El Grupo de los Enteros p-ádicos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "El Grupo de los Enteros p-ádicos"

Transcripción

1 Divulgaciones Matemáticas Vol. 7 No. 2 (1999), pp El Grupo de los Enteros p-ádicos The Group of p-adic Integers Edixo Rosales (erosales@hydra.math.luz.ve) Departamento de Matemática y Computación Facultad Experimental de Ciencias La Universidad del Zulia Maracaibo, Venezuela Resumen En este artículo se estudia el grupo aditivo del anillo de los números p-ádicos O + y se muestra que el mismo es un grupo topológico compacto y de Hausdorff, para lo cual presentamos una prueba usando la teoría de los límites proyectivos. Al final del trabajo se señala la importancia del problema inverso de Galois y su relaciòn con O +. Palabras y frases clave: números p-ádicos, límites proyectivos Abstract In this paper the additive group O + of the ring of p-adic numbers is studied, showing that it is a compact Hausdorff topological group. A proof using the theory of projective limits is presented. At the end of the article we point out the importance of the inverse Galois problem and its relation with O +. Key words and phrases: p-adic numbers, projective limits Introducción Este trabajo es fundamentalmente de tipo divulgativo. En el mismo estudiamos el grupo O + de los enteros p-ádicos y su conocida propiedad de grupo topológico compacto. El excelente texto de Paul J. MacCarty [1], en su ápendice 2, presenta de manera sintética lo que nosotros en este artículo desarrollamos, sobre todo el problema inverso de Galois, resuelto para O +. Nuestro estudio en la segunda parte del trabajo permite ver el grupo O + como grupo topológico compacto vía el límite proyectivo de grupos topológicos Recibido 1998/11/06. Revisado 1999/03/01. Aceptado 1999/05/20. MSC (1991): Primary 22-01, 22C05; Secondary 11S20.

2 188 Edixo Rosales discretos. Nuestro interés es mostrar la hermosa herramienta proporcionada por los límites proyectivos y la elegancia de las pruebas en algunos tópicos de la teoría de los cuerpos. 1 Preliminares Supondremos que el lector está familiarizado con los conceptos básicos de grupos topológicos, los cuales puede consultar en [2, pág ]. Comenzaremos nuestro estudio con los límites inversos. Sea (S, ) un conjunto dirigido (es decir es un orden parcial sobre S y si α, β S entonces existe γ S tal que α γ y β γ). Consideremos una familia de grupos topológicos (G α ) α S y supongamos que para cada par (α, β) S S con α β existe un morfismo continuo Φ βα : G β G α. Se adiciona que Φ αα = i Gα y si α β, β γ, luego Φ γα = Φ βα Φ γβ. Con estas propiedades se dice que la terna (S, {G α }, {Φ βα }) es un sistema inverso. Ahora consideremos el producto directo de grupos α S G a y el subconjunto de este producto G = {(x α ) α S : si α β entonces Φ βα (x β ) = x α }. Notemos que G ya que si x α = 1 luego (x α ) α S G. A G se le llama el límite inverso o proyectivo de los G α y se denota por G = lim G α. Proposición 1. G con la topología inducida de la topología producto es un grupo topológico. Demostración. Hay que ver que G es un subgrupo de α S G a. En efecto, como (x α ) α S.(y α ) α S = (x α.y α ) α S y Φ βα (x β.y β ) = Φ βα (x β ).Φ βα (y β ) = x α.y α, se deduce que G es cerrado con respecto al producto. Supongamos que (x α ) α S G, luego Φ βα (x 1 β ) = Φ βα(x β ) 1 = x 1 α = (x α ) 1 α S G. Proposición 2. Si cada G α es de Hausdorff entonces G es un subespacio cerrado de α S G a. Demostración. Sea (x α ) α S / G. Entonces existe α β tal que Φ βα (x β ) x α. Como cada G γ es de Hausdorff, existen entornos U α U xα y V α U Φβα (x β ), con U α V α =. Sea el abierto básico γ S A γ, con A α = U α, A β = Φ 1 βα (V α), A γ = G γ, para todo γ α, β. Si (y α ) α S γ S A γ G y β A β, y α U α, y Φ βα (y β ) = y α U α. Se concluye que Φ βα (y β ) V α U α. Esto es un absurdo. Proposición 3. Si cada G α es compacto y de Hausdorff entonces G es compacto y de Hausdorff.

3 El Grupo de los Enteros p-ádicos 189 Demostración. Como α S G a es compacto y de Hausdorff y G es de Hausdorff y cerrado, se deduce que G es compacto. Teorema 4. Sean G un grupo topológico de Hausdorff compacto y (S, {G α }, {φ βα }) un sistema inverso de grupos topológicos, donde cada G α es compacto y de Hausdorff. Supongamos que para cada β S existe un morfismo continuo sobreyectivo ψ β : G G β tal que si β γ luego φ γβ ψ γ = ψ β y que la familia {ψ β } separa puntos en G. Es decir dados a b en G, existe un ψ β tal que ψ β (a) ψ β (b). Entonces G lim G α como isomorfismo de grupos topológicos. Demostración. Sea K = lim G α. Si a G, se define Ψ(a) = (Ψ α (a)) α S. Hay que demostrar que Ψ(a) K. Si β γ Φ γβ (Ψ γ (a)) = Ψ β (a), esto dice que Ψ está bien definido. Por otro lado si a b, existe un γ S, tal que Ψ γ (a) Ψ γ (b). Por lo tanto Ψ es inyectiva. Supongamos que (x α ) α S K, luego ψ 1 β ({x β}) = F β es cerrado. Es claro que cada F β. Veamos que la familia {F β } cumple la propiedad de intersección finita. En efecto n k=1 F β = n k=1 ψ 1 β ({x β}). Si β k γ k = 1,..., n, tenemos que existe a G, con Ψ γ (a) = x γ. Veamos que a n k=1 F β. Note que Ψ βk (a) = φ γβk ψ γ (a) = φ γβk (x γ ) = x βk. Como G es compacto y de Hausdorff, se deduce que β S F β. Veamos que Ψ es continuo. Sea el abierto básico γ S A γ en la topología producto, con A γ = G γ, salvo a lo sumo para los abiertos A γi de G γi, con i = 1,..., n. Entonces Ψ 1 ( α S A α) = α S ψ 1 α (A α ) = ψα 1 1 (A α1 )... ψα 1 n (A αn ) es un abierto de G. Finalmente como G es de Hausdorff y compacto, K es de Hausdorff y compacto, Ψ es una biyección y continua, luego Ψ es un homeomorfismo. Esto prueba lo pedido. Corolario 5. Sean G un grupo topológico compacto y T 2 y {H α } α S familia de subgrupos normales y cerrados. Supongamos que si α y β están en S, existe un γ S tal que H γ H α H β y que α S H α = {1}. Para cada α consideramos G α = G/H α. Si H β H α se define φ βα : G β G α por φ βα (a.h β = a.h α. Entonces S puede ser parcialmente ordenado de tal forma que (S, {G α }, {φ βα }) forman un sistema inverso y G lim G α. Demostración. Se define α β sii H β H α. Esto define un orden parcial en S. Si α, β S, existe un γ S tal que H γ H α H β entonces α γ y β γ. Esto dice que S es dirigido. Veamos que cada H α es compacto y T 2. Se supone que G α tiene la topología cociente inducida por el morfismo proyección. Sabemos que G α es un grupo topológico. Además el morfismo

4 190 Edixo Rosales proyección ψ α : G G α definida por ψ α (a) = a.h α es morfismo continuo y abierto. Para ver que G α es T 2, sea R = {(a, b) : ab 1 H α }. Consideremos una red (a d, b d ) (a, b) en la topología producto, luego a d a y b d b, por lo tanto a d b 1 d ab 1 y como a d b 1 d H α luego a d b 1 d H α = H α. Se deduce lo pedido. Como ψ α (G) = G/H α y G es compacto luego G α es compacto. Veamos que la familia {ψ α } separa puntos. En efecto si a b en G luego ab 1 / α S H α. Se tiene que ab 1 / H α para algún α. Se deduce que a / ψ α (b) y por tanto ψ α (a) ψ α (b). Finalmente φ βα ψ β (a) = φ βα (ah α ) = ah α = ψ α (a),cuando α β. Aplicando el Teorema 4 se deduce G lim G α. 2 El grupo O + de los enteros p-ádicos Sean Q el conjunto de los números racionales con la valuación p ádica p y Q p su completación. Sea O p el anillo de valuación asociado a Q p. Denotamos por Q + p a (Q p, +). Se quiere ver que Q + p es un grupo topológico compacto. Lema 6. Sea x O +. Entonces existe una única sucesión x n Z, 0 x n p n 1, tal que x n x n+1 (mod p n ) con x n x en la valuación p ádica. Se define φ nm : Z/(p n ) Z/(p m ) con m n por φ nm ( (mod p n )) = x (mod p m ). Se tiene que ({Z/(p n )}, {φ nm }, N) es un sistema inverso y A = lim Z/(pn ) es compacto. Teorema 7. O + lim Z/(p n ) como isomorfismo topológico. Demostración. Usando el Lema 6, dado x O + existe x n x en la valuación p ádica tal que x n x n+1 (mod p n ) y (x n ) n N es la única sucesiòn con esta propiedad. Se define γ : O + A por γ(x) = (x n (mod p n )). Veamos que γ está realmente bien definida. Note que si m n luego x m x m+1 (mod p m ),..., x n 1 x n (mod p n 1 ). Como x n x m = (x n x n 1 ) + (x n 1 x n 2 ) (x m+1 x m ) = a 1 p n a m p m = p m b, se concluye que x n x m (mod p m ). Dado (x n (mod p n )) A, se tiene que x n+1 x n (mod p n ). Podemos elegir 0 x n p n 1. Como x n x m p max( x i x i 1 p ) m i n 1/p n, se deduce que (x n ) es de Cauchy en O p y por tanto x n x en la valuación p-ádica. Además x n p 1 luego x p 1. Esto dice que x O +. Se define

5 El Grupo de los Enteros p-ádicos 191 ϕ : A O + por ϕ((x n (mod p n ))) = x. continua luego O + es compacto. Note que ϕ(a) = O + y como ϕ es Consideremos los subgrupos cerrados A n = p n O + de O +. Veamos que n 1 pn O + = 0. En efecto si x n 1 pn O + luego x = p n a n = x p 1/p n = x = 0. Si m n se define φ nm : O + /p n O + O + por φ nm (a + p n O + ) = b + p m O +. Es claro que ({O + /p n O + }, {φ nm }, N) es un sistema inverso. Usando el corolario5 se tiene que O + lim O + /p n O +. Corolario 8. O + lim O + /p n O + lim Z/(p n ). 3 Comentarios finales Dado un cuerpo finito k, sabemos que k es el cuerpo descomposición del polinomio x pn x F p [x], donde F p es el subcuerpo primo de k y [k : F p ] = n. Se puede construir inductivamente una torre de subcuerpos k n de la clausura algebraica F p de F p, tal que k n k n 1 y [k n : k n 1 ] = p n. Sea τ : k n k n por τ(a) = a p el morfismo de Frobenius. Sabemos que τ es un generador cíclico del grupo Aut Fp k n. Si τ(a) = a p = a, luego a F p. Esto dice que el cuerpo fijo k Aut Fp k n n = F p, por lo tanto k n es de Galois. Definimos K = n 1 k n. Sabemos que K es una extensión normal y separable de F p y por tanto de Galois. Sea F = {L F p : L K normal y finita}. Es claro que cada k n F. Sea L F luego L = k(a) con a L. Se tiene que a k n, donde elegimos n como el primer índice que tiene esta propiedad. Como k n F p es de Galois y L F p es normal tenemos que Aut L k n es un subgrupo normal de Aut Fp k n. Se deduce que Aut L k n = p n s. Además Aut L k n es el único subgrupo de Aut Fp k n que tiene este orden. Como Aut ks k n = p n s se tiene que Aut L k n = Aut ks k n = L = k s. Es obvio el resultado: Corolario 9. Aut Fp K lim Aut Fp k n lim Z/(p n ) O +. Referencias [1] McCarthy, P. Algebraic Extensions of Fields, Blaisdell, [2] Kelley, J. Topología General, Editorial Universitaria de Buenos Aires, Buenos Aires, 1962.

6 192 Edixo Rosales [3] Morandi, P. Fields and Galois Theory, Springer, Berlin, [4] Quadros, F. Primeiros Passos p-ádicos, 17 o Coloquio Brasileiro de Matemática, IMPA, Rio de Janeiro, 1989.

Exposicion de Teoria de Galois

Exposicion de Teoria de Galois Exposicion de Teoria de Galois Fernando Sánchez Castellanos Villafuerte 14 de diciembre de 2008 1. Introduccion Definición 1. Un grupo topologico, es un grupo G juntpo con una topologia tal que satisface:

Más detalles

Los isomorfismos básicos de la teoría de cuerpos algebraicos.

Los isomorfismos básicos de la teoría de cuerpos algebraicos. 4. AUTOMORFISMOS DE CUERPOS. En este tema probaremos que dos elementos α y β, conjugados sobre un cuerpo F, determinan un isomorfismo entre los cuerpos F (α) y F (β). También cierto recíproco será válido.

Más detalles

Campos finitos y teoría de Galois

Campos finitos y teoría de Galois Campos finitos y teoría de Galois José Ibrahim Villanueva Gutiérrez 1. Campos finitos 1.0.1. Campos finitos Recordemos la siguiente definición. Definición 1. Un campo K es un conjunto con dos operaciones

Más detalles

Observaciones sobre Espacios de Toronto

Observaciones sobre Espacios de Toronto Divulgaciones Matemáticas v. 6, No. 2 (1998), 87 91 Observaciones sobre Espacios de Toronto (Remarks about Toronto Spaces) Nelson C. Hernández T. Universidad Central de Venezuela Facultad de Ciencias Económicas

Más detalles

La estructura de un cuerpo finito.

La estructura de un cuerpo finito. 9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica

Más detalles

Descomposición de dos Anillos de Funciones Continuas

Descomposición de dos Anillos de Funciones Continuas Miscelánea Matemática 38 (2003) 65 75 SMM Descomposición de dos Anillos de Funciones Continuas Rogelio Fernández-Alonso Departamento de Matemáticas Universidad Autónoma Metropolitana-I 09340 México, D.F.

Más detalles

Algunos resultados de Topología I. Rafael López Departamento de Geometría y Topología Universidad de Granada

Algunos resultados de Topología I. Rafael López Departamento de Geometría y Topología Universidad de Granada Algunos resultados de Topología I Rafael López Departamento de Geometría y Topología Universidad de Granada 2 Índice general 1 Espacios topológicos 5 1.1 Definición, bases de topología y de entornos..............

Más detalles

Teorema de Hahn-Banach

Teorema de Hahn-Banach Capítulo 3 Teorema de Hahn-Banach 3.1. Introducción Una vez introducidos los espacios vectoriales más importantes donde se tiene una estructura métrica a saber, los espacios de Hilbert y los espacios de

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

Teoría de Galois. τ((a+bi)+(c+di)) = τ((a+c)+i(b+d)) = (a+c) i(b+d) = (a ib)+(c id) = τ(a+ib)+τ(c+id).

Teoría de Galois. τ((a+bi)+(c+di)) = τ((a+c)+i(b+d)) = (a+c) i(b+d) = (a ib)+(c id) = τ(a+ib)+τ(c+id). CAPÍTULO 14 Teoría de Galois 14.1. DEFINICIONES BÁSICAS. Sea τ la función τ : C C definida por τ(a+bi) = a bi. Pruebe que τ es un automorfismo de C. Solución. Tenemos que Además, se tiene que τ((a+bi)+(c+di))

Más detalles

Espacios métricos completos

Espacios métricos completos 5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.

Más detalles

Segundo Cuatrimestre 2005 Práctica 4

Segundo Cuatrimestre 2005 Práctica 4 Topología Segundo Cuatrimestre 2005 Práctica 4 Compacidad. 1) Sea X un espacio topológico. Probar que son equivalentes: a) X es cuasi-compacto. b) Para todo espacio topológico Y, y para todo abierto W

Más detalles

TOPOLOGÍA Segundo Cuatrimestre 2009

TOPOLOGÍA Segundo Cuatrimestre 2009 TOPOLOGÍA Segundo Cuatrimestre 2009 Práctica 4: Topologías iniciales y finales Subespacios 1.1. Sea X un espacio topológico y sean Y X y Z Y subconjuntos. Muestre que la topología de Z como subespacio

Más detalles

Algunas Propiedades que se Preservan Bajo el Producto Topológico

Algunas Propiedades que se Preservan Bajo el Producto Topológico Algunas Propiedades que se Preservan Bajo el Producto Topológico Alejandro Rodríguez Zepeda Facultad de Ciencias Físico Matemáticas, BUAP Con la dirección de: Fernando Macías Romero y David Herrera Carrasco

Más detalles

COMPLECIÓN DE CUERPOS CONVEXOS. Helmuth Villavicencio Fernández 1. (Recibido: 26/01/ Aceptado: 18/11/2014) COMPLETION OF CONVEX BODIES

COMPLECIÓN DE CUERPOS CONVEXOS. Helmuth Villavicencio Fernández 1. (Recibido: 26/01/ Aceptado: 18/11/2014) COMPLETION OF CONVEX BODIES PESQUIMAT, Revista de la F.C.M. de la Universidad Nacional Mayor de San Marcos Vol. XVIII N o 1, pp. 16-20, Lima -Perú, Abril 2015 COMPLECIÓN DE CUERPOS CONVEXOS Helmuth Villavicencio Fernández 1 (Recibido:

Más detalles

Extensiones algebraicas. Cuerpos de descomposición.

Extensiones algebraicas. Cuerpos de descomposición. Temas 10-11.- 10-11.1 Extensiones algebraicas. Cuerpos de descomposición. Si k es un subcuerpo de K, diremos que K es una extensión de k, que notaremos K k. Si K k es una extensión y E K es un subconjunto,

Más detalles

Anillos de Galois. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014

Anillos de Galois. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014 Anillos de Galois XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Definición y primeras propiedades Un anillo asociativo A se llama anillo de Galois (denotado GR por sus siglas

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones.

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. En lo que sigue k denotará un cuerpo algebraicamente cerrado. 3.1.- Funciones regulares sobre variedades afines. Sea V un c.a.a.

Más detalles

Cuerpos Finitos. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014

Cuerpos Finitos. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014 Cuerpos Finitos XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Cuerpos y extensiones de cuerpos Un cuerpo (F, +, ) es un conjunto no vacío en el que se han definido dos operaciones

Más detalles

Espacios completos. 8.1 Sucesiones de Cauchy

Espacios completos. 8.1 Sucesiones de Cauchy Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un

Más detalles

Grupos libres. Presentaciones.

Grupos libres. Presentaciones. S _ Tema 12.- Grupos libres. Presentaciones. 12.1 Grupos libres. En el grupo Z de los enteros vimos una propiedad (cf. ejemplos.5), que lo caracteriza como grupo libre. Lo enunciamos al modo de una Propiedad

Más detalles

F-ESPACIOS. 1.- Introducción

F-ESPACIOS. 1.- Introducción F-ESPACIOS 1.- Introducción Recordemos que un subconjunto A de un espacio topológico X se llama diseminado o raro (nowhere dense en ingés) si A=. Un subconjunto que se pueda escribir como unión numerable

Más detalles

Curvas No Singulares

Curvas No Singulares Curvas No Singulares 1. Algunos preliminares algebraicos Definición Sea K un cuerpo, G un grupo abeliano totalmente ordenado, y sea K = K\{0}. Una valuación de K con valores en G es una aplicación v :

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 1: CONJUNTOS. 1 1. Conjuntos y funciones Ejercicio 1. Si I es un conjunto y A α es

Más detalles

Variedades diferenciables

Variedades diferenciables Capítulo VII Variedades diferenciables 1. Preliminares topológicos En esta sección vamos a recordar algunas nociones básicas de topología, relativas a las topologías iniciales y a las topologías finales,

Más detalles

METRIZACIONES Y ALGUNAS PROPIEDADES DE LA TOPOLOGÍA DE FÜRSTENBERG

METRIZACIONES Y ALGUNAS PROPIEDADES DE LA TOPOLOGÍA DE FÜRSTENBERG METRIZACIONES Y ALGUNAS PROPIEDADES DE LA TOPOLOGÍA DE FÜRSTENBERG Jaime J. Gutiérrez G. y Eric A. Acevedo S. Universidad de Panamá, Facultad de Ciencias Naturales, Exactas y Tecnología, Departamento de

Más detalles

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 1 Tema 9.-. Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 9.1. Caracteres de un grupo. A la hora de resolver una ecuación f(x) = 0 con f(x) k[x], tomamos un

Más detalles

Soluciones entre ecuaciones diferenciales de orden dos. Solutions between two-order differential equations.

Soluciones entre ecuaciones diferenciales de orden dos. Solutions between two-order differential equations. Universidad del Atlántico Revista Del Programa De Matemáticas Páginas: 16 20 Facultad de Ciencias Básicas c Programa de Matemáticas Vol. IV, No 1, (2017) Soluciones entre ecuaciones diferenciales de orden

Más detalles

1. Definiciones y propiedades básicas.

1. Definiciones y propiedades básicas. Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 PRACTICO 2: TOPOLOGÍA. 1 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto.

Más detalles

La equivalencia entre superficies de Riemann compactas y curvas suaves sobre C

La equivalencia entre superficies de Riemann compactas y curvas suaves sobre C La equivalencia entre superficies de Riemann compactas y curvas suaves sobre C 1. Proyección Sea X una superficie de Riemann compacta de género g, tal que X P n para algún n y tal que para cada p X, existe

Más detalles

El teorema de Lüroth

El teorema de Lüroth Abstraction & Application 11 (2014) 52 56 UADY El teorema de Lüroth Antonio González Fernández, Rodrigo Jiménez Correa, Jesús Efrén Pérez Terrazas Facultad de Matemáticas, Universidad Autónoma de Yucatán,

Más detalles

La Intersección Arbitraria de una Familia de Subconjuntos Abiertos con la Propiedad α-s-localmente Finita es α-semiabierta

La Intersección Arbitraria de una Familia de Subconjuntos Abiertos con la Propiedad α-s-localmente Finita es α-semiabierta Divulgaciones Matemáticas Vol. 8 No. 2 (2000), pp. 155 162 La Intersección Arbitraria de una Familia de Subconjuntos Abiertos con la Propiedad α-s-localmente Finita es α-semiabierta The Intersection of

Más detalles

Sobre la estrechez de un espacio topológico

Sobre la estrechez de un espacio topológico Morfismos, Vol. 5, No. 2, 2001, pp. 51 61 Sobre la estrechez de un espacio topológico Alejandro Ramírez Páramo 1 Resumen En este trabajo se muestran algunos resultados sobre la estrechez en la clase C

Más detalles

Tarea 1 de Álgebra Conmutativa (Lista larga)

Tarea 1 de Álgebra Conmutativa (Lista larga) Instrucciones: Entregar solo los ejercicios marcados con. 1. ( ) 2. ( ) (i) (Principio de substitución) Sea A-álgebra B via ϕ : A B y b 1,..., b n B. Demuestra que existe un único morfismo de anillos conmutativos

Más detalles

Espacios Conexos Espacio Conexo

Espacios Conexos Espacio Conexo Capítulo 4 Espacios Conexos Una forma natural de construir nuevos espacios topológicos es pegando en forma disjunta, es decir. Sean (X,T X ),(Y,T Y ) dos espacios topológicos, luego definimos Z = X {0}

Más detalles

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ).

Definición 1 Un semigrupo es un conjunto E provisto de una operación binaria asociativa sobre E, se denota por (E, ). ALGEBRA La primera parte del presente libro está dedicada a las estructuras algebraicas. En esta parte vamos a iniciar agregándole a los conjuntos operaciones. Cuando las operaciones tienen determinadas

Más detalles

Una Breve Introducción a los Números p-ádicos

Una Breve Introducción a los Números p-ádicos Una Breve Introducción a los Números p-ádicos Seminario de Teoría de Números Luciano Sciaraffia R. Pontificia Universidad Católica de Chile 14 de agosto de 2018 Valores absolutos Definición Un valor absoluto

Más detalles

Extensiones normales.

Extensiones normales. 10. TEORÍA DE GALOIS Este capítulo, donde se establece el Teorema Principal de la Teoría de Galois, puede ser considerado como la culminación de la asignatura. Aquí se relacionarán las Teorías de Grupos

Más detalles

Universidad Autónoma de Madrid Martes 19 de junio de Examen final: Álgebra II

Universidad Autónoma de Madrid Martes 19 de junio de Examen final: Álgebra II Universidad Autónoma de Madrid Martes 19 de junio de 2007 Examen final: Álgebra II Apellidos: D.N.I.: Nombre: Grupo: IMPORTANTE: Justifica todas tus respuestas. 1. Decide razonadamente si las siguientes

Más detalles

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos.

Topologías. Segundo cuatrimestre Práctica Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. Topología Segundo cuatrimestre - 2011 Práctica 1 Topologías Ejemplos de topologías 1. Encuentre todas las topologías sobre conjuntos de a lo sumo cuatro elementos. 2. Sea X un conjunto. (a) Sea τ = {U

Más detalles

Tema 3: Localización. 3.1 Anillos locales. Definición. Ejemplos. Proposición. Demostración. Un anillo A es local si tiene un único ideal maximal.

Tema 3: Localización. 3.1 Anillos locales. Definición. Ejemplos. Proposición. Demostración. Un anillo A es local si tiene un único ideal maximal. 3.1 Anillos locales Tema 3. Localización Anillos locales Anillos de fracciones Tema 3: Localización Definición Un anillo A es local si tiene un único ideal maximal. Ejemplos i) K ii) Z/ < p n > (p es un

Más detalles

EL GRUPO FUNDAMENTAL FRANCISCO URBANO

EL GRUPO FUNDAMENTAL FRANCISCO URBANO EL GRUPO FUNDAMENTAL FRANCISCO URBANO 1. Espacios conexos por arcos Definición 1. Un arco o camino (continuo) en un espacio topológico X es una aplicación continua f : [a, b] X, siendo [a, b] el intervalo

Más detalles

1. Conjuntos y funciones

1. Conjuntos y funciones PRACTICO 1: CONJUNTOS. 1. Conjuntos y funciones Es útil saber de memoria las siguientes propiedades de conjuntos y funciones. Tanto como saber las tablas. Ejercicio 1. Si I es un conjunto y A α es un conjunto

Más detalles

Topologías. Segundo cuatrimestre Práctica 1. Determine condiciones necesarias y suficientes sobre κ para que τ κ sea una topología sobre

Topologías. Segundo cuatrimestre Práctica 1. Determine condiciones necesarias y suficientes sobre κ para que τ κ sea una topología sobre Topología Segundo cuatrimestre - 2012 Práctica 1 Topologías Ejemplos de topologías 1. Sea X un conjunto. (a) Sea τ = {U P(X) : X \ U es finito} { }. Probar que τ es una topología sobre X, a la que llamamos

Más detalles

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones.

Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. Tema 3.- Funciones y morfismos racionales sobre variedades. Explosiones. En lo que sigue k denotará un cuerpo algebraicamente cerrado. 3.1.- Funciones regulares sobre variedades afines. Sea Z un conjunto

Más detalles

Introducción a la topología

Introducción a la topología Introducción a la topología Beatriz Abadie CENTRO DE MATEMÁTICAS FACULTAD DE CIENCIAS UNIVERSIDAD DE LA REPÚBLICA Agosto de 2013 i Índice general Capítulo 1. Elementos de la teoría de conjuntos 1 1.1.

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos

Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Cálculo Avanzado Segundo Cuatrimestre de 2012 Práctica 2 -Cardinalidad- A. Propiedades básicas de los Conjuntos Ejercicio 1. Demostrar las siguientes igualdades de conjuntos: i) B i I A i = i I(B A i ).

Más detalles

Principio de acotación uniforme

Principio de acotación uniforme Capítulo 4 Principio de acotación uniforme 4.1. Introducción. Teorema de Baire En este último capítulo vamos a establecer una serie de resultados sobre aplicaciones lineales y continuas entre espacios

Más detalles

Espacios vectoriales con producto interno

Espacios vectoriales con producto interno Espacios vectoriales con producto interno Problemas teóricos En todos los problemas relacionados con el caso complejo se supone que el producto interno es lineal con respecto al segundo argumento. Definición

Más detalles

Extensiones finitas.

Extensiones finitas. 2. EXTENSIONES ALGEBRAICAS. Hemos dividido este tema en dos secciones: Extensiones finitas, y Clausura algebraica. En la primera relacionamos extensión finita y extensión algebraica: probamos que toda

Más detalles

Espacios fuertemente T 1

Espacios fuertemente T 1 Revista INTEGRACIÓN Universidad Industrial de Santander Escuela de Matemáticas Vol. 16, No 2, p. 87 100, julio diciembre de 1998 Espacios fuertemente T 1 Néstor Raúl Pachón Rubiano * Resumen Las topologías

Más detalles

8.1. Extensiones algebraicas. Grado.

8.1. Extensiones algebraicas. Grado. 1 Tema 8.-. Extensiones algebraicas. Cuerpos de descomposición. Elemento primitivo. 8.1. Extensiones algebraicas. Grado. Si k es un subcuerpo de K, diremos que K es una extensión de k, que notaremos K

Más detalles

SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO

SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO SISTEMA DE MONOMIOS PARA UN CUERPO RESIDUAL REAL CERRADO Francisco Ugarte Guerra 1,2 Mayo, 2011 Resumen Para etender técnicas tipo Polígono de Newton a ecuaciones algebraicas con coeficientes en cuerpos

Más detalles

Ejercicios de Teoría de conjuntos

Ejercicios de Teoría de conjuntos Ejercicios de Teoría de conjuntos José A. Alonso Jiménez Mario J. Pérez Jiménez Sevilla, Octubre de 1997 Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla 1 Tema 1 :

Más detalles

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2).

Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). AMARUN www.amarun.org Comisión de Pedagogía - Diego Chamorro Análisis Funcional (Nivel 2). Lección n 3: Lema de Baire y Teorema clásicos del Análisis Funcional EPN, verano 2012 Definición 1 (Espacio de

Más detalles

TEORÍA DE CUERPOS (VERSIÓN PRELIMINAR) Jorge A Guccione y Juan J. Guccione

TEORÍA DE CUERPOS (VERSIÓN PRELIMINAR) Jorge A Guccione y Juan J. Guccione TEORÍA DE CUERPOS (VERSIÓN PRELIMINAR) Jorge A Guccione y Juan J. Guccione 1. Algebras y extensiones Sea K un anillo conmutativo. Una K-álgebra es un anillo A junto con una estructura de K-módulo a izquierda

Más detalles

Cohomología de grupos, día 1

Cohomología de grupos, día 1 Cohomología de grupos, día 1 Alexey Beshenov (cadadr@gmail.com) 30 de agosto de 2016 Hay varios modos de definir la cohomología y homología de grupos. Ya hemos estudiado la teoría general de funtores derivados,

Más detalles

ÁLGEBRA II Primer Cuatrimestre 2014

ÁLGEBRA II Primer Cuatrimestre 2014 ÁLGEBRA II Primer Cuatrimestre 2014 Práctica 3: Grupos - Tercera Parte 1. Si un grupo G actúa sobre un conjunto finito X, el carácter de X es la aplicación χ X : G 0 dada por χ X (g) = {x X : g x = x},

Más detalles

Topología Segundo cuatrimestre Práctica 1 Espacios topológicos

Topología Segundo cuatrimestre Práctica 1 Espacios topológicos Topología Segundo cuatrimestre - 2015 Práctica 1 Espacios topológicos Ejemplos 1. Sea (X, τ) un espacio topológico y sea Y X. Muestre que τ Y = U Y : U τ} es una topología sobre Y. Llamamos a τ Y subespacio.

Más detalles

Grupos de Lie que no son Grupos de Matrices

Grupos de Lie que no son Grupos de Matrices Morfismos, Vol. 1, No. 1, 1997, pp. 27 33 Grupos de Lie que no son Grupos de Matrices Guillermo Moreno 1 Miguel Angel Torres 2 Resumen Se sabe que todo grupo de matrices es un grupo de Lie. El recíproco

Más detalles

Algunas equivalencias topológicas del Axioma del Extremo Superior

Algunas equivalencias topológicas del Axioma del Extremo Superior Algunas equivalencias topológicas del Axioma del Extremo Superior MSc Luis Alejandro Acuña. Escuela de Matemática, Instituto Tecnológico de Costa Rica. En este artículo se presentan cuatro propiedades

Más detalles

ELEMENTOS DE ANÁLISIS FUNCIONAL

ELEMENTOS DE ANÁLISIS FUNCIONAL ELEMENTOS DE ANÁLISIS FUNCIONAL Guillermo Ames Universidad Tecnológica Nacional - Facultad Regional Córdoba 2011 TEMA 1: NOCIONES BÁSICAS DE ESPACIOS MÉTRICOS Espacios métricos: definición y ejemplos Definición

Más detalles

Subconjuntos notables de un Espacio Topológico

Subconjuntos notables de un Espacio Topológico 34 Capítulo 4 Subconjuntos notables de un Espacio Topológico 4.1 Adherencia Definición 4.1.1 (Punto adherente). Sea (X, τ) un espacio topológico, y sea S un subconjunto de X. Diremos que x X es un punto

Más detalles

NOTAS DE TRABAJO, 16 EXTENSIONES DE CUERPOS

NOTAS DE TRABAJO, 16 EXTENSIONES DE CUERPOS NOTAS DE TRABAJO, 16 EXTENSIONES DE CUERPOS Teoría de Galois Pascual Jara Martínez Departamento de Álgebra. Universidad de Granada Granada, 2001 2017 Primera redacción: 2001. Segunda redacción: Julio 2014.

Más detalles

9 Grupos abelianos libres

9 Grupos abelianos libres 42 TEORIA DE GRUPOS 9 Grupos abelianos libres En Álgebra Lineal es clásica la estructura de espacio vectorial V sobre un cuerpo K. Esta sección trata de estudiar el caso análogo de un grupo abeliano sobre

Más detalles

Parte 2: Definición y ejemplos de topologías.

Parte 2: Definición y ejemplos de topologías. Parte 2: Definición y ejemplos de topologías. 22 de marzo de 2014 1. Definiciones y propiedades básicas. Definición 1 Sea X un conjunto. Una familia T de subconjuntos de X es una topología de X si se cumplen:

Más detalles

Conjuntos m X -Cerrados Generalizados

Conjuntos m X -Cerrados Generalizados Conjuntos m X -Cerrados Generalizados m X -Generalized Closed Sets Margot Salas Brown (msalas@sucre.udo.edu.ve) Carlos Carpintero (ccarpi@sucre.udo.edu.ve) Ennis Rosas (erosas@sucre.udo.edu.ve) Departamento

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 10[1/14] 26 de abril de 2007 Semana 10[2/14] Grupos Un grupo es un caso particular de una estructura algebraica. Veremos que esta noción rescata ampliamente las propiedades de estructuras tales

Más detalles

BUSCANDO GRUPOS TOPOLÓGICOS FINITOS

BUSCANDO GRUPOS TOPOLÓGICOS FINITOS BUSCANDO GRUPOS TOPOLÓGICOS FINITOS Grasse Stephanie Castellanos Urrego Proyecto Curricular de Matemáticas Universidad Distrital Francisco José de Caldas 21 de mayo de 2015 Grasse Castellano (Universidad

Más detalles

Espacios topológicos. 3.1 Espacio topológico

Espacios topológicos. 3.1 Espacio topológico Capítulo 3 Espacios topológicos 3.1 Espacio topológico Definición 3.1.1. Un espacio topológico es un par (X, τ), donde X es un conjunto, y τ es una familia de subconjuntos de X que verifica las siguientes

Más detalles

1. ESPACIOS DE HILBERT Y OPERADORES

1. ESPACIOS DE HILBERT Y OPERADORES 1. ESPACIOS DE HILBERT Y OPERADORES 1. DEFINICIÓN, PROPIEDADES Y EJEMPLOS Definición. Sea H un espacio vectorial sobre el cuerpo C de los números complejos, un producto escalar sobre H es una aplicación

Más detalles

Topologías de Alexandroff: tres puntos de vista diferentes

Topologías de Alexandroff: tres puntos de vista diferentes Topologías de Alexandroff: tres puntos de vista diferentes Jose Edilberto Robles Castro Licenciado en Matemáticas Código: 830263 Universidad Nacional de Colombia Facultad de Ciencias Departamento de Matemáticas

Más detalles

Conjuntos, relaciones y funciones Susana Puddu

Conjuntos, relaciones y funciones Susana Puddu Susana Puddu 1. Repaso sobre la teoría de conjuntos. Denotaremos por IN al conjunto de los números naturales y por ZZ al de los enteros. Dados dos conjuntos A y B decimos que A está contenido en B o también

Más detalles

I. ANILLOS DE POLINOMIOS

I. ANILLOS DE POLINOMIOS I. ANILLOS DE POLINOMIOS 1. Si a k, probar que el morfismo natural k k[x]/(x a) es un isomorfismo, y que dados elementos diferentes a 1,..., a n k, tenemos un isomorfismo de k-álgebras k[x]/((x a 1 )...

Más detalles

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión EJERCICIOS ESTRUCTURAS ALGEBRAICAS (2004-2005) 1 Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión f = a 1 f 1 +... + a s f s + r que se obtiene al aplicar el algoritmo de

Más detalles

CARACTERIZACIONES DE LA COMPLETITUD DE R

CARACTERIZACIONES DE LA COMPLETITUD DE R CARACTERIZACIONES DE LA COMPLETITUD DE R 1 Definición 1. Diremos que un cuerpo ordenado K es arquimediano si lím n n que decir que N, visto como subconjunto de K, no está acotado en K. = 0 en K. Esto es

Más detalles

TOPOLOGÍA. Resumen Curso 2011/2012

TOPOLOGÍA. Resumen Curso 2011/2012 TOPOLOGÍA Resumen Curso 2011/2012 Capítulo 1 Espacios métricos 1.1. Medir la proximidad Sea X un conjunto. Denotaremos por X X al conjunto de los pares de elementos de X. Definición 1.1.1. Una distancia

Más detalles

El espacio euclideano

El espacio euclideano Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente

Más detalles

El teorema de los ceros de Hilbert (primera lección)

El teorema de los ceros de Hilbert (primera lección) El teorema de los ceros de Hilbert (primera lección) Alexey Beshenov (cadadr@gmail.com) Universidad de El Salvador. 6 de marzo de 2018 En estos apuntes voy a revisar un par de resultados básicos de la

Más detalles

Espacios compactos. 7.1 Espacios compactos

Espacios compactos. 7.1 Espacios compactos 58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que

Más detalles

1. Espacios topológicos compactos.

1. Espacios topológicos compactos. PRACTICO 6. COMPACIDAD. 1. Espacios topológicos compactos. Definición 1 Un cubrimiento de un conjunto X es una familia de subconjuntos de X cuya unión da X. Un cubrimiento de un espacio es abierto si cada

Más detalles

Γ(X, y, z) con α(1) = β(0), entonces definimos la suma de caminos

Γ(X, y, z) con α(1) = β(0), entonces definimos la suma de caminos 120 10. ESPACIOS CONEXOS Tema 3. Conexión por caminos Definiciones 10.3.1. Sea X un espacio topológico. Un camino en X es una aplicación continua α : [0, 1] X (donde [0, 1] se considera como subespacio

Más detalles

Espacios de Banach. Problemas para examen

Espacios de Banach. Problemas para examen Espacios de Banach Problemas para examen Se marcan con azul algunos ejercicios que no vimos bien en clase. La lista todavía no es completa; se pueden agregar algunos teoremas y ejercicios que vimos bien

Más detalles

Formulaciones equivalentes del Axioma de Elección

Formulaciones equivalentes del Axioma de Elección Formulaciones equivalentes del Axioma de Elección MARU SARAZOLA Resumen En este documento presentamos algunas formulaciones equivalentes del axioma de elección. En la primera sección, se presenta el enunciado

Más detalles

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014 Apuntes de teoría Departamento de Álgebra Universidad de Sevilla Tema 3: Teoría de Galois. Nota: Los apuntes de este tema se basan principalmente

Más detalles

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación).

Espacios Topológicos 1. Punto de Acumulación. Al conjunto de puntos de acumulación de A se le denomina el conjunto derivado de A (A a Notación). Espacios Topológicos 1 Punto de Acumulación Definición: Sea A un subconjunto arbitrario de R n, se dice que x R n es un punto de acumulación de A si toda bola abierta con centro x contiene un punto A distinto

Más detalles

Sobre álgebras topológicas

Sobre álgebras topológicas Sobre álgebras topológicas Encuentro Nacional de Jóvenes investigadores en Matemáticas Reyna María Pérez-Tiscareño 2 de Diciembre, 2015 Universidad Autónoma Metropolitana Unidad Iztapalapa 1) Introducción

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS OTROS RESULTADOS SOBRE CUERPOS FINITOS. El grupo multiplicativo de un cuerpo finito es como hemos visto un grupo cíclico. Lo cuál nos permite encontrar propiedades especiales

Más detalles

Ejercicios de Análisis Funcional

Ejercicios de Análisis Funcional Ejercicios de Análisis Funcional Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada ANÁLISIS FUNCIONAL Relación de Ejercicios N o 1 1. Dar un ejemplo de una distancia en un espacio

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Estructuras Algebraicas Módulos noetherianos y Artinianos Zarate Sebastian 8 de julio de 2015 Índice 1. Preliminares 1 1.1. Grupos................................... 1 1.2. Anillos...................................

Más detalles

Espacios topológicos y espacios métricos

Espacios topológicos y espacios métricos CAPíTULO 2 Espacios topológicos y espacios métricos Tema 1. Definición y primeros ejemplos Como queda anunciado al final del capítulo anterior ampliaremos la definición de abierto de un conjunto utilizando

Más detalles

Extensión de medidas

Extensión de medidas Extensión de medidas Problemas para examen Semianillos de conjuntos 1. Escriba la definición de semianillo de conjuntos. 2. Convenio: el conjunto vacío pertenece a cualquier semianillo. En los siguientes

Más detalles

Lorenzo Acosta Universidad Nacional de Colombia, Bogotá

Lorenzo Acosta Universidad Nacional de Colombia, Bogotá This is a reprint of the paper Estructura ordenada de los 3-anillos by Lorenzo Acosta published in Lecturas Matemáticas 16 (1995), pp. 1 11 ESTRUCTURA ORDENADA DE LOS 3-ANILLOS* Lorenzo Acosta Universidad

Más detalles

Ejercicios del Capítulo 3

Ejercicios del Capítulo 3 69 Ejercicios del Capítulo 3 Leyenda: fácil, difícil, muy difícil, opcional. Sección 3.1 1. Hallar el cuerpo de descomposición sobre Q del polinomio x 6 8, y calcular el grado de la extensión correspondiente.

Más detalles