Análisis probabilístico y algoritmos aleatorizados

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Análisis probabilístico y algoritmos aleatorizados"

Transcripción

1 Análisis probabilístico y algoritmos aleatorizados Johan Van Horebeek, Análisis probabilístico: considerar el input de un algoritmo como de cierta distribución probabilística. Algoritmo aleatorizado: contiene un comando con un resultado no determinístico 1. algoritmo Las Vegas: si da una respuesta, será siempre correcta pero el tiempo requerido es v.a. (muchas veces, se tiene que parrarlo antes) 2. algoritmo Monte Carlo: su respuesta es correcta con cierta probabilidad; tiempo de cómputo es determinístico.

2 1. Prologo Uso de un elemento aleatorio en un algoritmo es algo de toda la vida: Ejemplo: decisión distribuida Pasar por una puerta angosta SIN recurrir a un supervisor. Solución: cada uno lanza una moneda; el resultado determina la acci on (tratar de pasar o dejar pasar) Si nadie puede avanzar, se repite lo anterior. Ejemplo: Zero-knowledge proofs Convencer a alguien de saber un secreto sin revelar el secreto. Alicia sabe abrir la puerta secreta? Alicia elige una entrada; Beto no ve cual se elige; Beto elige una entrada para buscar a Alicia; Si Beto la encuentra, concluye que ella NO sabe el secreto si no, se repite lo anterior (n veces m aximo) 2

3 2. Quicksort Elige un elemento p del arreglo (pivot). Divide elementos del arreglo en tres conjuntos: C1: aquellos < p, C2: aquellos = p, C3: aquellos > p Ordena de manera recursiva C1 y C3 Asembla resultados en un solo arreglo. Si el pivot es el k-ésimo elemento más chico: T (n) T (k 1) + T (n k) + O(n) Problema: depende de k. Si siempre k = 1 o k = n: O(n 2 ); si siempre k = n/2, O(nlog(n)). IDEA: Elige el pivot al azar Equivalente a suponer que el orden en el arreglo es aleatorio y elegir siempre el primer elemento. Define T, número de comparaciones: T = i<j Z i,j, Z i,j = I( se compara el i-ésimo con el j-ésimo más chico), con I() función indicadora 3

4 T = i<j Z i,j, Z i,j = I( se compara el i-ésimo con el j-ésimo más chico) ET = i<j EZ i,j EZ i,j = P ( se compara el i-ésimo con el j-ésimo más chico) P ( se compara el i-ésimo con el j-ésimo más chico) = 2 j i+1 Juntando todo: ET = i<j 2 j i+1 2 n n i=1 k=1 1 k = 2nH n. Muchas veces el interés es en P (T > t). Usar desigualdades con Chebychev (ver más adelante). 4

5 3. Verificar igualdades Ejemplo de motivación Implementaste un algoritmo para calcular un polinomio P ( ). Es correcto? Siempre funcionará? Caso especial: verificar P = Q o verificar que R = P Q es siempre 0. Repite elige un elemento x al azar de A={0,1,-1,2,-2,...d,-d} con d grado del polinomi compara R(x) con 0 si son diferentes: salir (conclusion: R no es siempre 0) si son iguales: repite lo anterior La probabilidad de que por coincidencia R(x) = 0 es menor que 0.5 porque A tiene 2d + 1 elementos y R no puede tener más de d raices. La probabilidad de que por coincidencia k veces R(x) = 0, es menor que 0.5 k 5

6 Finger Printing Problema: verificar si dos números H(T ), H(P ) < m son iguales. Variables por determinar: k y N, números enteros. Algoritmo: contador=0; igualdad=true; Mientras contador es menor que k e igualdad es true: se elige un número primo p menor que N al azar; se calcula y 1 = H(T ) mod p y y 2 = H(P ) mod p; Si y 1 y 2, igualdad=false; en otro caso, contador=contador+1; Si igualdad es false, concluye que son diferentes, en el otro caso, concluye que son iguales. 6

7 Se calcula y 1 = H(T ) mod p y y 2 = H(P ) mod p; Si y 1 y 2, igualdad=false; Si y 1 y 2 mod p, se concluye correctamente que H(T) y H(P) son diferentes. pero y 1 puede ser igual a y 2 sin que H(T) y H(P) son iguales. De manera general, se sabe: z 1 mod p = z 2 mod p si y solo si p divide z 1 z 2 Define la probabilidad de tener igualdad por coincidencia: P = #{p : p < N, p primo y divide z 1 z 2, con z 1 z 2 }, Π(N) con Π(N) es el número de primos menor que N. Propiedad: Si 0 < a < m (m grande), el número de primos que dividen a es acotado por Π(log m). Entonces, P Π(log m) Π(N) Dado que Π( ) es una función creciente, si N > log m, P es mucho menor que 1. Conclusion: la probabilidad que se cumple y 1 = y 2 por coincidencia es < 1. La probabilidad de tener k coincidencias es menor que P k y P k 0, si k 7

8 4. Calcular mediana Usando un algoritmo tradicional: Define Rselect(A,p,q,i): regresa el i-ésima elemento más chico en A[p],..., A[q]. Rselect(A,p,r,i) if p==q return A[p] q = Rpartition(A,p,r) k = q - p + 1 if i==k return A[q] elseif i< k return Rselect(A,p,q-1,i) else return Rselect (A,q+1,r,i-k) Rpartition(A,p,r) i=random(p,r) swap(a[r], A[i]) Partition(A,p,r) Partition(A,p,r) x=a[r]; i=p-1 for j=p to r-1 if A[j] <= x i=i+1 swap(a[i],a[j]) swap(a[i+1],a[r]) return i+1 8

9 Partition(A,p,r): 9

10 Usando un algoritmo randomizado: IDEA: Reduce el conjunto a uno más chiquito con muestreo. Rmedian(A) Construye una muestra B de A con 2n^2/3 elementos Ordena B Calcula a, el elemento n^2/3 - n^1/3 mas chico de B Calcula b, el elemento n^2/3 + n^1/3 mas chico de B Define C el conjunto de elementos de A en [a,b] Determina si la mediana de A esta en [a,b] En caso que si: Si C es suficientemente pequenio: Sea p, el numero de elementos de A menor que a Ordena C Regresa el elemento n/2 - p mas chico de C Para determinar si la mediana de A está en [a,b] basta verificar si (a) el número de elementos de A menor que a es menor que n/2 y (b) el número de elementos de A mayor que b es menor que n/2 10

11 11

12 Análisis del algoritmo: Nos limitamos al caso: n 1 = n 3/4, n 2 = n 1 2 n 1/2, n 3 = n n 1/2. La probabilidad que C contiene la mediana es muy alta. Verificar si C puede contener la mediana es equivalente a (a) verificar si el número de elementos de B menor que m no es menor que n 2 y (b) verificar si el número de elementos de B mayor que m no es menor que n 2. Tomamos (a). Define N, el número de elementos de B menor que m: X i = I(A[i] m), N = X i es v.a. Bernoulli; EN es aprox. n 1 2 ; V ar(n) es aprox. n 1 4. Tenemos que calcular: i:a[i] B P (N < n 2 ) = P (N < n 1 2 n1/2 ) = P (N EN < n 1/2 ) P ( N EN > n 1/2 ). Usamos la desigualdad de Chebychev para demostrar que (b) es completamente similar. P ( N EN > n 1/2 ) V ar(n) n X i < n 1 4n O(1/n1/4 ) Se puede demostrar que la probabilidad que C tenga más de 4n 3/4 elementos es O(1/n 1/4 ) 0, n. Si C no tenga más de 4n 3/4 elementos, la complejidad total del algoritmo es O(n). 12

13 5. Bucketsort PROBLEMA: Ordenar n números. Si se revela que forman una muestra de U(0, 1), cómo aprovechar esta información para obtener un algoritmo O(n)? 13

14 Para calcular la complejidad, definimos: Número de elementos en canasta (lista) i, B[i], es: X i,j = I(A[j] se coloca en canasta i, B[i]). N i = j X i,j Como X i,j Bern( 1 n ), EN i 2 = E j X i,j l X i,l = E j X2 i,j + E j l X i,jx i,l = 2 1 n Sea T n el tiempo para ordenar n números: T n = i N i 2 + O(n). Entonces ET n O(n) 14

15 6. Cómputo distribuido n agentes (procesadores) se deben ponerse de acuerdo, sin recurrir a un control central. Evitar: dead-locks y inconsistencias. Ejemplo: elegir un lider Repite nombre-propio = elige un número aleatorio entre 1 y n lista-de-nombres = vacio nombre = nombre-propio repite n - 1 veces: añade nombre a lista-de-nombres envia nombre al siguiente procesador nombre = recibe nombre del procesador anterior hasta que al menos un nombre en lista-de-nombres es único. El líder será el que corresponda al mayor número único. Probabilidad que en una iteración no sale un número único es p < 1. Probabilidad que después de k iteración aun no ha salido un número único es p k << 1. 15

16 7. Algoritmos con privacidad Calcular estadísticas respetando la privacidad Ejemplo: calcular el promedio de las calificaciones de N amigos sin revelar calificaciones entre sí 16

Programación de Sistemas

Programación de Sistemas Programación de Sistemas Algoritmos de Ordenación Índice Por qué es importante la ordenación? Un par de ejemplos InsertionSort QuickSort Para cada uno veremos: En qué consisten, Casos extremos Eficiencia

Más detalles

Tema 7: Programación con Matlab

Tema 7: Programación con Matlab Tema 7: Programación con Matlab 1. Introducción Matlab puede utilizarse como un lenguaje de programación que incluye todos los elementos necesarios. Añade la gran ventaja de poder incorporar a los programas

Más detalles

1. Suma y producto de polinomios. Propiedades

1. Suma y producto de polinomios. Propiedades ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resumen teoría Prof. Alcón 1. Suma y producto de polinomios. Propiedades Sea (A, +,.) un anillo conmutativo. Llamamos polinomio en una indeterminada x con coeficientes

Más detalles

1. Sea A una matriz cuadrada n x n, conteniendo la siguiente información en cada fila i. para 1 j k n para k

1. Sea A una matriz cuadrada n x n, conteniendo la siguiente información en cada fila i. para 1 j k n para k . Sea A una matriz cuadrada n x n, conteniendo la siguiente información en cada fila i Ai [, j] = 0 para j k n para k i i < j n Construya un algoritmo "Divide y Vencerás" que ordene las filas de la matriz

Más detalles

Práctica 4 El algoritmo QuickSort, comparación de algoritmos de ordenación

Práctica 4 El algoritmo QuickSort, comparación de algoritmos de ordenación Práctica 4 El algoritmo QuickSort, comparación de algoritmos de ordenación Estructuras de datos y algoritmos Facultad de Informática curso 2008-2009 Introducción El objetivo de esta práctica consiste en

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

Sorting++ Herman Schinca. Clase 21. 10 de Junio de 2011

Sorting++ Herman Schinca. Clase 21. 10 de Junio de 2011 Sorting++ Herman Schinca Clase 21 10 de Junio de 2011 Recordando Ya vimos 3 algoritmos de ordenamiento basados en la comparación entre elementos: Selection, Insertion y Bubble. Los 3 en peor caso (cuando

Más detalles

Introducción al Álgebra Lineal

Introducción al Álgebra Lineal UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción al Álgebra Lineal Ramón Bruzual Marisela Domínguez Caracas, Venezuela Septiembre

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I

Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I Universidad Simón Bolívar CO3121. Probabilidades para Ingenieros. Enero-Marzo 2010 Problemario I 1. Supongamos que Ω = A B y P (A B) = 0.2. Hallar: (a) El máximo valor posible para P (B), de tal manera

Más detalles

ESQUEMA GENERAL DISEÑOS DE MEDIDAS REPETIDAS

ESQUEMA GENERAL DISEÑOS DE MEDIDAS REPETIDAS TEMA IV ESQUEMA GENERAL Definición Clasificación Diseño simple de medidas repetidas Diseño factorial de medidas repetidas Diseño de medidas parcialmente repetidas DISEÑOS DE MEDIDAS REPETIDAS Definición

Más detalles

Gráficas : teoría, aplicaciones e interacciones : I

Gráficas : teoría, aplicaciones e interacciones : I J. Ramírez Alfonsín Université Montpellier 2, Francia Facultad de Ciencias, UNAM, México 21 de Enero de 2013 1 Introducción 2 Isomorfismo 3 Subgráfica 4 Grado 5 Conexidad 6 Coloración 7 Pruebas de Conocimiento

Más detalles

Algunas herramientas adicionales de programación en Scilab. Más sobre cilcos y condiciones.

Algunas herramientas adicionales de programación en Scilab. Más sobre cilcos y condiciones. Algunas herramientas adicionales de programación en Scilab. Más sobre cilcos y condiciones. Autores: Sandra Martínez Darío Kunik Andrés Babino Colaboradores: Cristina Caputo Silvina Ponce Dawson Contacto

Más detalles

Tema 8: Algoritmos de ordenación y búsqueda

Tema 8: Algoritmos de ordenación y búsqueda Tema 8: Algoritmos de ordenación y búsqueda Objetivos: en este tema se presentan algoritmos que permiten buscar un elemento dentro de una colección y ordenar una colección en base a algún criterio (el

Más detalles

Programación: QBASIC

Programación: QBASIC 1. QBASIC Programación: QBASIC Guía del alumno Qbasic es una versión moderna del lenguaje BASIC. Se trata de un lenguaje de alto nivel. En un lenguaje de alto nivel las instrucciones tienen un formato

Más detalles

ALGORITMOS DE ORDENACIÓN Y BÚSQUEDA

ALGORITMOS DE ORDENACIÓN Y BÚSQUEDA 6 ALGORITMOS DE ORDENACIÓN Y BÚSQUEDA OBJETIVOS Después del estudio de este capítulo usted podrá: Conocer los algoritmos basados en el intercambio de elementos. Conocer el algoritmo de ordenación por inserción.

Más detalles

Factorizaciones de Cholesky, matrices definidas. semidefinidas positivas.

Factorizaciones de Cholesky, matrices definidas. semidefinidas positivas. Factorizaciones de Cholesky, matrices definidas y semidefinidas positivas Héctor Manuel Mora Escobar Universidad Central, Bogotá hectormora@yahoo.com Junio de 2011 1 Introducción Este documento presenta,

Más detalles

Seguridad matemática en la Sociedad de la Información

Seguridad matemática en la Sociedad de la Información Pino T. Caballero Gil Profesora Titular de Ciencias de la Computación e Inteligencia Artificial Departamento de Estadística, Investigación Operativa y Computación Universidad de La Laguna Introducción

Más detalles

Apuntes de Algoritmos y Estructuras de Datos, Programación III, Fac. de Informática UNLP. Alejandro Santos. 7 de agosto de 2012. 1.

Apuntes de Algoritmos y Estructuras de Datos, Programación III, Fac. de Informática UNLP. Alejandro Santos. 7 de agosto de 2012. 1. Apuntes de Algoritmos y Estructuras de Datos, Programación III, Fac. de Informática UNLP Índice Alejandro Santos 7 de agosto de 2012 1. Introducción 4 2. Tiempo de Ejecución 5 2.1. Análisis Asintótico

Más detalles

1.1 Las pruebas en el desarrollo de software tradicional

1.1 Las pruebas en el desarrollo de software tradicional software Introducción La prueba del software es un proceso que se realiza por diversos motivos, concientemente o de manera casual, pero que se reduce a unos cuantos pasos: se ejecuta el programa (o parte

Más detalles

Probabilidad y Estadística

Probabilidad y Estadística Probabilidad y Estadística Conteo con reemplazamiento Considerando ahora un experimento en que una bola, seleccionada de una caja con n bolas, se regresa a la misma caja. Si se hace un total de k selecciones

Más detalles

Programación Genética

Programación Genética Programación Genética Programación Genética consiste en la evolución automática de programas usando ideas basadas en la selección natural (Darwin). No sólo se ha utilizado para generar programas, sino

Más detalles

CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO

CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO CAPITULO 8. INTRODUCCION AL MÉTODO DE SIMULACIÓN MONTE CARLO Objetivos del Capítulo Introducir los conceptos e ideas clave de la simulación Monte Carlo. Introducirse en las capacidades que ofrece Excel

Más detalles

VI Colas de prioridad

VI Colas de prioridad VI Colas de prioridad Una cola de prioridad (cat: cua de prioritat; ing: priority queue) es una colección de elementos donde cada elemento tiene asociado un valor susceptible de ordenación denominado prioridad.

Más detalles

Capítulo 4 Procesos con estructuras de repetición

Capítulo 4 Procesos con estructuras de repetición Estructura de contador Capítulo 4 Procesos con estructuras de repetición Esta es una operación que incrementa en una unidad el valor almacenado en la variable c, cada vez que el flujo del diagrama pasa

Más detalles

Iniciándose en la Programación con la ClassPad

Iniciándose en la Programación con la ClassPad DP. - AS - 5119-2007 AULA MATEMÁTICA DIGITAL ISSN: 1988-379X Iniciándose en la Programación con la ClassPad Gualberto Soto Sivila (Ingeniería Industrial) INTRODUCCIÓN Universidad Técnica de Oruro Facultad

Más detalles

Unidad II: Números pseudoalealeatorios

Unidad II: Números pseudoalealeatorios 1 Unidad II: Números pseudoalealeatorios Generación de números aleatorios Un Número Aleatorio se define como un número al azar comprendido entre cero y uno. Su característica principal es que puede suceder

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

ARREGLOS DEFINICION GENERAL DE ARREGLO

ARREGLOS DEFINICION GENERAL DE ARREGLO ARREGLOS DEFINICION GENERAL DE ARREGLO Conjunto de cantidades o valores homogéneos, que por su naturaleza se comportan de idéntica forma y deben de ser tratados en forma similar. Se les debe de dar un

Más detalles

Ejemplos de conversión de reales a enteros

Ejemplos de conversión de reales a enteros Ejemplos de conversión de reales a enteros Con el siguiente programa se pueden apreciar las diferencias entre las cuatro funciones para convertir de reales a enteros: program convertir_real_a_entero print

Más detalles

Motivos y Dominios. Jesús Fernández C. 19 de Junio del 2013. Cinvestav-Zacatenco

Motivos y Dominios. Jesús Fernández C. 19 de Junio del 2013. Cinvestav-Zacatenco Jesús Fernández C. Cinvestav-Zacatenco 19 de Junio del 2013 Jesús Fernández C. (Cinvestav) Motivos y Dominios 19 de Junio del 2013 1 / 58 1 Motivos y Dominios Introducción Identicación de motivos y dominios

Más detalles

a) P(x) + Q(x) b) P(x) - Q(x) c) 3P(x) - 2Q(x) d) P(x). Q(x) a) P(x) Q(x) + R(x) b) P(x).Q(x) - R (x) c) Q(x).(2P(x) - R(x)) d) R(x) : Q(x)

a) P(x) + Q(x) b) P(x) - Q(x) c) 3P(x) - 2Q(x) d) P(x). Q(x) a) P(x) Q(x) + R(x) b) P(x).Q(x) - R (x) c) Q(x).(2P(x) - R(x)) d) R(x) : Q(x) POLINOMIOS. HOJA 1 1.- Dados los polinomios P() = 4 3-3 + 1 y Q() = 3-3 +, calcula: a) P() + Q() b) P() - Q() c) 3P() - Q() d) P(). Q().- Dados los polinomios P() = 3-3 + 1, Q() = - - + 4 y R() = 3-6 +

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Guía para el estudio de la segunda Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo

Guía para el estudio de la segunda Unidad. Dr. Jorge Martín Dr. José Antonio Carrillo Guía para el estudio de la segunda Unidad didáctica Dr. Víctor Hernández Dr. Jorge Martín Dr. José Antonio Carrillo 18 de marzo de 2011 Índice general Donald Erwin Knuth 5 Recomendaciones para el estudio

Más detalles

LA DISTRIBUCIÓN TRAPEZOIDAL COMO MODELO PROBABILÍSTICO PARA LA METODOLOGÍA PERT

LA DISTRIBUCIÓN TRAPEZOIDAL COMO MODELO PROBABILÍSTICO PARA LA METODOLOGÍA PERT LA DISTRIBUCIÓN TRAPEZOIDAL COMO MODELO PROBABILÍSTICO PARA LA METODOLOGÍA PERT JOSÉ CALLEJÓN CÉSPEDES EDUARDO PÉREZ RODRÍGUEZ ANTONIO RAMOS RODRÍGUEZ Facultad de Ciencias Económicas y Empresariales Universidad

Más detalles

Generadores de números aleatorios

Generadores de números aleatorios Generadores de números aleatorios Patricia Kisbye FaMAF 23 de marzo, 2010 Para qué se utilizan? Simulación. Muestreo. Análisis numérico. Testeo de programas. Juegos de azar. Toma de decisiones. Secuencias

Más detalles

30 = 2 3 5 = ( 2) 3 ( 5) = 2 ( 3) ( 5) = ( 2) ( 3) 5.

30 = 2 3 5 = ( 2) 3 ( 5) = 2 ( 3) ( 5) = ( 2) ( 3) 5. 11 1.3. Factorización Como ya hemos mencionado, la teoría de ideales surgió en relación con ciertos problemas de factorización en anillos. A título meramente ilustrativo, nótese que por ejemplo hallar

Más detalles

Números y desigualdades

Números y desigualdades 1/59 Números y desigualdades 2/59 Distintas clases de números 3/59 Números naturales Los números naturales 1,2,3,.... El conjunto de todos ellos se representa por N. 4/59 Números enteros Los números enteros...,-2,-1,0,1,2,...

Más detalles

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales Estadística 38 Tema 3: Variables aleatorias y vectores aleatorios bidimensionales El concepto de variable aleatoria surge de la necesidad de hacer más manejables matemáticamente los resultados de los experimentos

Más detalles

Capítulo 3 DIVIDE Y VENCERÁS

Capítulo 3 DIVIDE Y VENCERÁS Capítulo 3 DIVIDE Y VENCERÁS 3.1 INTRODUCCIÓN El término Divide y Vencerás en su acepción más amplia es algo más que una técnica de diseño de algoritmos. De hecho, suele ser considerada una filosofía general

Más detalles

Manual para la Medición del Nivel de Satisfacción del Usuario del Servicio de Acceso a Internet

Manual para la Medición del Nivel de Satisfacción del Usuario del Servicio de Acceso a Internet MANUAL PARA LA MEDIICIIÓN DEL NIIVEL DE SATIISFACCIIÓN DEL USUARIIO [NSU] DEL SERVIICIIO DE ACCESO A IINTERNET - Guíía dell Usuariio - Bogottá,, Diiciiembrre de 2007 CONTENIDO 1. INTRODUCCIÓN 2. OBJETIVO

Más detalles

Práctico 4. Probabilidad

Práctico 4. Probabilidad Práctico 4. Probabilidad Problema Calcular la probabilidad que si se lanzan dos dados la suma de los resultados obtenidos sea inferior a 9. Problema 2 Las posibilidades de apostar a pleno en la ruleta

Más detalles

Unidad 14 Probabilidad

Unidad 14 Probabilidad Unidad 4 robabilidad ÁGINA 50 SOLUCIONES Calcular variaciones.! 5! 4 a) V, 6 b) 5, 60 c),4 6 ( )! V (5 )! VR Calcular permutaciones. a)! 6 b) 5 5! 0 c) 0 0! 68 800! 9 96 800 palabras diferentes. Números

Más detalles

I.E.S. Adeje II Curso 20012-2013 CONTENIDOS MÍNIMOS MATEMÁTICAS 1º E.S.O.

I.E.S. Adeje II Curso 20012-2013 CONTENIDOS MÍNIMOS MATEMÁTICAS 1º E.S.O. MATEMÁTICAS 1º E.S.O. Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ

ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ ANOVA O ANAVA PARA DISEÑOS TOTALMENTE ALEATORIZADOS Y ANOVA PARA DISENOS DE BLOQUES ALEATORIZADOS ALBA MARTINEZ ROMERO MARY SOL MEZA CHAVEZ Presentado a: MARIA ESTELA SEVERICHE CORPORACION UNIVERSITARIA

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

5. DISTRIBUCIONES DE PROBABILIDADES

5. DISTRIBUCIONES DE PROBABILIDADES 5. DISTRIBUCIONES DE PROBABILIDADES Dr. http://academic.uprm.edu/eacunaf UNIVERSIDAD DE PUERTO RICO RECINTO UNIVERSITARIO DE MAYAGUEZ DISTRIBUCIONES DE PROBABILIDADES Se introducirá el concepto de variable

Más detalles

Algoritmos y Estructuras de Datos II

Algoritmos y Estructuras de Datos II 16 de marzo de 2015 Contenidos 1 Análisis de algoritmos 2 3 La idea El algoritmo Ejemplo Análisis Ordenación por selección vs. inserción selección: a a[1,i) mínimos ordenados a[i,n] aún no seleccionados

Más detalles

Universidad del CEMA Master en Finanzas 2006

Universidad del CEMA Master en Finanzas 2006 Universidad del CEMA Master en Finanzas 2006 La Simulación como una herramienta para el manejo de la incertidumbre Fabián Fiorito ffiorito@invertironline.com Tel.: 4000-1400 Hoy en día la simulación es

Más detalles

Panorama del curso Métodos Numéricos I

Panorama del curso Métodos Numéricos I Panorama del curso Métodos Numéricos I Egor Maximenko ESFM del IPN 2014 Egor Maximenko (ESFM del IPN) Métodos Numéricos I 2014 1 / 35 Contenido 1 Propósito y programa del curso, software y literatura 2

Más detalles

Pruebas de Programas. Introducción Errores de software. Julio Villena Román. Un error en un programa puede ser algo muy serio

Pruebas de Programas. Introducción Errores de software. Julio Villena Román. Un error en un programa puede ser algo muy serio Laboratorio de Programación Pruebas de Programas Julio Villena Román jvillena@it.uc3m.es Introducción Errores de software Un error en un programa puede ser algo muy serio http://www.wired.com/software/coolapps/news/2005/11/69355?currentpage=all

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16

Detergente Lavad.1 Lavad.2 Lavad.3 Media A 45 43 51 46.3 B 47 44 52 47.6 C 50 49 57 52 D 42 37 49 42.6. Media 46 43.2 52.2 47.16 3. DISEÑO EN BLOQUES ALEATORIZADOS En muchos experimentos además de que interesa investigar la influencia de un factor controlado sobre la variable de respuesta, como en la sección anterior, existe una

Más detalles

Computación Evolutiva: Técnicas de Selección

Computación Evolutiva: Técnicas de Selección Computación Evolutiva: Técnicas de Selección Dr. Gregorio Toscano Pulido Laboratorio de Tecnologías de Información Centro de Investigación y de Estudios Avanzados del IPN Cinvestav-Tamaulipas Dr. Gregorio

Más detalles

Manual para la Medición del Nivel de Satisfacción del Usuario de Telefonía Móvil

Manual para la Medición del Nivel de Satisfacción del Usuario de Telefonía Móvil MANUAL PARA LA MEDIICIIÓN DEL NIIVEL DE SATIISFACCIIÓN DEL USUARIIO [NSU] DE TELEFONÍÍA MÓVIIL - Guíía dell Usuariio - Bogottá,, Diiciiembre de 2007 1 CONTENIDO 1. INTRODUCCIÓN 2. OBJETIVO GENERAL 3. EL

Más detalles

Análisis de dominancia usando ruby-statsample. Introducción. Instalación de Ruby y gemas. Windows

Análisis de dominancia usando ruby-statsample. Introducción. Instalación de Ruby y gemas. Windows Análisis de dominancia usando ruby-statsample Introducción El análisis de dominancia(azen y Bodescu, 2003), es un método para determinar la importancia relativa de uno o más predictores en comparación

Más detalles

Criptografía y Seguridad Computacional 2016-01. Clase 5: 30/03/2016. Tenemos el siguiente esquema donde se manda un mensaje con tag t de verificación:

Criptografía y Seguridad Computacional 2016-01. Clase 5: 30/03/2016. Tenemos el siguiente esquema donde se manda un mensaje con tag t de verificación: Criptografía y Seguridad Computacional 2016-01 Clase 5: 30/03/2016 Profesor: Fernando Krell Notas: Diego Peña 1. Seguridad en Verificación Tenemos el siguiente esquema donde se manda un mensaje con tag

Más detalles

El programa que permite el manejo de la base de datos tiene la siguiente funcionalidad:

El programa que permite el manejo de la base de datos tiene la siguiente funcionalidad: El TAD Diccionario Cuando se usa un conjunto en el diseño de un algoritmo podría no ser necesario contar con operaciones de unión o intersección. A menudo lo que se necesita es simplemente manipular un

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

ELO320 Estructuras de Datos y Algoritmos. Arboles Binarios. Tomás Arredondo Vidal

ELO320 Estructuras de Datos y Algoritmos. Arboles Binarios. Tomás Arredondo Vidal ELO320 Estructuras de Datos y Algoritmos Arboles Binarios Tomás Arredondo Vidal Este material está basado en: Robert Sedgewick, "Algorithms in C", (third edition), Addison-Wesley, 2001 Thomas Cormen et

Más detalles

Arreglos. // Incluir E/S y Librerías Standard #include #include

Arreglos. // Incluir E/S y Librerías Standard #include <stdlib.h> #include <stdio.h> Arreglos Introducción. En los temas anteriores se han estudiado los diferentes tipos de datos simples de C++, usados para representar valores simples como enteros, reales o caracteres. Sin embargo, en

Más detalles

Trabajo No 2. Análisis Supervivencia y Seguros de Vida

Trabajo No 2. Análisis Supervivencia y Seguros de Vida Trabajo No 2. Análisis Supervivencia y Seguros de Vida Norman Giraldo Gómez Curso de Actuaría - Escuela de Estadística ndgirald@unal.edu.co Octubre, 2010 1. Notas 1. La notación (xm) indica mujer de edad

Más detalles

Algoritmos de Búsqueda y Ordenación. Rosalía Laza Fidalgo. Departamento de Informática. Universidad de Vigo

Algoritmos de Búsqueda y Ordenación. Rosalía Laza Fidalgo. Departamento de Informática. Universidad de Vigo Algoritmos de Búsqueda y Ordenación. Rosalía Laza Fidalgo. Departamento de Informática. Universidad de Vigo Complejidad Cómo podemos medir y comparar algoritmos, si estos se ejecutan a distintas velocidades

Más detalles

Aprendizaje Basado en Similaridades (SBL) Árboles de Decisión (TDIDT) (INAOE) 1 / 65. Algoritmo ID3 Cómo le hace

Aprendizaje Basado en Similaridades (SBL) Árboles de Decisión (TDIDT) (INAOE) 1 / 65. Algoritmo ID3 Cómo le hace INAOE (INAOE) 1 / 65 Contenido 1 2 (INAOE) 2 / 65 SBL Atributos Peludo? Edad? Tamaño? Clase si viejo grande león no joven grande no león si joven mediano león si viejo pequeño no león si joven pequeño

Más detalles

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA

PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Problema 1 PROBLEMAS DE PROBABILIDADES Y ESTADÍSTICA Hoja 2 Una población de 20 animales insectívoros se introduce en una zona donde el 14% de los insectos que le sirven de alimento son venenosos. Cada

Más detalles

Generación de valores de las variables aleatorias

Generación de valores de las variables aleatorias Generación de valores de las variables aleatorias Juan F. Olivares-Pacheco * 14 de junio de 007 Resumen En todo modelo de simulación estocástico, existen una o varias variables aleatorias interactuando.

Más detalles

Algoritmos de cifrado Definir el problema con este tipo de cifrado

Algoritmos de cifrado Definir el problema con este tipo de cifrado Criptografía Temario Criptografía de llave secreta (simétrica) Algoritmos de cifrado Definir el problema con este tipo de cifrado Criptografía de llave pública (asimétrica) Algoritmos de cifrado Definir

Más detalles

Qué es la Estadística?

Qué es la Estadística? EYP2214 Estadística para Construcción Civil 1 Qué es la Estadística? La Estadística es una ciencia que proporciona un conjunto de métodos que se utilizan para recolectar, resumir, clasificar, analizar

Más detalles

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (General Modelo 4) Soluciones Germán-Jesús Rubio Luna SELECTIVIDAD ANDALUCÍA MATEMÁTICAS CCSS JUNIO 01 MODELO 4 (COMÚN) OPCIÓN A EJERCICIO 1 (A) Sea el recinto determinado

Más detalles

Resolver triángulos en Visual Basic. Parte 3/3

Resolver triángulos en Visual Basic. Parte 3/3 Artículo Revista digital Matemática, Educación e Internet (www.cidse.itcr.ac.cr/revistamate/). Vol. 3, N o 1. Agosto Diciembre 2002. Resolver triángulos en Visual Basic. Parte 3/3 Introducción Luis Acuña

Más detalles

Unidad II: Números pseudoaleatorios

Unidad II: Números pseudoaleatorios Unidad II: Números pseudoaleatorios 2.1 Métodos de generación de números Pseudoaleatorio Métodos mecánicos La generación de números aleatorios de forma totalmente aleatoria, es muy sencilla con alguno

Más detalles

2.1. BUCLES E ITERACIONES. 2. A continuación responde a las siguientes preguntas sobre contextos: Cuál es el contexto actual?

2.1. BUCLES E ITERACIONES. 2. A continuación responde a las siguientes preguntas sobre contextos: Cuál es el contexto actual? Cálculo avanzado con Mathematica.nb 7 2. A continuación responde a las siguientes preguntas sobre contextos: Cuál es el contexto actual? Qué contextos son conocidos por el programa en este momento? Cuál

Más detalles

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO

MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO MICROECONOMÍA II PRÁCTICA TEMA III: MONOPOLIO EJERCICIO 1 Primero analizamos el equilibrio bajo el monopolio. El monopolista escoge la cantidad que maximiza sus beneficios; en particular, escoge la cantidad

Más detalles

Simulación Monte Carlo

Simulación Monte Carlo Simulación Monte Carlo Modelado estocástico Cuando se realiza un análisis estático a un proyecto, una serie de supuestos y variables producen un resultado de valor único. Mientras que un análisis estocástico

Más detalles

Sea T R y (Ω, F, P ) un espacio de probabilidad. Un proceso aleatorio es una función

Sea T R y (Ω, F, P ) un espacio de probabilidad. Un proceso aleatorio es una función Capítulo 2 Cadenas de Markov 21 Introducción Sea T R y (Ω, F, P ) un espacio de probabilidad Un proceso aleatorio es una función X : T Ω R tal que para cada t T, X(t, ) es una variable aleatoria Si fijamos

Más detalles

R-IV. Números Aleatorios. Método de Monte- Carlo. Números Aleatorios. Números Aleatorios 8 -

R-IV. Números Aleatorios. Método de Monte- Carlo. Números Aleatorios. Números Aleatorios 8 - R-IV Método de Monte- Carlo Elemento Central en la Simulación digital. Definición formal controvertida. Elemento esencial en muchas áreas del conocimiento Ingeniería, Economía, Física, Estadística, etc.

Más detalles

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad

Métodos Estadísticos 2.3. Distribuciones discretas de probabilidad 2.3. DISTRIBUCIONES DISCRETAS DE PROBABILIDAD Parámetros de un problema Saber: Explicar el concepto de variable discreta. Explicar los conceptos y métodos de la distribución binomial, hipergeométrica,

Más detalles

Notas de Probabilidades

Notas de Probabilidades 1 Introducción Notas de Probabilidades En la vida cotidiana nos encontramos con frecuencia con situaciones que producen varios resultados conocidos, sin poder determinar con exactitud cual de ellos ocurrirá.

Más detalles

Problemas y Algoritmos. Por Luis E. Vargas Azcona Algunas imagenes por Roberto López

Problemas y Algoritmos. Por Luis E. Vargas Azcona Algunas imagenes por Roberto López Problemas y Algoritmos 3 8 4 7 6 2 9 1 5 9 7 7 7 9 6 6 Por Luis E. Vargas Azcona Algunas imagenes por Roberto López 2 Acuerdo de Licencia Esta obra está bajo una licencia Atribución-No comercial-licenciamiento

Más detalles

Arboles Binarios de Búsqueda

Arboles Binarios de Búsqueda Arboles Binarios de Búsqueda Algoritmos y Estructuras de Datos Departamento de Electricidad y Electrónica (UPV/EHU) Arboles Binarios de Búsqueda p.1/52 Arboles Binarios Arbol binario: árbol ordenado de

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

TUTORIAL SOBRE EXPRESIONES REGULARES EN JAVASCRIPT PARA VALIDACIÓN DE CAMPOS EN FORMULARIOS HTML:

TUTORIAL SOBRE EXPRESIONES REGULARES EN JAVASCRIPT PARA VALIDACIÓN DE CAMPOS EN FORMULARIOS HTML: TUTORIAL SOBRE EXPRESIONES REGULARES EN JAVASCRIPT PARA VALIDACIÓN DE CAMPOS EN FORMULARIOS HTML Página 1 de 6 TUTORIAL SOBRE EXPRESIONES REGULARES EN JAVASCRIPT PARA VALIDACIÓN DE CAMPOS EN FORMULARIOS

Más detalles

Árboles binarios de búsqueda ( BST )

Árboles binarios de búsqueda ( BST ) Árboles binarios de búsqueda ( BST ) mat-151 Alonso Ramírez Manzanares Computación y Algoritmos 24.04.2015 Arbol Binario de Búsqueda Un árbol binario de búsqueda (Binary Search Tree [BST]) es un árbol

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Clase 5: Variables Aleatorias y Distribuciones de Probabilidad Variables Aleatorias Una variable aleatoria es una función que asocia un número real con cada elemento del EM. Ejemplo 1: El EM que da una

Más detalles

Análisis de la Varianza de un Factor

Análisis de la Varianza de un Factor Práctica de Estadística con Statgraphics Análisis de la Varianza de un Factor Fundamentos teóricos El Análisis de la Varianza con un Factor es una técnica estadística de contraste de hipótesis, cuyo propósito

Más detalles

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial.

Academia de Matemáticas. Apuntes para la Materia de Estadística II. Guía Básica para el Estudio de la Estadística Inferencial. UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO Facultad de Contaduría y Ciencias Administrativas Academia de Matemáticas Apuntes para la Materia de Estadística II Guía Básica para el Estudio de la Estadística

Más detalles

Ciudad de Guatemala, 2013

Ciudad de Guatemala, 2013 Ciudad de Guatemala, 2013 1 Clase 5 Muestreo y tamaño de muestra D i e g o A y c i n e n a diegoaa@ufm.edu Universidad Francisco Marroquín 2 Clases (Profesores) H o r a r i o Actividades en Grupo (Todos)

Más detalles

Problemas resueltos del Tema 3.

Problemas resueltos del Tema 3. Terma 3. Distribuciones. 9 Problemas resueltos del Tema 3. 3.1- Si un estudiante responde al azar a un examen de 8 preguntas de verdadero o falso Cual es la probabilidad de que acierte 4? Cual es la probabilidad

Más detalles

Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte. ---o0o--- Introducción a la Inferencia Estadística

Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte. ---o0o--- Introducción a la Inferencia Estadística Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte ---o0o--- Introducción a la Inferencia Estadística Bioestadística - Facultad de Medicina Universidad de Granada (España) http://www.ugr.es/~bioest

Más detalles

El campo de la Estadística no Paramétrica ha incrementado su atractivo en los últimos años, con las nuevas herramientas

El campo de la Estadística no Paramétrica ha incrementado su atractivo en los últimos años, con las nuevas herramientas DISTRIBUCIÓN DEL INDICE DE ACUERDOS EN DIAGNÓSTICOS A, VIA BOOTSTRAP Elizabeth Torres Rivas Universidad de Los Andes Instituto de Estadística Aplicada y Computación Resumen. Los análisis de diagnósticos

Más detalles

Primer Parcial de Programación 3 (1/10/2009)

Primer Parcial de Programación 3 (1/10/2009) Primer Parcial de Programación (/0/009) Instituto de Computación, Facultad de Ingeniería Este parcial dura horas y contiene carillas. El total de puntos es 0. En los enunciados llamamos C* a la extensión

Más detalles

Algoritmos sobre secuencias y conjuntos de datos

Algoritmos sobre secuencias y conjuntos de datos Suma de la Subsecuencia Máxima Dept. de Computación, Universidade da Coruña alberto.valderruten@udc.es Índice Suma de la Subsecuencia Máxima 1 Suma de la Subsecuencia Máxima 2 Suma de la Subsecuencia Máxima

Más detalles

Integrales paramétricas e integrales dobles y triples.

Integrales paramétricas e integrales dobles y triples. Integrales paramétricas e integrales dobles y triples. Eleonora Catsigeras * 19 de julio de 2006 PRÓLOGO: Notas para el curso de Cálculo II de la Facultad de Ingeniería. Este texto es complementario al

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-lic.html elena.martinez@iimas.unam.mx

Más detalles

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo CÁLCULO ALGEBRAICO Dra. Patricia Kisbye Dr. David Merlo INTRODUCCIÓN Estas notas han sido elaboradas con el fin de ofrecer al ingresante a las carreras de la FaMAF herramientas elementales del cálculo

Más detalles

CAPÍTULO I MATEMÁTICAS

CAPÍTULO I MATEMÁTICAS CAPÍTULO I MATEMÁTICAS 1. CONJUNTOS En el lenguaje común, conjunto es, hasta cierto punto, sinónimo de colección, clase o grupo. Sin embargo, en el desarrollo de este estudio, veremos que la noción matemática

Más detalles