Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular:"

Transcripción

1 Universidad Rey Juan Carlos Grado en Ingeniería de Computadores Máquinas Secuenciales, Autómatas y Lenguajes Hoja de Problemas: Propiedades Lenguajes Regulares Nivel del ejercicio : ( ) básico, ( ) medio, ( ) avanzado. 1. ( ) Prueba que el lenguaje de los palíndromos sobre un alfabeto finito con al menos dos elementos no es regular. Sea Σ un alfabeto y L el lenguaje de los palíndromos sobre Σ. Sean a, b dos elementos de Σ. Se demuestra por reducción al absurdo que L no es regular: 1. Supongamos que L es regular. 2. Elegimos n como constante del Lema de Bombeo. 3. Sea x = a n ba n una palabra. Obviamente x pertenece a L y x > n, por tanto, siguiendo el Lema de Bombeo, si L fuese regular, x debería poder componerse de la forma x = u.v.w verificando:. a) u.v n b) v > 0 c) u.v i.w L para todo i Determinamos todas las posibles descomposiciones de x en u.v.w que cumplan las condiciones a) y b). Dado que las primeras n letras de x son a s, para cumplir a), tanto u como v sólo pueden tener letras a. Además, para cumplir la condición b), v tiene que tener por lo menos una a. Resumiendo, podemos especificar las posibles descomposiones de x que cumplan a) y b) de la sigfuiente forma: x = u.v.w = a s.a k.a t ba n (el operador. marca los 3 componentes u, v, y w). Además, se cumple s 0, k 1, t 0 y s + t + k = n. Se puede observar que no hay otra forma de descomponer x en las tres partes, cumpliendo las condiciones a) y b). 5. Podemos demostrar que ninguna de las descomposiciones encontradas en el punto 4 cumple la condición c). Para ello es suficiente encontrar para cada descomposición un número entero i 0 tal que u.v i.w no pertenece a L. En nuestro caso podemos usar i = 2. Para i = 2, se cumple u.v i.w = u.v 2.w = a s.a k.a k.a t ba n. Por s + t + k = n se cumple u.v 2.w = a n+k ba n. Teniendo en cuenta que k 1 (condición que Página 1 de 6

2 hemos establecido antes), observamos que la palabra a n+k ba n no pertenece al lenguaje (pues no es un palíndromo). Por tanto, la palabra x no se puede componer como indica el lema. Eso lleva a una contradicción que indica que nustra supoción inicial: L es regular no es correcta. Y concluimos que L no puede ser regular. 2. ( ) Demuestra o refuta la siguiente afirmación: Todo lenguaje que sea un subconjunto de un lenguaje regular es regular. El lengujae universal sobre un alfabeto es un lenguaje regular, ya que existe un autómata finito que lo acepta (de echo, este autómata sólo requiere un único estado). Por otro lado, hemos demostrado que existen lenguajes que no son regulares (por ejemplo en el ejercicio anterior), dado que qualquier lenguaje es, por definición, un subconjunto del lenguaje universal correspondiente, vemos que la afirmación no es correcta. 3. Sea Σ = {a, b, c} un lenguaje finito. Para cada una de las siguientes definiciones del lenguaje L Σ, demuestra que L no es regular: NOTA: La forma de resolver estos ejercicios es múy similar a lo que se ha especificado en el ejercicio 1. Por ello, sólo se comentan algunos detalles específicos de las soluciones. (a) ( ) L = {a n b n n 1}. Vale elegir la palabra a n b n, donde n es la constante del lema. Al dividir x en u.v.w, v sólo contiene a s. Al bombear v (por ejemplo con i = 2), la palabra que se obtiene tiene más a s que b s, por lo que no pertenece a L. (b) ( ) L = {a n b 2n n 1}. Se puede elegir la palabra a n b 2n. De nuevo, v sólo contiene a s. Al bombear v para i=2, la pabra que se obtiene contiene más a s que b s. (c) ( ) L = {a n b m 0 < n m}. Se puede elegir la palabra a n b n. De nuevo, v sólo contiene a s. Al bombear v para i=2, la pabra que se obtiene contiene más a s que b s. (d) ( ) L = {a n b m n m = 2}. Página 2 de 6

3 Se puede elegir la palabra a n b n +2. Entonces, v sólo contiene a s. Al bombear v hacia abajo (para i=0), la pabra que se obtiene contiene menos que n a s, pero mantiene las n + 2 b s. Por tanto no se cumple que la diferencia entre el número de a s y el número de b s es 2. (e) ( ) L = {a n b m c m m, n 1}. Se puede elegir la palabra x = ab n c n. En este caso, existen varios patrones de descomposición que cumplen las condiciones a) y b) del lema. Analizamos todos los caso posibles y demostramos que ninguno cumple la condición c): u.v.w = λ.a.b n c n : en este caso podemos comprobar que u.v i.w para i = 0 es λ.b n c n = b n c n que no pertenece a L. u.v.w = λ.ab k.b s c n con k +s = n: en este caso podemos comprobar que u.v i.w para i = 0 es λ.b s c n = b s c n que no pertenece a L. u.v.w = ab t.b k.b s c n con k + s + t = n y k > 0: en este caso podemos comprobar que u.v i.w para i = 2 es ab t.b k.b k.b s c n = ab n+k c n que no pertenece a L, ya que k > 0. (f) ( ) L = {a n b m a m+n m, n 1}. (g) ( ) L = {a n b m n, m 0 y n m}. (h) ( ) L = {a n b m a l m, n, l 1 y l m + n}. (i) ( ) L = {w Σ n a (w) = n b (w)}. Supongamos por reducción al absurdo que L es regular. Sea N N la constante del Lema de Bombeo. Sea x = a N b N L una palabra del lenguaje. Además, su longitud verifica x = 2N > N. Por tanto, podemos aplicar el Lema de Bombeo a esta palabra. Aplicándolo, existen tres palabras u, v, w {a, b, c} verificando: Página 3 de 6

4 uv N v > 0 x = uvw uv i w L para todo i 0. Por la forma que tiene x, y usando la propiedad primera y segunda, tenemos que necesariamente u = a j, v = a k, para j 0, k 1, j + k N. Por tanto, w = a N j k b N. Finalmente, aplicando la última propiedad para i = 0 se tendría que uv 0 w L, pero uv 0 w = uw = a j a N j k b N = a N k b N L Esta palabra a N k b N no está en L pues N k N ya que k 1. Por lo tanto, hemos llegado a una contradicción, por lo que se sigue que L no es regular. (j) ( ) L = {w Σ n a (w) < n b (w)}. Podemos considerar la palabra x = a n b n+1. (k) ( ) L = {w Σ n a (w) n b (w)}. Supongamos por reducción al absurdo que L es regular. Entonces su complementario: L c = { } w {a, b, c} n a (w) = n b (w) también debe ser regular. Contradicción. Como hemos demostrado anteriormente (apartado:i), L c no es regular, y por tanto L tampoco lo es. (l) ( ) L = {a n2 n 1}. (m) ( ) L = {a n! n 3}. Página 4 de 6

5 (n) ( ) L = {w 1 cw 2 w 1, w 2 Σ y w 1 = w 2 }. (ñ) ( ) L = {ww w Σ }. (o) ( ) L donde L es el lenguaje del apartado anterior. Por reducción al absurdo podemos demostrar que L no es regular: Suponemos que L es regular. Entonces,. a plicando el teorema que dice que el complemento de un lenguaje regular es regular, L debería ser regular. Pero L = L y ya hemos demostrado en el ejercicio anterior que L no es regular. Por tanto, llegamos a una contradicción que indica que la suposición L es regular. es erronea. Por tanto, L no es regular. 4. ( ) Sea Σ = {., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9} y sea L π Σ el lenguaje de las cadenas que son las truncaciones de la expansión decimal de π. Esto es, Demuestra que L π no es regular. L π = {λ, 3, 3., 3,1, 3,14, 3,141, 3,1415, 3,14159,...}. Esta demostración es más argumental. 5. ( ) Sea Σ = {a, b} un alfabeto finito, y sea L Σ el lenguaje definido por la siguiente igualdad: Es L regular? L = {xwx Σ x, w Σ, x = 2}. Sí lo es. Intenta construir el autómata. 6. ( ) Sea Σ = {0, 1} un alfabeto finito, y sea L Σ el lenguaje definido por la siguiente igualdad: L = {xwx 1 x, w {0, 1} + }. Es L un lenguaje regular? Página 5 de 6

6 Este lenguaje sí es regular. Uno podría argumentar que, por ejemplo con la palabra x = 1 n 01 n no cumple las condiciones del lema de bombeo, porque al bombear 1 s al principio (y no al final), la palabra no pertenece al lenguaje. Por ejemplo para i=2, se obtendría una palabra 1 n+k 01 n con k > 0 y esta palabra no pertenece a L. Analizando bien el lenguaje, esta palabra sí pertenece a L: podemos entender que x = 1 y w = 1 n+k 1 01 n 1 y es obvio que xwx 1 pertenece a L. En realidad, el lenguaje contiene cualquier palabra sobre 0, 1 que empieza y termina en la misma letra. Se puede crear un autómata para este lenguaje. Página 6 de 6

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares

Lenguaje Regular. Sumario. Lenguaje Regular. Autómatas y Lenguajes Formales. Capítulo 8: Propiedades de los Lenguajes Regulares Lenguaje Regular Capítulo 8: Propiedades de los Lenguajes Regulares José Miguel Buenaposada Josemiguel.buenaposada@urjc.es Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si

Más detalles

Propiedades de lenguajes independientes del contexto

Propiedades de lenguajes independientes del contexto Capítulo 12. Propiedades de lenguajes independientes del contexto 12.1. Identificación de lenguajes independientes del contexto Lema de bombeo. 12.2. Propiedades Cierre, Complemento de lenguajes, Sustitución,

Más detalles

El lema de bombeo para lenguajes regulares

El lema de bombeo para lenguajes regulares El lema de bombeo para lenguajes regulares Lenguajes, Gramáticas y Autómatas, cuarto cuatrimestre (primavera) de Ingeniería en Informática http://webdiis.unizar.es/asignaturas/lga Rubén Béjar Hernández,

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 5: Propiedades de los Lenguajes Regulares Luis Peña Lenguaje Regular Definición 1 (Lenguaje Regular) Un lenguaje L se denomina regular si y sólo si existe

Más detalles

El lema de bombeo y los lenguajes no regulares

El lema de bombeo y los lenguajes no regulares El lema de bombeo y los lenguajes no regulares Elvira Mayordomo Universidad de Zaragoza 22 de octubre de 202 Contenido de este tema Son todos los lenguajes regulares? El lema de bombeo Cómo aplicar el

Más detalles

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002

Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto Segundo Cuatrimestre de 2002 Departamento de Cs. e Ingeniería de la Computación Universidad Nacional del Sur Ejercicios Fundamentos de Ciencias de la Computación Trabajo Práctico N 2 Lenguajes Libres del Contexto y Sensibles al Contexto

Más detalles

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003

Interrogación 2. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003 Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Interrogación 2 IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Esta interrogación

Más detalles

1. Cadenas EJERCICIO 1

1. Cadenas EJERCICIO 1 LENGUAJES FORMALES Y AUTÓMATAS CURSO 2006/2007 - BOLETÍN DE EJERCICIOS Víctor J. Díaz Madrigal y José Miguel Cañete Departamento de Lenguajes y Sistemas Informáticos 1. Cadenas La operación reversa aplicada

Más detalles

Otras propiedades de los lenguajes regulares

Otras propiedades de los lenguajes regulares Capítulo 3 Otras propiedades de los lenguajes regulares En los dos capítulos anteriores hemos presentado las propiedades básicas de los lenguajes regulares pero no hemos visto cómo se puede demostrar que

Más detalles

Aplicaciones de las derivadas. El teorema del valor medio

Aplicaciones de las derivadas. El teorema del valor medio Aplicaciones de las derivadas. El teorema del valor medio Ya hemos hablado en un par de artículos anteriores del concepto de derivada y de su interpretación tanto desde el punto de vista geométrico como

Más detalles

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como

Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como Universidad de la República Facultad de Ingeniería IMERL Sucesiones Curso Cálculo 1 2008 Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como a 1, a

Más detalles

Terminaremos el capítulo con una breve referencia a la teoría de cardinales.

Terminaremos el capítulo con una breve referencia a la teoría de cardinales. TEMA 5. CARDINALES 241 Tema 5. Cardinales Terminaremos el capítulo con una breve referencia a la teoría de cardinales. Definición A.5.1. Diremos que el conjunto X tiene el mismo cardinal que el conjunto

Más detalles

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,

Más detalles

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I

Tema 4: Gramáticas independientes del contexto. Teoría de autómatas y lenguajes formales I Tema 4: Gramáticas independientes del contexto Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación.

Más detalles

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos

TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso Universidad Rey Juan Carlos TEORÍA DE AUTÓMATAS Y LENGUAJES FORMALES Grado en Ingeniería Informática Online, Curso 202-203 Universidad Rey Juan Carlos GUÍA PARA LA REALIZACIÓN DE LA HOJA DE PROBLEMAS No 3 (Tema 3: Expresiones Regulares)

Más detalles

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003.

Examen. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación. Segundo Semestre, 2003. Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación Examen IIC 2222 Teoría de Autómatas y Lenguajes Formales Segundo Semestre, 2003 Este examen tiene

Más detalles

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle

CONJUNTOS REGULARES. Orlando Arboleda Molina. 19 de Octubre de Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle CONJUNTOS REGULARES Orlando Arboleda Molina Escuela de Ingeniería de Sistemas y Computación de La Universidad del Valle 19 de Octubre de 2008 Contenido Expresiones regulares Teorema de Kleene Autómatas

Más detalles

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular.

MODELOS DE COMPUTACION I Preguntas Tipo Test. 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. MODELOS DE COMPUTACION I Preguntas Tipo Test Indicar si son verdaderas o falsas las siguientes afirmaciones: 1. El lema de bombeo puede usarse para demostrar que un lenguaje determinado es regular. 2.

Más detalles

Conjuntos finitos y conjuntos numerables

Conjuntos finitos y conjuntos numerables Tema 3 Conjuntos finitos y conjuntos numerables En este tema vamos a usar los números naturales para contar los elementos de un conjunto, o dicho con mayor precisión, para definir los conjuntos finitos

Más detalles

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades

Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Teoría de la Computación Lenguajes Regulares (LR) - Propiedades Prof. Hilda Y. Contreras Departamento de Computación hyelitza@ula.ve http://webdelprofesor.ula.ve/ingenieria/hyelitza Objetivo Lenguajes

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 42 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 42 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Autómatas de Pila y Lenguajes Incontextuales

Autómatas de Pila y Lenguajes Incontextuales Autómatas de Pila y Lenguajes Incontextuales Elvira Mayordomo Universidad de Zaragoza 5 de noviembre de 2012 Contenido de este tema 1. Introducción a los autómatas de pila 2. Definiciones 3. Equivalencia

Más detalles

Cuatro Problemas de Algebra en la IMO.

Cuatro Problemas de Algebra en la IMO. Cuatro Problemas de Algebra en la IMO. Rafael Sánchez Lamoneda UCV. Escuela de Matemáticas Barquisimeto, 10 de Marzo de 2008 Introducción. El objetivo de esta conferencia es analizar cuatro problemas de

Más detalles

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática

Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS. Números naturales. Inducción matemática Inducción en definiciones y demostraciones AUTÓMATAS Y LENGUAJES FORMALES PRELIMINARES MATEMÁTICOS Francisco Hernández Quiroz Departamento de Matemáticas Facultad de Ciencias, UNAM E-mail: fhq@ciencias.unam.mx

Más detalles

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I

Tema 3: Gramáticas regulares. Teoría de autómatas y lenguajes formales I Tema 3: Gramáticas regulares Teoría de autómatas y lenguajes formales I Bibliografía Hopcroft, J. E., Motwani, R., y Ullman, J. D. Introducción a la Teoría de Autómatas, Lenguajes y Computación. Addison

Más detalles

Teoremas de Convergencia

Teoremas de Convergencia Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y

Más detalles

Semana03[1/17] Funciones. 16 de marzo de Funciones

Semana03[1/17] Funciones. 16 de marzo de Funciones Semana03[1/17] 16 de marzo de 2007 Introducción Semana03[2/17] Ya que conocemos el producto cartesiano A B entre dos conjuntos A y B, podemos definir entre ellos algún tipo de correspondencia. Es decir,

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

1. Introducción. Fundación Uno. Ejercicio Reto. ENCUENTRO # 33 TEMA: Exponenciales y Logaritmos CONTENIDOS: 1. Ecuaciones Exponenciales.

1. Introducción. Fundación Uno. Ejercicio Reto. ENCUENTRO # 33 TEMA: Exponenciales y Logaritmos CONTENIDOS: 1. Ecuaciones Exponenciales. ENCUENTRO # 33 TEMA: Exponenciales y Logaritmos CONTENIDOS: 1. Ecuaciones Exponenciales. (a) Leyes de los Exponentes (b) Como resolver ecuaciones exponenciales Ejercicio Reto 1. Si a y b las soluciones

Más detalles

Semana05[1/14] Relaciones. 28 de marzo de Relaciones

Semana05[1/14] Relaciones. 28 de marzo de Relaciones Semana05[1/14] 28 de marzo de 2007 Introducción Semana05[2/14] Ya en los capítulos anteriores nos acercamos al concepto de relación. Relación Dados un par de conjuntos no vacíos A y B, llamaremos relación

Más detalles

2. El Teorema del Valor Medio

2. El Teorema del Valor Medio 2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una

Más detalles

Cuadrados mágicos y matrices de permutación

Cuadrados mágicos y matrices de permutación Cuadrados mágicos y matrices de permutación Alexey Beshenov (cadadr@gmail.com) 13 de agosto de 016 Estos son mis apuntes para una pequeña presentación para los alumnos del Programa Jóvenes Talento de la

Más detalles

Lenguajes No Regulares

Lenguajes No Regulares Lenguajes No Regulares Problemas que los Autómatas No Resuelven. Universidad de Cantabria Esquema Lema del Bombeo 1 Lema del Bombeo 2 3 Introducción Todos los lenguajes no son regulares, simplemente hay

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones

Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará

Más detalles

Seminario de problemas-bachillerato. Curso Hoja 6

Seminario de problemas-bachillerato. Curso Hoja 6 Seminario de problemas-bachillerato. Curso 2012-13. Hoja 6 37. Dada una cuerda AB de una circunferencia de radio 1 y centro O, se considera la circunferencia γ de diámetro AB. Sea P es el punto de γ más

Más detalles

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que

Es claro que es una relación de equivalencia. Para ver que tener la misma cardinalidad y la cardinalidad están bien definidas queremos ver que Capítulo II Cardinalidad Finita II.1. Cardinalidad Definimos I n para n N como I n = {k N : 1 k n}. En particular I 0 =, puesto que 0 < 1. Esto es equivalente a la definición recursiva { si n = 0 I n =

Más detalles

Introducción. El uso de los símbolos en matemáticas.

Introducción. El uso de los símbolos en matemáticas. Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

Computabilidad y lenguajes formales: Sesión 18. Lema de bombeo (Pumping lemma)

Computabilidad y lenguajes formales: Sesión 18. Lema de bombeo (Pumping lemma) Computabilidad y lenguajes formales: Sesión 18. Lema de bombeo (Pumping lemma) Prof. Gloria Inés Alvarez V. Departamento de Ciencias e Ingeniería de la Computación Pontificia Universidad Javeriana Cali

Más detalles

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45

Máquinas de Turing IIC3242. IIC3242 Máquinas de Turing 1 / 45 Máquinas de Turing IIC3242 IIC3242 Máquinas de Turing 1 / 45 Complejidad Computacional Objetivo: Medir la complejidad computacional de un problema. Vale decir: Medir la cantidad de recursos computacionales

Más detalles

Clases de complejidad computacional: P y NP

Clases de complejidad computacional: P y NP 1er cuatrimestre 2006 La teoría de Se aplica a problemas de decisión, o sea problemas que tienen como respuesta SI o NO (aunque es sencillo ver que sus implicancias pueden extenderse a problemas de optimización).

Más detalles

Funciones de Clase C 1

Funciones de Clase C 1 Capítulo 7 Funciones de Clase C 1 Vamos a considerar ahora la extensión a varias variables del concepto de función de clase C 1. Cada vez que establezcamos una propiedad de las funciones diferenciables,

Más detalles

(TALF- ITIS- C) Clase 3 5 de Octubre de 2010

(TALF- ITIS- C) Clase 3 5 de Octubre de 2010 (TALF- ITIS- C) Clase 3 5 de Octubre de 2010 Ac=vidades de par=cipación de alumnos 2 Alumnos : Blog de la Asignatura: hip://talf.blogspot.es/ 1 Alumno: BiograMa relacionada con la asignatura ACTIVIDADES

Más detalles

INDUCCIÓN. Inducción - 2

INDUCCIÓN. Inducción - 2 INDUCCIÓN Inducción - 1 Inducción - Plan Conjuntos Inductivos Inducción como mecanismo primitivo para definir conjuntos Pruebas Inductivas Principios de inducción asociados a los conjuntos inductivos como

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

4 Conjunto de los números reales

4 Conjunto de los números reales Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #4: viernes, 3 de junio de 2016. 4 Conjunto de los números reales 4.1

Más detalles

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.

Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos. Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre

Más detalles

Continuidad 2º Bachillerato. materiales Editorial SM

Continuidad 2º Bachillerato. materiales Editorial SM Continuidad 2º Bachillerato materiales Editorial SM Continuidad en un punto: primera aproximación Estatura medida cada 5 años: hay grandes saltos entre cada punto y el siguiente. Estatura medida cada año:

Más detalles

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas LAS MATEMÁTICAS Y SU LENGUAJE Entender, demostrar y resolver matemáticas El trabajo matemático Utilización de un lenguaje peculiar de significados precisos. Cuidado! A veces similar al cotidiano pero con

Más detalles

Teorema del Valor Medio

Teorema del Valor Medio Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph

Más detalles

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte

Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Capítulo 2: Inducción y recursión Clase 2: El principio de Inducción Fuerte Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 2: Inducción y Recursión 1 / 20 Motivación

Más detalles

Sucesiones monótonas Monotonía. Tema 6

Sucesiones monótonas Monotonía. Tema 6 Tema 6 Sucesiones monótonas Vamos a discutir ahora una importante propiedad de ciertas sucesiones de números reales: la monotonía. Como primer resultado básico, probaremos que toda sucesión monótona y

Más detalles

El ejercicio de la demostración en matemáticas

El ejercicio de la demostración en matemáticas El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa(hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo

Más detalles

Propiedades de números enteros (lista de problemas para examen)

Propiedades de números enteros (lista de problemas para examen) Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto

Más detalles

Expresiones Regulares

Expresiones Regulares Conjuntos Regulares y Una forma diferente de expresar un lenguaje Universidad de Cantabria Conjuntos Regulares y Esquema 1 Motivación 2 Conjuntos Regulares y 3 4 Conjuntos Regulares y Motivación El problema

Más detalles

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes

Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes FUNCIONES DE VARIABLE COMPLEJA 1 Teoremas: Condiciones Necesarias, Condiciones Suficientes y Condiciones Necesarias y Suficientes Lógica Matemática Una prioridad que tiene la enseñanza de la matemática

Más detalles

Funciones de Variable Real

Funciones de Variable Real Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales

Más detalles

TEMA 1.- PROBABILIDAD.- CURSO

TEMA 1.- PROBABILIDAD.- CURSO TEMA 1.- PROBABILIDAD.- CURSO 2016-2017 1.1.- Introducción. Definición axiomática de probabilidad. Consecuencias de los axiomas. 1.2.- Probabilidad condicionada. 1.3.- Independencia de sucesos. 1.4.- Teoremas

Más detalles

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción

Índice Proposiciones y Conectores Lógicos Tablas de Verdad Lógica de Predicados Inducción Curso 0: Matemáticas y sus Aplicaciones Tema 5. Lógica y Formalismo Matemático Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Proposiciones y Conectores Lógicos 2 Tablas de Verdad

Más detalles

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS.

ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO I LOGICA Y CONJUNTOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas Universidad de Concepción 1 La lógica es

Más detalles

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña

Máquinas Secuenciales, Autómatas y Lenguajes. Tema 4: Expresiones Regulares. Luis Peña Máquinas Secuenciales, Autómatas y Lenguajes Tema 4: Expresiones Regulares Luis Peña Sumario Tema 4: Expresiones Regulares. 1. Concepto de Expresión Regular 2. Teoremas de Equivalencia Curso 2012-2013

Más detalles

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V.

Las variedades lineales en un K-espacio vectorial V pueden definirse como sigue a partir de los subespacios de V. Capítulo 9 Variedades lineales Al considerar los subespacios de R 2, vimos que éstos son el conjunto {(0, 0)}, el espacio R 2 y las rectas que pasan por el origen. Ahora, en algunos contextos, por ejemplo

Más detalles

Continuidad y monotonía

Continuidad y monotonía Tema 14 Continuidad y monotonía Generalizando lo que se hizo en su momento para sucesiones, definiremos la monotonía de una función, en forma bien fácil de adivinar. Probaremos entonces dos resultados

Más detalles

El Teorema de la Convergencia Dominada

El Teorema de la Convergencia Dominada Capítulo 22 l Teorema de la Convergencia Dominada Los dos teoremas de convergencia básicos en la integración Lebesgue son el teorema de la convergencia monótona (Lema 19.10), que vimos el capítulo y el

Más detalles

Tema 2 Resolución de EcuacionesNo Lineales

Tema 2 Resolución de EcuacionesNo Lineales Tema 2 Resolución de Ecuaciones No Lineales E.T.S.I. Informática Indice Introducción 1 Introducción 2 Algoritmo del método de Bisección Análisis del 3 4 5 6 Algoritmo de los métodos iterativos Interpretación

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

a. no (si A entonces B)

a. no (si A entonces B) Una tabla de verdad es una tabla que despliega el valor de verdad de una proposición compuesta, para cada combinación de valores de verdad que se pueda asignar a sus componentes. Las tablas de verdad son

Más detalles

El Teorema de Recurrencia de Poincaré

El Teorema de Recurrencia de Poincaré El Teorema de Recurrencia de Poincaré Pablo Lessa 9 de octubre de 204. Recurrencia de Poincaré.. Fracciones Continuas Supongamos que queremos expresar la relación que existe entre los números 27 y 0. Una

Más detalles

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO

Conjuntos Infinitos. Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO Ramón Espinoza Armenta AVC APOYO VIRTUAL PARA EL CONOCIMIENTO El estudio de los conjuntos infinitos se inicia con Las Paradojas del Infinito, la última obra del matemático checo Bernard Bolzano, publicada

Más detalles

Lenguajes, Gramáticas y Autómatas Conceptos

Lenguajes, Gramáticas y Autómatas Conceptos Lenguajes, Gramáticas y Autómatas Conceptos Departamento de Informática e Ingeniería de Sistemas C.P.S. Universidad de Zaragoza Última revisión: Febrero. 2004 11/02/2004 1 Índice Alfabetos, palabras y

Más detalles

Criterios de divisibilidad y Congruencias

Criterios de divisibilidad y Congruencias Criterios de divisibilidad y Congruencias Rafael F. Isaacs G. * Fecha: 9 de marzo de 2007 Cuando tenemos un número muy grande escrito en base 10 y deseamos saber si es múltiplo por ejemplo de 9 no necesitamos

Más detalles

Ejemplo de demostración de que cierto lenguaje es el lenguaje aceptado por un AFND.

Ejemplo de demostración de que cierto lenguaje es el lenguaje aceptado por un AFND. Ejemplo de demostración de que cierto lenguaje es el lenguaje aceptado por un AFND. Sea el siguiente autómata finito no determinista M: c q0 a b q1 b q2 Sea L = {x {a, b, c} /x es de la forma a(ba) k bc

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

Teoría de Modelos Finitos: Motivación

Teoría de Modelos Finitos: Motivación Teoría de Modelos Finitos: Motivación IIC3260 IIC3260 Teoría de Modelos Finitos: Motivación 1 / 29 Poder expresivo de una lógica: Caso finito Desde ahora en adelante nos vamos a concentrar en las estructuras

Más detalles

Introducción a la Lógica y la Computación

Introducción a la Lógica y la Computación Introducción a la Lógica y la Computación Parte III: Lenguajes y Autómatas Clase del 12 de Noviembre de 2014 Parte III: Lenguajes y Autómatas Introducción a la Lógica y la Computación 1/11 Lenguajes Regulares

Más detalles

INDUCCIÓN MATEMÁTICA 1. INTRODUCCIÓN

INDUCCIÓN MATEMÁTICA 1. INTRODUCCIÓN INDUCCIÓN MATEMÁTICA EDUARDO SÁEZ, IVÁN SZÁNTÓ DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD TECNICA FEDERICO SANTA MARIA. INTRODUCCIÓN El método deductivo, muy usado en matemática, obedece a la siguiente idea:

Más detalles

2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD

2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD 2. CONCEPTOS BÁSICOS DE LA PROBABILIDAD Un diagrama de Venn Objetivos Introducir los conceptos básicos de experimentos y sucesos, y la definición axiomática y propiedades de la probabilidad. Para leer

Más detalles

Operaciones con conjuntos (ejercicios)

Operaciones con conjuntos (ejercicios) Operaciones con conjuntos (ejercicios) Ejemplo: Definición de la diferencia de conjuntos. Sean y conjuntos. Entonces \ := { x: x x / }. Esto significa que para todo x tenemos la siguiente equivalencia:

Más detalles

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO

TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)

Más detalles

Dificultad [2] Solución 1. Sean A y B disjuntos y cerrados. Entonces A = adh(a) y B = adh(b), y por tanto, A adh(b) = adh(a) B = A B =.

Dificultad [2] Solución 1. Sean A y B disjuntos y cerrados. Entonces A = adh(a) y B = adh(b), y por tanto, A adh(b) = adh(a) B = A B =. 5.1 Sea (E, d) un espació métrico y A y B subconjuntos de E. Demuéstrese que 1. si A y B son disjuntos y ambos cerrados, entonces están separados. 2. si A y B son disjuntos y ambos abiertos, entonces están

Más detalles

TEOREMAS DE FUNCIONES DERIVABLES

TEOREMAS DE FUNCIONES DERIVABLES TEOREMAS DE FUNCIONES DERIVABLES Índice:. Teorema de Rolle------------------------------------------------------------------------------------ 2 2. Teorema de valor medio (de Lagrange o de incrementos)------------------------------------

Más detalles

ESTALMAT-Andalucía Actividades 06/07

ESTALMAT-Andalucía Actividades 06/07 EL LENGUAJE MATEMÁTICO Actividad 1 Cuando hablamos o escribimos en Matemáticas lo hacemos en nuestra lengua habitual, el español, pero utilizamos frases con palabras que designan objetos y símbolos que

Más detalles

Propiedades de la integral

Propiedades de la integral Capítulo 4 Propiedades de la integral En este capítulo estudiaremos las propiedades elementales de la integral. En su mayoría resultarán familiares, pues las propiedades de la integral en R se extienden

Más detalles

P(f) : P(B) P(A) (A.2)

P(f) : P(B) P(A) (A.2) TEMA 2. APLICACIONES 227 Tema 2. Aplicaciones Definición A.2.1. Una correspondencia entre dos conjuntos A y B es un subconjunto del producto cartesiano A B. Una aplicación f entre dos conjuntos A y B es

Más detalles

Seminario de problemas. Curso Hoja 7

Seminario de problemas. Curso Hoja 7 Seminario de problemas. Curso 015-16. Hoja 7 37. Determinar un número de cinco cifras tal que su cuadrado termine en las mismas cinco cifras colocadas en el mismo orden. La forma más simple de resolver

Más detalles

Conjuntos. Relaciones. Aplicaciones

Conjuntos. Relaciones. Aplicaciones Conjuntos. Relaciones. Aplicaciones Conjuntos 1. Considera el subconjunto A de números naturales formado por los múltiplos de 4 y el conjunto B N de los números que terminan en 4. Comprueba que A B y B

Más detalles

1. Sucesiones y redes.

1. Sucesiones y redes. 1. Sucesiones y redes. PRACTICO 7. REDES. Se ha visto que el concepto de sucesión no permite caracterizar algunas nociones topológicas, salvo en espacios métricos. Esto empieza con algunas definiciones

Más detalles

COMPLEMENTO DEL TEÓRICO

COMPLEMENTO DEL TEÓRICO ÁLGEBRA I PRIMER CUATRIMESTRE - AÑO 2016 COMPLEMENTO DEL TEÓRICO El material de estas notas fue dictado en las clases teóricas pero no se encuentra en el texto que seguimos en las mismas ( Álgebra I -

Más detalles

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto

CONJUNTOS COMPACTOS. . En consecuencia, ninguna unión finita de {G n n N} puede contener a H H no es compacto CONJUNTOS COMPACTOS Denición. Se dice que un conjunto K es compacto si siempre que esté contenido en la unión de una colección g = {G α } de conjuntos abiertos, también esta contenido en la unión de algún

Más detalles

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N:

R no es enumerable. Por contradicción, supongamos que existe una biyección f : N! R. diagonalización de Cantor. Para cada i 2 N: R no es enumerable Por contradicción, supongamos que existe una biyección f : N! R. I Vamos a obtener una contradicción usando el método de diagonalización de Cantor. Para cada i 2 N: f (i) = n i.d i,0

Más detalles

El problema de satisfacción

El problema de satisfacción El problema de satisfacción Definición Un conjunto de fórmulas Σ es satisfacible si existe una valuación σ tal que σ(σ) = 1. En caso contrario, Σ es inconsistente. IIC2213 Lógica Proposicional 33 / 42

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

Problemas de VC para EDVC elaborados por C. Mora, Tema 4

Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Problemas de VC para EDVC elaborados por C. Mora, Tema 4 Ejercicio Determinar las funciones enteras f para las que Solución f( + w) = f()f(w), w C. En primer lugar, f(0) = f(0 + 0) = f(0)f(0) = f(0) 2,

Más detalles

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0

IN Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 IN3701 - Guía de Problemas Resueltos de Geometría de Programación Lineal v1.0 Acá va una pequeña guía con problemas resueltos de Geometría en Programación Lineal con problemas básicamente extraídos del

Más detalles