian De León Arias. 1. Introducción.

Adrian De León Arias. 1. Introducción. EL CRECIMIENTO EN MEXICO Y SU INTERDEPENDENCIA CON ESTADOS UNIDOS: UN ANÁLISIS DE COINTEGRACIÓN. MEXICO S ECONOMIC GROWTH AND ITS INTERDEPENDENCE WITH THE UNITED STATES: A COINTEGRATION ANALYSIS- Adrian

Más detalles

Capítulo 22. ESTIMACIÓN Y SIMULACIÓN DE SISTEMAS MULTIECUACIONALES

Capítulo 22. ESTIMACIÓN Y SIMULACIÓN DE SISTEMAS MULTIECUACIONALES Capítulo 22. ESTIMACIÓN Y SIMULACIÓN DE SISTEMAS MULTIECUACIONALES 22.1 SUPUESTOS EN LA ESTIMACIÓN DE MÚLTIPLE ECUACIONES... 956 22.2 ESTIMACIÓN DE MODELOS LINEALES DE ECUACIONES MÚLTIPLES... 958 TÉCNICAS

Más detalles

Experiencia española. El riesgo de tipo de interés: estudio

Experiencia española. El riesgo de tipo de interés: estudio estudio El riesgo de tipo de interés: % En este artículo se analizan las metodologías de cobertura del riesgo de tipo de interés puestas en práctica en España y se describen qué metodologías se barajan

Más detalles

REGRESIÓN LINEAL MÚLTIPLE

REGRESIÓN LINEAL MÚLTIPLE REGRESIÓN LINEAL MÚLTIPLE.- Planteamiento general....- Métodos para la selección de variables... 5 3.- Correlaciones parciales y semiparciales... 8 4.- Multicolinealidad en las variables explicativas...

Más detalles

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ

Estacionalidad. Series de tiempo. Modelos econométricos. Modelos econométricos. Q= T Kα Lβ Estacionalidad Qué es la estacionalidad? La estacionalidad es una componente que se presenta en series de frecuencia inferior a la anual (mensual, trimestral,...), y supone oscilaciones a corto plazo de

Más detalles

Agradecimientos... 17. Introducción... 19. Primera parte. Valoración de empresas. Aspectos generales

Agradecimientos... 17. Introducción... 19. Primera parte. Valoración de empresas. Aspectos generales ÍNDICE Agradecimientos... 17 Introducción... 19 Primera parte. Valoración de empresas. Aspectos generales Capítulo 1. Métodos de valoración de empresas... 23 1.1. Valor y Precio... 24 1.2. Métodos basados

Más detalles

Operativa en el mercado continuo. Estefanía García Fuentetaja Responsable Contenidos Web Renta 4 Banco

Operativa en el mercado continuo. Estefanía García Fuentetaja Responsable Contenidos Web Renta 4 Banco Operativa en el mercado continuo Estefanía García Fuentetaja Responsable Contenidos Web Renta 4 Banco Qué es el Mercado Continuo El mercado continuo bursátil es un sistema mediante el cual las 4 Bolsas

Más detalles

Parámetros y estadísticos

Parámetros y estadísticos Parámetros y estadísticos «Parámetro»: Es una cantidad numérica calculada sobre una población y resume los valores que esta toma en algún atributo Intenta resumir toda la información que hay en la población

Más detalles

IBEX 35 LOS INDICES BURSATILES DEL MERCADO ESPAÑOL

IBEX 35 LOS INDICES BURSATILES DEL MERCADO ESPAÑOL IBEX 35 LOS INDICES BURSATILES DEL MERCADO ESPAÑOL 12 de noviembre de 2014-1- Qué es un índice bursátil? REFERENCIA: Los índices bursátiles son una representación del mercado, una simplificación de la

Más detalles

La demanda de plazas en la licenciatura de Medicina en España

La demanda de plazas en la licenciatura de Medicina en España La demanda de plazas en la licenciatura de Medicina en España Estudio econométrico por Comunidades Autónomas de la demanda de plazas en las facultades de Medicina españolas para el curso 2006/2007 Asignatura:

Más detalles

INDUSTRIA, COMERCIO EXTERIOR Y TURISMO EN MERCOSUR, 1990-2000

INDUSTRIA, COMERCIO EXTERIOR Y TURISMO EN MERCOSUR, 1990-2000 INDUSTRIA, COMERCIO EXTERIOR Y TURISMO EN MERCOSUR, 1990-2000 Mª. del Carmen Guisán Sección Econometría. Facultad de CC.Económicas. Universidad de Santiago de Compostela e-mail: eccgs@usc.es Federico J.

Más detalles

10 12 CAPÍTULO 10. MODELOS DE VARIABLE DEPENDIENTE DISCRETA

10 12 CAPÍTULO 10. MODELOS DE VARIABLE DEPENDIENTE DISCRETA 10 12 CAPÍTULO 10. MODELOS DE VARIABLE DEPENDIENTE DISCRETA Ejemplo 10.1 Modelos Probit y Logit para la probabilidad de tener carro propio en Holanda El archivo NLCAR contiene información para 2,820 hogares

Más detalles

Finanzas de Empresas Turísticas

Finanzas de Empresas Turísticas Finanzas de Empresas Turísticas Prof. Francisco Pérez Hernández (f.perez@uam.es) Departamento de Financiación e Investigación de la Universidad Autónoma de Madrid 1 Departamento de Financiación e Investigación

Más detalles

3.4.-INDICES DIARIOS DE LA BOLSA DE MADRID

3.4.-INDICES DIARIOS DE LA BOLSA DE MADRID 3.4.-INDICES DIARIOS DE LA BOLSA DE MADRID La Bolsa de Madrid elabora actualmente, al menos, dos índices diarios: El Indice General e la Bolsa de Madrid (IGBM) y el Indice Total. El Indice General, en

Más detalles

Felipe Ruiz López 1, Fernando de Lossada Juste 1. Resumen

Felipe Ruiz López 1, Fernando de Lossada Juste 1. Resumen 4 th International Conference on Industrial Engineering and Industrial Management XIV Congreso de Ingeniería de Organización Donostia- San Sebastián, September 8 th -10 th 2010 Mejora de la rentabilidad

Más detalles

Determinantes de la evolución del crédito al sector privado en Argentina en el período 1994-2000 Elena Grubisic 1 Mayo de 2001.

Determinantes de la evolución del crédito al sector privado en Argentina en el período 1994-2000 Elena Grubisic 1 Mayo de 2001. Determinantes de la evolución del crédito al sector privado en Argentina en el período 1994-2000 Elena Grubisic 1 Mayo de 2001 Resumen En este trabajo se realiza un estudio de la evolución del Crédito

Más detalles

MANUAL OPCIONES FUTUROS

MANUAL OPCIONES FUTUROS MANUAL DE OPCIONES Y FUTUROS Segunda Edición 4 LA VOLATILIDAD 4.1. Qué es la volatilidad? 4.2. Información y volatilidad 4.3. La volatilidad como medida de probabilidad 4.4. Tipos de volatilidad 4.5. Sensibilidades

Más detalles

Los principales términos que deben conocerse a la hora de introducirse en el mercado de Warrants son los siguientes:

Los principales términos que deben conocerse a la hora de introducirse en el mercado de Warrants son los siguientes: GUIA DE WARRANTS 1. Warrants: Conceptos básicos. Los Warrants son los instrumentos financieros que acercan el mundo de los derivados (opciones financieras) hasta el inversor particular y su utilización

Más detalles

MODELOS DE VALORACION Y EFICIENCIA: BATE EL CAPM AL MERCADO?

MODELOS DE VALORACION Y EFICIENCIA: BATE EL CAPM AL MERCADO? MODELOS DE VALORACION Y EFICIENCIA: BATE EL CAPM AL MERCADO? por Fernando Gómez-Bezares, José Antonio Madariaga y Javier Santibáñez Publicado en Análisis Financiero, nº 68, Primer cuatrimestre, 1.996,

Más detalles

CAPÍTULO 4 USO Y MANEJO DE LOS INSTRUMENTOS NEGOCIADOS EN EL MEXDER

CAPÍTULO 4 USO Y MANEJO DE LOS INSTRUMENTOS NEGOCIADOS EN EL MEXDER CAPÍTULO 4 USO Y MANEJO DE LOS INSTRUMENTOS NEGOCIADOS EN EL MEXDER En este capítulo se especificará el uso y el manejo que se le da a los instrumentos que son negociados en nuestro mercado de derivados,

Más detalles

CENTRO LATINOAMERICANO DE DEMOGRAFIA

CENTRO LATINOAMERICANO DE DEMOGRAFIA NACIONES UNIDAS UNITED NATIONS CENTRO LATINOAMERICANO DE DEMOGRAFIA REUNION TECNICA SOBRE "NUEVAS METODOLOGIAS ESTADISTICAS APLICADAS A LA DEMOGRAFIA" 2,3 y 4 de Setiembre, 1991 DETERMINANTES DEL NIVEL

Más detalles