Olimpiada Estatal de Matemáticas 2014

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Olimpiada Estatal de Matemáticas 2014"

Transcripción

1 Olimpiada Estatal de Matemáticas 2014 Primer problemario A continuación, presentamos una serie de 60 problemas de opción múltiple, que son parte de los temas que se presentan en los exámenes de la 1ra, 2da y 3ra etapa de la Olimpiada Estatal de Matemáticas. Para resolverlos, son suficientes los conocimientos adquiridos hasta tercero de secundaria. Sin embargo, requieren de una gran cantidad de ingenio. 1. La suma de todos los enteros entre 50 y 350, los cuales terminan en 1, es: (a) 5880 (b) 5208 (c) 4877 (d) El arco es un cuarto de una circunferencia de centro y radio 10 cm. Los arcos y son semicircunferencias. Cuál es el área de la región sombreada? 3. Consideremos los números de 5 cifras formados por los dígitos 1 y 2. En cuántos de ellos aparece el 1 más veces que el 2? (a) 20 (b) 16 (c) 32 (d) Cuántos de los siguientes 60 números son múltiplos de 60? (a) 18 (b) 30 (c) 15 (d) Observé la hora un poco después de la 6 AM y las agujas formaban un ángulo de. Volví a Observarla antes de las 7 AM y nuevamente se formaba un ángulo de. Cuántos minutos habían pasado? (a) 40 (b) 30 (c) 60 (d) En la figura, el rectángulo está en el interior de la circunferencia de tal manera que el vértice B es el centro de la circunferencia. Si y cuánto mide su diámetro?

2 (a) 6 (b) 8 (c) 10 (d) Pablo eligió tres dígitos distintos y escribió todos los números de 3 cifras que se forman con ellos (sin repeticiones). Después sumó todos los números que obtuvo. Encuentra la suma de Pablo, sabiendo que la suma de los dígitos originales es 14. (a) 4662 (b) 4800 (c) 3108 (d) Un triángulo rectángulo de catetos 12 y 16 está inscrito en una circunferencia. Cuál es el radio de dicha circunferencia? (a) 6 (b) 8 (c) 10 (d) En un número de tres cifras, la suma de las mismas es 18. La cifra de las unidades es el doble de las decenas. Por último, la diferencia que se obtiene restando el número dado y el formado al invertir el orden de sus cifras es 297. Cuál es el número inicial? (a) 684 (b) 648 (c) 936 (d) Por cuál número se debe sustituir la letra para que el número sea divisible entre 4? (a) 4 (b) 5 (c) 6 (d) Tres cuadrados cuyos lados tienen longitud: 10 cm, 8 cm y 6 cm, respectivamente, se colocan uno al lado del otro como se muestra en la siguiente figura. Cuál es el área de la parte sombreada?

3 12. Juan ha decidido repartir 35 canicas entre sus primos. Si nadie puede tener la misma cantidad de canicas, cuál es la máxima cantidad de primos a los que les puede repartir sus canicas? (a) 6 (b) 7 (c) 8 (d) Cuál es la suma de los dígitos del número (a) 13 (b) 14 (c) 15 (d) Cuántos números hay entre 100 y 300 (sin contar el 100 y el 300) que no sean divisibles entre 3 ni entre 5? (a) 106 (b) 107 (c) 108 (d) Cuánto es? 16. Evaristo quiere formar 2 números de 5 cifras usando cada uno de los dígitos 0,1,2,3,3,5,7,8,8,9 solamente una vez, de tal manera que cuando al número formado mayor, se le reste el otro, la diferencia sea la menor posible. Cuánto valdrá dicha diferencia? (a) 28 (b) 14 (c) 7 (d) Isaac quiere escribir los números del 1 al 12 en un círculo de forma que cada dos números consecutivos difieran por 2 o por 3. Cuáles de los siguientes números deben estar juntos? (a) 5 y 8 (b) 6 y 8 (c) 3 y 5 (d) 7 y Cuántos números primos de 2 cifras cumplen con la propiedad de que los dos dígitos que lo conforman difieren entre sí por 2 unidades? (a) 2 (b) 6 (c) 4 (d) En cada partido de fútbol de un torneo, se le otorgan 3 puntos al ganador, 0 al perdedor, y 1 a cada equipo en caso de empate. En 38 partidos, el equipo Atlético del Cubo sumaba 80 puntos. Cuál es el máximo número de partidos que pudieron haber perdido? (a) 9 (b) 10 (c) 11 (d) 12

4 20. 4 triángulos isósceles rectos del mismo tamaño se recortan de cada una de las esquinas de un cuadrado de lado 10 como se muestra en la figura. Cuánto tiene que medir la hipotenusa de los triángulos que se quitaron para que la suma de sus perímetros sea igual al perímetro de la figura que quedo después de recortar el cuadrado? (a) 5 (b) 2.5 (c) 2 (d) Encuentre el número que está en el lugar número 100 de la siguiente sucesión: 1, 3, 3, 3, 5, 5, 5, 5, 5, 7, 7,... (a) 10 (b) 7 (c) 14 (d) Cuántos números de cuatro dígitos existen que tengan al 1 como primer dígito y con al menos tres dígitos iguales? (a) 9 (b) 27 (c) 37 (d) En un cajón hay 1 papelito rojo, 2 verdes, 3 amarillos y 4 azules. Un jugador va a extraer papelitos sin ver y sin regresarlos. Cuántos necesita extraer para garantizar que obtiene tres de colores distintos? (a) 3 (b) 4 (c) 8 (d) Cuántos dígitos tiene el número? (a) 9 (b) 12 (c) 60 (d) Alex no hizo su tarea, por lo que su profesor de castigo le pidió escribir todos los números del 1 al Si Alex sí cumplió con el castigo, cuántas veces escribió el dígito 1? (a) 2014 (b) 2237 (c) 1607 (d) Si hoy es viernes 14 de febrero de 2014, cuándo volverá a ser viernes 14 de febrero? (a) 2019 (b) 2020 (c) 2021 (d) 2022

5 27. En el triángulo,, y es un punto sobre el segmento tal que y. El ángulo mide: (a) 45 (b) 50 (c) 55 (d) Para qué entero positivo n se satisface la ecuación siguiente? (a) 2003 (b) 2004 (c) 2005 (d) Inicialmente, las casillas 1 y 3 del tablero mostrado están pintadas de blanco, mientras que las casillas 2 y 4 están pintadas de negro. Cada determinado tiempo, una de las casillas cambia su color al color opuesto. Si las casillas cambian en este orden: 1,2,3,4,1,2,3,4, etcétera, Cuál será el aspecto del tablero después del cambio número 2013? 30. Israel, David, Gonzalo, Gerardo, Iván y Mario se sentaron alrededor de una mesa circular en un restaurante. Ni Israel, ni Gerardo, ni Mario se sentaron junto a otro de ellos tres. Además, los nombres de cualesquiera dos personas que estaban sentadas juntas empezaban con letras distintas. Quién estaba sentado en la posición opuesta a Mario? (a) David (b) Gonzalo (c) Gerardo (d) Iván 31. Cuántas cantidades diferentes de dinero puedes pagar con cambio exacto si tienes 2 monedas de $1 y 2 monedas de 50 centavos?

6 (a) 1 (b) 3 (c) 6 (d) Cuántos números enteros positivos son múltiplos de 5, pero no de 3 y son menores que 1000? (a) 134 (b) 133 (c) 67 (d) Se quiere partir un pastel cuadrado en 52 pedazos con cortes rectos que lo atraviesen por completo y que sean paralelos a sus lados. Cuántos cortes hay que hacer, por lo menos? (a) 12 (b) 13 (c) 15 (d) Abajo se muestra una cuadrícula en la cual se pintaron 3 renglones y 4 columnas de gris. Las casillas que se pintaron dos veces de gris se volvieron negras. Si en una cuadrícula más grande se pintan de gris 23 renglones y 31 columnas, cuántas casillas negras habrá? (a) 54 (b) 64 (c) 713 (d) Utilizando dos piezas como ésta cuál de las figuras de abajo no se puede formar, dado que las piezas se pueden rotar, pero no voltear? 36. Cuántos números enteros existen tales que es un número entero? (a) 1 (b) 2 (c) 4 (d) 8

7 37. Se vende el 20% de una finca de 40 hectáreas, se alquila el 50% del resto y se cultiva el 25% del nuevo resto. Hallar la proporción cultivada. (a) 4.5 hectáreas (b) 10 hectáreas (c) 2 hectáreas (d) 8 hectáreas 38. Cuántas veces aparece el factor 2 en la descomposición en primos de (a) 2011 (b) 2012 (c) 2013 (d) Un virus atacó el disco duro de una computadora. El primer día destruyó dos terceras partes, el segundo día, de lo que quedó destruyó una cuarta parte, finalmente el tercer día destruyó la quinta parte de lo que quedaba. Qué fracción del disco duro quedó sin dañar? 40 Los números positivos, satifacen las siguientes relaciones: Hallar 41. Cierto profesor de matemáticas realiza 5 exámenes a lo largo del año, en cada uno otorga a sus alumnos como calificación un entero entre 0 y 10. Cuál es el menor promedio que pudo haber obtenido Max, si, con tan sólo conocer este promedio, su mamá supo que su hijo había obtenido 10 en al menos dos de los exámenes? 42. Una recta parte al rectángulo como se muestra. Si el segmento mide 3 y el segmento mide 2, cuánto vale la longitud de menos la longitud de?

8 43. Compré un costal lleno de alpiste para alimentar a mi canario. El primer día mi canario se comió la mitad del total de alpiste. El segundo día se comió una tercera parte de lo que quedaba, y por último, el tercer día, se comió un cuarto del sobrante. Del total de alpiste que había en el costal, qué fracción queda? 44. Si, entonces el valor de es: 45. En la figura, los triángulos y son idénticos. Si el y el, cuánto mide el? (a) 29 (b) 31 (c) 38 (d) En la siguiente figura, si ambos triángulos son equiláteros, Cuánto vale el ángulo? (a) 15 (b) 30 (c) 40 (d) Luis y Estefanía cortaron a la mitad dos rectángulos iguales. Estefanía obtuvo dos rectángulos de 40 cm de perímetro cada uno, mientras que Luis obtuvo dos rectángulos con 50 cm de perímetro cada uno. Cuál era el perímetro de los rectángulos originales? (a) 40 (b) 60 (c) 80 (d) 100

9 48. Mi reloj digital marca ahora las 20:12 Dentro de cuantos minutos mi reloj volverá a mostrar los dígitos 0, 1, 2 y 2, en algún orden? (a) 45 (b) 50 (c) 55 (d) El promedio de 5 números es igual a 40. Si retiramos 2 de estos números, el promedio de los 3 restantes es 36. Cuál es el promedio de los 2 números que fueron retirados? (a) 38 (b) 46 (c) 42 (d) Cuántos números de cuatro dígitos existen tales que el digito de las unidades es igual al digito de las decenas más el digito de las centenas? (a) 495 (b) 490 (c) 505 (d) Cuál es el área de un rombo de lado 13 cm tal que la suma de sus diagonales es 34 cm? 52. Cuántos son los números naturales tales que ningún digito es 1 y el producto de sus dígitos es 48? (a) 42 (b) (c) (d) 53. En la siguiente figura cuánto vale el ángulo, si las rectas y son paralelas? 54. Con los dígitos 1, 2, 4, 6 y 8 sin repetir, cuántos números pares de cuatro dígitos y mayores que 4,500 se pueden formar? (a) 60 (b) 44 (c) 36 (d) Un autobús escolar con capacidad para 36 personas, en su primera parada recoge a un estudiante; en la segunda recoge dos; en la tercera, tres, y así sucesivamente. Si ningún estudiante se baja del autobús, en qué parada se llenará el autobús? (a) 7 (b) 8 (c) 9 (d) 10

10 56. Los valores de x para los cuales se cumple la siguiente desigualdad son: 57. Los números y, son distintos y satisfacen la siguiente igualdad: Determine el valor de 58. Encuentra el valor de 59. Sea un rectángulo de base y altura. Si y son los puntos medios de y, respectivamente, determina el área del cuadrilátero. 60. Diga cuál es el dígito de las unidades de (a) 0 (b) 1 (c) 2 (d) 3

Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato. 13 de diciembre de Tercer Selectivo (NIVEL PRIMARIA)

Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato. 13 de diciembre de Tercer Selectivo (NIVEL PRIMARIA) Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato Instrucciones. 13 de diciembre de 2014 Tercer Selectivo (NIVEL PRIMARIA) 1. Tienes 4 horas y media para hacer el examen. Lee

Más detalles

UNIDAD 2: ELEMENTOS GEOMÉTRICOS

UNIDAD 2: ELEMENTOS GEOMÉTRICOS UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este

Más detalles

Soluciones Primer Nivel - 5º Año de Escolaridad

Soluciones Primer Nivel - 5º Año de Escolaridad Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden

Más detalles

Olimpiada Mexicana de Matemáticas Guanajuato

Olimpiada Mexicana de Matemáticas Guanajuato Olimpiada Mexicana de Matemáticas Guanajuato 22 de Mayo de 2010 1.- Sobre una mesa se tienen 1999 fichas que son rojas de un lado y negras del otro (no se especifica cuántas con el lado rojo hacia arriba

Más detalles

Soluciones Segundo Nivel Infantil

Soluciones Segundo Nivel Infantil SOCIEDAD ECUATORIANA DE MATEMÁTICA ETAPA FINAL "VIII EDICIÓN DE LAS OLIMPIADAS DE LA SOCIEDAD ECUATORIANA DE MATEMÁTICA" Soluciones Segundo Nivel Infantil 21 de mayo de 2011 1. El resultado de la siguiente

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado.

INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado. REPARTIDO Nº 6 1) Calcular la hipotenusa de un triángulo rectángulo sabiendo que los catetos miden 6 cm y 8 cm respectivamente. 2) Si la hipotenusa de un triángulo rectángulo mide 13 cm y uno de sus catetos

Más detalles

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009

Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009 I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula

Más detalles

Soluciones - Tercer Nivel Juvenil

Soluciones - Tercer Nivel Juvenil SOIEDD EUTORIN DE MTEMÁTI ETP LSIFITORI "VII EDIIÓN DE LS OLIMPIDS DE L SOIEDD EUTORIN DE MTEMÁTI" Soluciones - Tercer Nivel Juvenil 01 de abril de 010 1. Una mesa cuadrada tiene 1 m de lado. uál es el

Más detalles

Examen Canguro Matemático Mexicano Nivel Cadete Olímpico

Examen Canguro Matemático Mexicano Nivel Cadete Olímpico Examen Canguro Matemático Mexicano Nivel Cadete Olímpico Instrucciones: En la hoja de respuestas, llena el círculo que corresponda a la respuesta correcta para cada pregunta. Si en una misma pregunta aparecen

Más detalles

(a) 115 (b) 116 (c) 117 (d) 118 (e) 114 (f) Ninguna. (a) (b) (c) (d) (e)

(a) 115 (b) 116 (c) 117 (d) 118 (e) 114 (f) Ninguna. (a) (b) (c) (d) (e) da OLIMPIADA CIENTIFICA ESTUDIANTIL PLURINACIONAL BOLIVIANA da Etapa (Examen Simultáneo) 1ro. de secundaria Recomendaciones: Escriba los datos anteriores usando letra imprenta, una letra en cada rectángulo

Más detalles

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS

Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm 2 cm 5 cm 8 cm 2 a) b) 5 m 8 m 17 m 15 m 3 a) b) 5

Más detalles

Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010.

Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010. Examen Eliminatorio Estatal de la Olimpiada Mexicana de Matemáticas 2010. Instrucciones: En la hoja de las respuestas marca la respuesta que creas correcta. Si marcas más de una respuesta en alguna pregunta

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 250

13Soluciones a los ejercicios y problemas PÁGINA 250 PÁGINA 50 Pág. 1 Á REAS Y PERÍMETROS DE FIGURAS SENCILLAS Halla el área y el perímetro de las figuras coloreadas de los siguientes ejercicios: 1 a) b) 5 dm 4 cm cm 5 cm 8 cm a) 5 5 dm b) 8 8 cm P 5 4 0

Más detalles

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:...

Nombre y Apellido:... Puntaje:... Colegio:... Grado:... Teléfono (L B):... Celular: Número de Cédula de Identidad:... XXII OLIMPIADA NACIONAL DE MATEMÁTICA RONDA REGIONAL 14 DE AGOSTO DE 2010 - NIVEL 1 PEGÁ TU STICKER AQUÍ Nombre y Apellido:............................................ Puntaje:......... Colegio:.......................................................

Más detalles

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano

PÁGINA 88. Pág. 1. Unidad 9. Problemas métricos en el plano Soluciones a las actividades de cada epígrafe PÁGINA 88 1 En los siguientes triángulos rectángulos, se dan dos catetos y se pide la hipotenusa (si su medida no es eacta, dala con una cifra decimal): a)

Más detalles

Segundo Nivel 209. Siempre moviéndonos en el sentido de las flechas, de cuántas maneras podemos ir de A hasta P? F

Segundo Nivel 209. Siempre moviéndonos en el sentido de las flechas, de cuántas maneras podemos ir de A hasta P? F Problemas de Graciela errarini y Julia Seveso 4 de mayo 109. La figura está formada por dos triángulos iguales y un rectángulo. l perímetro de es 70 cm. l perímetro del triángulo es 60 cm. = 4 y = 3. uál

Más detalles

DEPARTAMENTO DE MATEMATICAS

DEPARTAMENTO DE MATEMATICAS 1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un

Más detalles

RAZONAMIENTO GEOMÉTRICO

RAZONAMIENTO GEOMÉTRICO RAZONAMIENTO GEOMÉTRICO Fundamentos de Matemáticas I Razonamiento geométrico Video Previo a la actividad: Áreas y perímetros de cuerpos y figuras planas Video Previo a la actividad: Áreas y perímetros

Más detalles

Olimpiada Kanguro 2007

Olimpiada Kanguro 2007 Escribe tus respuestas en la HOJA DE RESPUESTAS Olimpiada Kanguro 007 Nivel Cadete (9no y 0mo año básico) Tiempo: hora y 5 minutos No se permite el uso de calculadoras. Hay una única respuesta correcta

Más detalles

Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato. 25 de octubre de Primer Selectivo (NIVEL PRIMARIA)

Olimpiada de Matemáticas para Alumnos de Primaria y Secundaria en Guanajuato. 25 de octubre de Primer Selectivo (NIVEL PRIMARIA) Instrucciones. 25 de octubre de 2014 Primer Selectivo (NIVEL PRIMARIA) 1. Tienes 4 horas y media para hacer el examen. Lee las instrucciones con calma y asegúrate que las entiendes del todo. Te puedes

Más detalles

CANGURO MATEMÁTICO 2013 TERCERO DE SECUNDARIA

CANGURO MATEMÁTICO 2013 TERCERO DE SECUNDARIA CNGURO MTEMÁTICO 2013 TERCERO DE SECUNDRI INDICCIONES Las marcas en la hoja de respuestas se deben realizar, únicamente, con LÁPIZ. Escriba su apellido paterno, apellido materno y nombres con letras de

Más detalles

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.

4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud. 7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.

Más detalles

1. Para cuántos números, del 2 al 26, se tiene que es múltiplo de 84?

1. Para cuántos números, del 2 al 26, se tiene que es múltiplo de 84? NÚMEROS 1. Para cuántos números, del 2 al 26, se tiene que es múltiplo de 84? 2. El promedio de 17 enteros positivos es 15. Cuál es el mayor valor posible para el número más grande de esos 17 enteros?

Más detalles

26.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 13 de setiembre de 2014

26.º OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA CUARTA RONDA DEPARTAMENTAL NIVEL 1 13 de setiembre de 2014 CUARTA RONDA DEPARTAMENTAL NIVEL 1 Nombre y Apellido:............................................... Colegio:............................. Grado:...... Sección:..... Ciudad:................................

Más detalles

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C

SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4

Más detalles

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES

TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra

Más detalles

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros)

TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) 3 TALLER DE POLÍGONOS Y CÍRCULOS (Areas y Perímetros) Ejemplo 1: Un rectángulo tiene 60 m de área y 3m de perimetro. Hallar sus dimensiones.. Ejemplo : La base de un rectángulo es el triple de su altura

Más detalles

Matemáticas 3º E.S.O. 2014/15

Matemáticas 3º E.S.O. 2014/15 Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50

Más detalles

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...

a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado... Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo

Más detalles

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.

2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm. ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:

Más detalles

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?

NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo? FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que

Más detalles

ÁNGULOS. 2. En el triángulo ABC, el ángulo B se obtiene aumentando en 50% el ángulo A o también reduciendo en 25% el ángulo C. Cuál es la medida de B?

ÁNGULOS. 2. En el triángulo ABC, el ángulo B se obtiene aumentando en 50% el ángulo A o también reduciendo en 25% el ángulo C. Cuál es la medida de B? ENTRENAMIENTO COMPETENCIA COTORRA 2015 GEOMETRÍA (PROBLEMAS INTRODUCTORIOS) IIS AMIR MADRID GARZÓN Enero / 2015 ÁNGULOS 1. Cuántos ángulos hay en la siguiente figura? a) 13 b) 14 c) 21 d) 18 2. En el triángulo

Más detalles

SEMEJANZA Y PROPORCIONALIDAD

SEMEJANZA Y PROPORCIONALIDAD SEMEJANZA Y PROPORCIONALIDAD Teorema de Pitágoras En un triángulo rectángulo, el cuadrado de la hipotenusa es igual a la suma de los cuadrados de los catetos. congruencia ( ) : Dos figuras son congruentes

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^

Más detalles

RESOLVER LAS ECUACIONES DE PRIMER GRADO

RESOLVER LAS ECUACIONES DE PRIMER GRADO RESOLVER LAS ECUACIONES DE PRIMER GRADO 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) PROBLEMAS DE ECUACIONES DE PRIMER GRADO 1 Un padre tiene 35 años y su hijo 5. Al cabo de cuántos años será la

Más detalles

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.

FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada. 1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:

Más detalles

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO

Tema 12: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 12--1ºESO Tema 1: Las Áreas de figuras planas. El Teorema de Pitágoras. 1-T 1--1ºESO I.- Perímetro y Área de las figuras planas: Antes de ver todas y cada una de las fórmulas que nos permiten averiguar el área de

Más detalles

CENTRO EDUCATIVO PAULO FREIRE TALLER

CENTRO EDUCATIVO PAULO FREIRE TALLER CENTRO EDUCATIVO PAULO FREIRE TALLER 1: Una plaza circular está limitada por una circunferencia de longitud 188,4m. Determinar el diámetro y el área de la plaza. 2: Si el área de un círculo es 144 cm 2,

Más detalles

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008

TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES. Universidad de Antioquia. Departamento de Matemáticas. Septiembre 2008 TALLER # 5 de GEOMETRÍA EUCLIDIANA ÁREAS Y VOLÚMENES Universidad de Antioquia Departamento de Matemáticas Septiembre 2008 1. Sea ABCD un rectángulo, E punto medio de, a) Calcular el área del rectángulo

Más detalles

(26)2x(3x 4) (1 3x)$(1 +x) = 2

(26)2x(3x 4) (1 3x)$(1 +x) = 2 Resuelve las siguientes ecuaciones ECUACIONES, INECUACIONES Y SISTEMAS. (1)25x 4 29x 2 +4 =0 (2)x 4 5x 2 +4 =0 (3)x 4 a(a +b)x 2 +a 3 b =0 (4)(x 2 5)$(x 2 3) =0 (5)x +2 = 4x +13 (6) x 1 12 = 2 x+1 (7)

Más detalles

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.

TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. 2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,

Más detalles

2.- Escribe la lectura o escritura de las siguientes fracciones:

2.- Escribe la lectura o escritura de las siguientes fracciones: EDUCACIÓN PREESCOLAR 04PJN0020V EDUCACIÓN PRIMARIA Decroly más que un colegio 04PPR0034O EDUCACION SECUNDARIA 04PES0050Z MARATON DE MATEMÁTICAS 1.- Una fracción está compuesta por un numerador y un denominador.

Más detalles

TRIÁNGULOS Y CUADRILÁTEROS.

TRIÁNGULOS Y CUADRILÁTEROS. TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,

Más detalles

La carrera geométrica

La carrera geométrica La carrera geométrica Materiales: el tablero 1, un personaje por cada jugador y un dado. 1. Cada jugador ubica su ficha en la salida. 2. Por turno, cada jugador tira el dado y mueve su ficha tantos casilleros

Más detalles

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS

CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.

Más detalles

Cuadriláteros y circunferencia

Cuadriláteros y circunferencia CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C

Más detalles

MATEMÁTICAS Y SU DIDÁCTICA

MATEMÁTICAS Y SU DIDÁCTICA MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se

Más detalles

(Nivel Bachillerato)

(Nivel Bachillerato) CONCURSO DE MATEMÁTICAS EJERCICIOS PROPUESTOS (Nivel Bachillerato) 1. El dueño de una galería tiene 19 fotografías a color y 12 en blanco y negro. Si quiere colgar todas las que ya tiene y va a comprar

Más detalles

MATEMÁTICAS 1º DE ESO

MATEMÁTICAS 1º DE ESO MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.

Más detalles

Unidad 8 Áreas y Volúmenes

Unidad 8 Áreas y Volúmenes Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros

Más detalles

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia

TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es

Más detalles

EJERCICIOS DE REPASO DE MATEMÁTICAS 2º ESO GEOMETRÍA

EJERCICIOS DE REPASO DE MATEMÁTICAS 2º ESO GEOMETRÍA EJERCICIOS DE REPASO DE MATEMÁTICAS º ESO GEOMETRÍA. Halla el área de un triángulo equilátero de lado cm. R) A 0, cm. Halla el área de un hexágono regular de lado cm. R) A,6 cm. La superficie de una mesa

Más detalles

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos

POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos 1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular

Más detalles

24ª OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA 4ª RONDA DEPARTAMENTAL 11 de agosto de 2012

24ª OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA 4ª RONDA DEPARTAMENTAL 11 de agosto de 2012 Problema 1 Calcular el valor de la expresión: (214 213) + (999 998) + 1 200 + 0 100. Problema 2 Entre 10 y 20 hay números que son divisibles sólo por 1 y por sí mismos. Cuál es la suma de esos números?

Más detalles

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:

Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo: 3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-

Más detalles

Aritmética para 6.º grado (con QuickTables)

Aritmética para 6.º grado (con QuickTables) Aritmética para 6.º grado (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Matemáticas II Magisterio (Primaria) Curso Problemas de repaso

Matemáticas II Magisterio (Primaria) Curso Problemas de repaso Matemáticas II Magisterio (rimaria) urso 2013-2014 1. alcula la medida del ángulo a de la figura. roblemas de repaso 116 105 a Sol: a = 49. 2. Sabiendo que los puntos, y R están sobre una circunferencia

Más detalles

Clasifi cación de polígonos

Clasifi cación de polígonos Clasifi cación de polígonos Cuándo un polígono es regular? Marca la opción correcta. Sus ángulos son iguales. Sus lados son iguales. Sus lados y sus ángulos son iguales. Sus diagonales son iguales. Escribe

Más detalles

Problemas de práctica para la Olimpiada Estatal de Matemáticas

Problemas de práctica para la Olimpiada Estatal de Matemáticas Problemas de práctica para la Olimpiada Estatal de Matemáticas (Problemas Introductorios) Editado por: Jesús Jerónimo astro, José Luis lonzo Velázquez. 2016 Enunciados de los Problemas En este material

Más detalles

E SAYO º 1 Geometría

E SAYO º 1 Geometría ᒬ 01) En el triángulo ABC de la figura AD = BD;

Más detalles

POLÍGONOS

POLÍGONOS POLÍGONOS 8.1.1 8.1.5 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos. Un polígono es una figura bidimensional, cerrada, formada por tres

Más detalles

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid

Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos

Más detalles

Seminario de problemas. Curso Hoja 5

Seminario de problemas. Curso Hoja 5 Seminario de problemas. Curso 2014-15. Hoja 5 29. Encuentra los números naturales N que cumplen las siguientes condiciones: sus únicos divisores primos son 2 y 3, y el número de divisores de N 2 es el

Más detalles

CANGURO MATEMÁTICO 2012 PRIMERO DE SECUNDARIA

CANGURO MATEMÁTICO 2012 PRIMERO DE SECUNDARIA CNGURO MTEMÁTICO 0 PRIMERO E SECUNRI INICCIONES Las marcas en la hoja de respuestas se deben realizar, únicamente, con LÁPIZ. Escriba su apellido paterno, apellido materno y nombres con letras de imprenta

Más detalles

ECUACIONES DE PRIMER GRADO. 3º ) Pasa todos los términos que contenga la incógnita a un lado de la igualdad y los demás al otro lado.

ECUACIONES DE PRIMER GRADO. 3º ) Pasa todos los términos que contenga la incógnita a un lado de la igualdad y los demás al otro lado. ECUACIONES DE PRIMER GRADO Para resolver las ecuaciones: 1º ) Quitar denominadores, si los tiene. Para ello se multiplica ambos lados de la igualdad por el mínimo común múltiplo de los denominadores. º

Más detalles

PROBLEMARIO CATEGORÍA 3 SECUNDARIA

PROBLEMARIO CATEGORÍA 3 SECUNDARIA PROBLEMARIO CATEGORÍA 3 SECUNDARIA Estimados estudiantes, recuerden que los problemas se resuelven con habilidad, utilizando algunas veces la lógica o inferencias, esto a través de un enfoque analítico,

Más detalles

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA

INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,

Más detalles

Soluciones - Tercer Nivel Infantil

Soluciones - Tercer Nivel Infantil SOCIEDAD ECUATORIANA DE MATEMÁTICA ETAPA CLASIFICATORIA "VII EDICIÓN DE LAS OLIMPIADAS DE LA SOCIEDAD ECUATORIANA DE MATEMÁTICA" Soluciones - Tercer Nivel Infantil 01 de abril de 2010 1. En un reloj de

Más detalles

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez

DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado

Más detalles

Tercer grado de primaria

Tercer grado de primaria Tercer grado de primaria TEMA P 1. Cuál es la regla que se usó en la siguiente secuencia de números? 3. Las cuentas realizadas en el primer trimestre del año en una fábrica que confecciona polos, pañuelos

Más detalles

Matemáticas Nivel 4 (con QuickTables)

Matemáticas Nivel 4 (con QuickTables) Matemáticas Nivel 4 (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.

ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2. 1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73

Más detalles

, calcule el área del triángulo ABN.

, calcule el área del triángulo ABN. Universidad Peruana de iencias plicadas (UP) Perímetros y Áreas ompuestas 1. alcule el área de un triángulo isósceles si el ángulo desigual mide 30º y los lados iguales miden 8m. 30º 8 m 8 m. alcule el

Más detalles

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS

CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 88 CAPÍTULO 9: LONGITUDES Y ÁREAS 1. PERÍMETROS Y ÁREAS DE POLÍGONOS 1.1. Concepto de perímetro y de área de una figura plana El perímetro de una figura plana es la suma de las longitudes de sus lados.

Más detalles

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA

EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA 1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.

Más detalles

a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número

a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número Tema - Hoja : Raíz de un número Expresa como producto de un número entero y un radical los siguientes radicales: a) a) = = = = = = Expresa en forma de raíz las siguientes potencias de exponente fraccionario:

Más detalles

III: Geometría para maestros. Capitulo 1: Figuras geométricas

III: Geometría para maestros. Capitulo 1: Figuras geométricas III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo

Más detalles

1 Ángulos en las figuras planas

1 Ángulos en las figuras planas Unidad 11. Elementos de geometría plana 1 Ángulos en las figuras planas Página 139 1. Cinco de los ángulos de un heágono irregular miden 147, 101, 93, 1 y 134. Halla la medida del seto ángulo. Los seis

Más detalles

CANGURO MATEMÁTICO 2015 CUARTO DE SECUNDARIA

CANGURO MATEMÁTICO 2015 CUARTO DE SECUNDARIA CNGURO MTEMÁTICO 2015 CURTO DE SECUNDRI INDICCIONES Las marcas en la hoja de respuestas se deben realizar, únicamente, con LÁPIZ. Escriba su apellido paterno, apellido materno y nombres con letras de imprenta

Más detalles

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.

1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,

Más detalles

PROBLEMAS ÚLTIMO SELECTIVO

PROBLEMAS ÚLTIMO SELECTIVO PROBLEMAS ÚLTIMO SELECTIVO 1.- Sea ΔABC un triángulo rectángulo con ángulo recto en A y ACB = 30. Sea M el punto medio de BC y sea P la circunferencia que pasa por A y es tangente a BC en M y Q la circunferencia

Más detalles

Primaria Sexto Grado Matemáticas (con QuickTables)

Primaria Sexto Grado Matemáticas (con QuickTables) Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios

Más detalles

Abajo está una mezcla de expresiones racionales. Haga la operación indicada y simplifique su solución, si puede.

Abajo está una mezcla de expresiones racionales. Haga la operación indicada y simplifique su solución, si puede. Unidad 1 Llendo a campar: D írculos 1 D-8. bajo está una mezcla de epresiones racionales. Haga la operación indicada simplifique su solución, si puede. 6 + 8 + 1 + 6 5 + 10 + 8 + + 5 ( + 1) d) + + 5 10

Más detalles

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras.

Tema 5: Semejanza. 1.- Introducción: Concepto de Escala y Teorema de Pitágoras. Tema 5: Semejanza. En este tema nos dedicaremos al estudio de los triángulos y polígonos, y dedicaremos un apartado a un famoso teorema, que nos será de utilidad para entender la semejanza entre ellos:

Más detalles

La circunferencia y el círculo

La circunferencia y el círculo La circunferencia y el círculo 1.- LA CIRCUNFERENCIA Es una línea curva, cerrada y plana en la que todos sus puntos están a la misma distancia de un punto interior llamado centro. 2.- ELEMENTOS DE LA CIRCUNFERENCIA:

Más detalles

1. Progresiones aritméticas

1. Progresiones aritméticas 1 PROGRESIONES ARITMÉTICAS 1 1. Progresiones aritméticas Una progresión aritmética es una sucesión en la que cada término es igual al anterior más un número constante llamado diferencia de la progresión.

Más detalles

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto

ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto Tarjetas de vocabulario ángulo agudo ángulo agudo Ángulo que es menor que un ángulo recto acutángulo acutángulo Un con tres ángulos agudos ángulo ángulo Una figura formada por dos semirrectas que tienen

Más detalles

CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO TEMARIO COMÚN

CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO TEMARIO COMÚN CONCURSO NACIONAL DE MATEMÁTICA SECUNDARIA BÁSICA CURSO 2005 2006 TEMARIO COMÚN NOMBRE: GRADO: ESCUELA: MUNICIPIO: TIEMPO: 4 HORAS. Una panadería vende panecillos a $0.30 cada uno, o 7 panecillos en $.00

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

1.- Resuelve las siguientes ecuaciones: Solución: 2.-Resuelve las siguientes ecuaciones: Solución:

1.- Resuelve las siguientes ecuaciones: Solución: 2.-Resuelve las siguientes ecuaciones: Solución: 1.- Resuelve las siguientes ecuaciones: 2.-Resuelve las siguientes ecuaciones: 3.- En el último examen de Matemáticas mi amigo Juan sacó tres puntos menos que yo, y la nota de mi amiga Sara fue el doble

Más detalles

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS

SEGUNDA OLIMPIADA ESTATAL DE MATEMÁTICAS PROBLEMAS PROPUESTOS PARA LA ETAPA DE ZONA PRIMER GRADO 1. Marcos tiene todas las letras del abecedario en tres tamaños: grandes, medianas y pequeñas: A,B,C,D,E,...,Z A,B,C,D,E,...,Z A,B,C,D,E,...,Z Usando

Más detalles

Sentido Numérico Números Enteros

Sentido Numérico Números Enteros Sentido Numérico Números Enteros I CAN DO THIS! Nombre 1.1 Puedo leer y escribir números enteros hasta los millones. 1.2 Puedo ordenar y comparar números enteros y decimales hasta dos espacios decimales

Más detalles

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.

Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS. EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se

Más detalles

ÁREAS DE FIGURAS PLANAS

ÁREAS DE FIGURAS PLANAS 6. ÁREAS DE FIGURAS PLANAS EN ESTA UNIDAD VAS A APRENDER ÁREAS POLÍGONOS RECTÁNGULO CUADRADO PARALELOGRAMO TRIÁNGULO TRAPECIO ROMBO POLÍGONO IRREGULAR FÓRMULA RESOLUCIÓN DE PROBLEMAS CÍRCULO FÓRMULA FIGURAS

Más detalles

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas

MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas

Más detalles

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B

CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean

Más detalles

Introducción. Este trabajo será realizado con los siguientes fines :

Introducción. Este trabajo será realizado con los siguientes fines : Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro

Más detalles

Repaso de Geometría. Ahora formulamos el teorema:

Repaso de Geometría. Ahora formulamos el teorema: Repaso de Geometría Preliminares: En esta sección trabajaremos con los siguientes temas: I. El Teorema de Pitágoras. II. Fórmulas básicas de geometría: perímetro, área y volumen. I. El Teorema de Pitágoras.

Más detalles

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA.

GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. GEOMETRÍA DE 6º DE E.P. MARISTAS LA INMACULADA. Profesor: Alumno:. Curso: Sección: 1. LAS FIGURAS PLANAS 2. ÁREA DE LAS FIGURAS PLANAS 3. CUERPOS GEOMÉTRICOS . FIGURAS PLANAS 1. Los polígonos y suss elementos

Más detalles