La estructura de un cuerpo finito.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La estructura de un cuerpo finito."

Transcripción

1 9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica del cuerpo y n cierto natural. Después veremos que para cada natural n y cada primo p existe un único cuerpo (salvo isomorfismos) de p n elementos. A este cuerpo se le llama el cuerpo de Galois de orden p n y se le representa por GF (p n ) (las letras G y F son las iniciales de Galois field, es decir, el cuerpo de Galois). La estructura de un cuerpo finito. Todo cuerpo finito de característica p (para cierto primo p) tiene orden potencia de p Lema. Sea F E una extensión de grado n, con F = q N. Entonces E = q n. Sea {α 1,..., α n } una base de E como espacio vectorial sobre F. Cada elemento u F se escribe de forma única como u = u 1 α u n α n, con u 1,..., u n F. Como cada u i puede ser uno de los elementos de F, es decir, hay q diferentes u 1,..., q diferentes u n, el número total de elementos de E es q n Corolario. Si E es un cuerpo finito, entonces E = p n, para cierto n N, donde p es la característica de E. Si E tiene característica p, existe un subcuerpo F de E que es isomorfo a Z p. Ahora aplicamos el resultado anterior a F E, que es una extensión finita de grado, digamos n, y tenemos que E = p n. Ahora miramos la estructura multiplicativa de un cuerpo finito E. El siguiente resultado nos dice cómo se construye E a partir de su subcuerpo primo. En lo que sigue supondremos que un cuerpo de característica p contiene a Z p como subcuerpo Teorema. Un cuerpo finito E de p n elementos es (salvo isomorfismos) el cuerpo de descomposición del polinomio x pn x Z p [x]. 1

2 2 Álgebra Clásica. Curso 03/04 Sea E un cuerpo con p n elementos, donde p es su característica. El par (E, ), formado por los elementos no nulos de E y el producto del cuerpo, es un grupo con p n 1 elementos. Consideremos α E. Como el orden de α en (E, ) divide al orden de (E, ), que es p n 1, α pn 1 = 1. Si multiplicamos por α esta igualdad tenemos que α pn = α. Si ahora consideramos el polinomio x pn x Z p [x], por lo que acabamos de demostrar, resulta que α es un cero de dicho polinomio. También 0 es un cero del polinomio. Así, todos los elementos de E son ceros de dicho polinomio que, como tiene grado p n, tiene a lo sumo p n ceros en E. Esto nos dice que los elementos de E son los ceros de tal polinomio y el resultado queda probado Definiciones. Un elemento α perteneciente a un cuerpo es una raíz n-ésima de la unidad si α n = 1. Si α m 1, cualquiera que sea el natural m < n, se dice que α es una raíz primitiva n-ésima de la unidad. Según esta definición, con el resultado anterior lo que hemos probado es que los elementos no nulos de un cuerpo de p n elementos son las raíces n-ésimas de la unidad Ejemplos. En Z 5 todo elemento no nulo α satisface α 10 = 1, luego todo elemento no nulo de Z 5 es raíz 10-ésima de la unidad. Sin embargo, ninguna es primitiva porque α 4 = 1. Sí son raíces primitivas 4-ésimas de la unidad los elementos 2 y 3. No lo es 4 (porque 4 2 = 1) Lema. Sea F un cuerpo, y sea U n el subconjunto de las raíces n-ésimas de la unidad en F. Entonces U n es un subgrupo de (F, ). Si α, β U n, (αβ 1 ) n = α n (β 1 ) n = α n (β n ) 1 = 1.1 = 1, luego αβ 1 U n. Como 1 U n, el lema queda probado Proposición. Sea F un cuerpo. Todo subgrupo finito G de (F, ) es cíclico. Sabemos que como G es un grupo abeliano finito es isomorfo a Z m1... Z mr, donde m 1,..., m r son naturales y podemos elegirlos de forma que m i 1 divida a m i, m para i = {2,..., r}. Si α i Z mi, α i m i = 1, y como m i divide a m r, α r i = 1, luego todo elemento α de G satisface α m r = 1. Como la ecuación X m r 1 = 0 tiene, a lo

3 Álgebra Clásica. Curso 03/04 3 sumo m r soluciones en F, y G = Π r i 1 m i, necesariamente r = 1, luego G = Z m1, que es cíclico. De este resultado se deducen de manera inmediata los siguientes corolarios: 9.8. Corolario. Sea F un cuerpo, y sea U n el subconjunto de las raíces n-ésimas de la unidad en F. Entonces U n es un subgrupo cíclico de (F, ) Corolario. Si F es un cuerpo finito, (F, ) es un grupo cíclico Corolario. Toda extensión finita de un cuerpo finito es una extensión simple. Sea F E una extensión finita, y sea F finito. Por (9.7), (E, ) es un grupo cíclico, luego existe α E que genera tal grupo cíclico. En tal caso, E = F (α) Ejemplos. Consideremos el cuerpo Z 11. Por el Corolario 9.9, (Z 11, ) (Z 11 en adelante), es cíclico. Tratemos de encontrar un generador. Para ello, comencemos con 2. Como Z 11 tiene 10 elementos, por el Teorema de Lagrange el orden de 2 divide a 10, es decir, es 2, 5 o 10. Como 2 2 = 4 1 y 2 5 = 1 1, 2 es un generador; dicho con otras palabras, 2 es una raíz primitiva 10-ésima de la unidad en Z 11. Ahora, determinemos todas las raíces primitivas 10-ésimas de la unidad en Z 11, equivalentemente, los generadores de Z 11. Sabemos que todo generador de este grupo ha de ser de la forma 2 n, con n primo relativo con 10. Por tanto, las raíces primitivas 10-ésimas de la unidad en Z 11 son: 2 1, 2 3 = 8, 2 7 = 7 y 2 9 = 6. Si ahora queremos conocer las raíces primitivas 5-ésimas de la unidad en Z 11, hemos de tener en cuenta que éstas son de la forma 2 m, siendo el máximo común divisor de m y 10 igual a 2, y éstas son: 2 2 = 4, 2 4 = 5, 2 6 = 9 y 2 8 = 3. Raíces primitivas 2-ésimas de la unidad en Z 11 sólo hay una: 2 5 = 10 = 1. Observemos que hablar de raíces m-ésimas es lo mismo que hablar de los elementos de un subgrupo H de orden m en Z 11 (por el Teorema de Lagrange m sólo puede ser 1, 2, 5 o 10), y que hablar de las raíces primitivas m-ésimas es hablar de los generadores de H.

4 4 Álgebra Clásica. Curso 03/ Lema. La Existencia de GF(p n ). Sea F un cuerpo finito de característica p. Entonces f(x) = x pn x F [x] tiene p n ceros distintos en el cuerpo de descomposición K de f(x) sobre F (F K F ). Veamos que la multiplicidad de cada cero de f(x) en K es 1. Sea α 0 un cero de g(x). Como α es no nulo, será también un cero de g(x) = x pn 1 1, luego (x α) divide a g(x). Sea h(x) = g(x) (x α) = n xp 2 + αx pn 3 + α 2 x pn α pn 3 x + α pn 2. Observemos que h(x) tiene p n 1 sumandos, y que cada sumando al ser evaluado en α da α pn 2 = αpn 1 α = 1 α, luego h(α) = [(pn 1) 1]α 1 = α 1 0, lo que concluye la demostración Teorema. Para cada primo p y cada natural n existe un cuerpo que tiene p n elementos. Sea K Z p el cuerpo de descomposición de f(x) = x pn x Z p [x] sobre Z p, y sea F el subconjunto de K formado por todos los ceros (en K) de f(x). Es inmediato probar que F es cerrado para la suma, el opuesto, el producto y el inverso; además 0 y 1 están en F, lo que demuestra que F es un cuerpo, subcuerpo de K, que contiene a Z p. Como K es el menor subcuerpo de Z p que contiene a Z p y a las raíces de f(x), K = F. Además, por el resultado anterior, todos los ceros de f(x) tienen multiplicidad 1, luego F = p n Definición. Para cada primo p y cada natural n existe un cuerpo que tiene p n elementos y es el cuerpo de descomposición de x pn x en Z p (Teorema 9.13). Llamémosle GF (p n ). Además, si E es otro cuerpo con p n elementos, por el Teorema 9.3, E es el cuerpo de descomposición de x pn x sobre Z p (en realidad, sobre el subcuerpo de E isomorfo a Z p ), luego GF (p n ) y E son isomorfos, así que GF (p n ) es único salvo isomorfismos. A este cuerpo de orden p n, único salvo isomorfismos, se le llama el cuerpo de Galois de orden p n Corolario. Sea F un cuerpo finito. f(x) F [x] de grado n. Para cada natural n existe un polinomio irreducible

5 Álgebra Clásica. Curso 03/04 5 Supongamos que F tiene p r elementos, donde p es su característica. Por el Teorema 9.13 existe un cuerpo, E = GF (p rn ), que contiene una copia de Z p, y es el cuepo de descomposición de x prn x sobre Z p. Por el Teorema 9.3 todo elemento de F es un cero de x pr x. Si ahora tenemos en cuenta que para cualquier s N, p rs = p r p r(s 1) y que todo elemento α de F satisface α pr = α, tenemos: α prn = α pr p r(n 1) = (α pr ) pr(n 1) = α pr(n 1) =... = α pr = α, así que F E. Por el primer resultado del tema, [E : F ] = n. Por otro lado, por el Corolario 9.10, F E es una extensión simple, luego existe β F tal que E = F (β). Como [E : F ] = deg(β, F ), irr(β, F ) debe tener grado n.

Extensiones normales.

Extensiones normales. 10. TEORÍA DE GALOIS Este capítulo, donde se establece el Teorema Principal de la Teoría de Galois, puede ser considerado como la culminación de la asignatura. Aquí se relacionarán las Teorías de Grupos

Más detalles

Extensiones finitas.

Extensiones finitas. 2. EXTENSIONES ALGEBRAICAS. Hemos dividido este tema en dos secciones: Extensiones finitas, y Clausura algebraica. En la primera relacionamos extensión finita y extensión algebraica: probamos que toda

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS OTROS RESULTADOS SOBRE CUERPOS FINITOS. El grupo multiplicativo de un cuerpo finito es como hemos visto un grupo cíclico. Lo cuál nos permite encontrar propiedades especiales

Más detalles

8.1. Extensiones algebraicas. Grado.

8.1. Extensiones algebraicas. Grado. 1 Tema 8.-. Extensiones algebraicas. Cuerpos de descomposición. Elemento primitivo. 8.1. Extensiones algebraicas. Grado. Si k es un subcuerpo de K, diremos que K es una extensión de k, que notaremos K

Más detalles

Los isomorfismos básicos de la teoría de cuerpos algebraicos.

Los isomorfismos básicos de la teoría de cuerpos algebraicos. 4. AUTOMORFISMOS DE CUERPOS. En este tema probaremos que dos elementos α y β, conjugados sobre un cuerpo F, determinan un isomorfismo entre los cuerpos F (α) y F (β). También cierto recíproco será válido.

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 Sea f(x) = x 2 + x + 1 sobre GF(2). Como se puede observar no tiene raíces en GF(2), pero si en la extensión del

Más detalles

Cuerpos Finitos. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014

Cuerpos Finitos. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014 Cuerpos Finitos XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Cuerpos y extensiones de cuerpos Un cuerpo (F, +, ) es un conjunto no vacío en el que se han definido dos operaciones

Más detalles

Extensiones algebraicas. Cuerpos de descomposición.

Extensiones algebraicas. Cuerpos de descomposición. Temas 10-11.- 10-11.1 Extensiones algebraicas. Cuerpos de descomposición. Si k es un subcuerpo de K, diremos que K es una extensión de k, que notaremos K k. Si K k es una extensión y E K es un subconjunto,

Más detalles

Ceros en extensiones.

Ceros en extensiones. 1. EXTENSIONES DE CUERPOS. Varios son los objetivos de este tema. El primero de ellos, resultado debido a Kronecker, es probar que todo polinomio con coeficientes en un cuerpo tiene una raíz en un cuerpo

Más detalles

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 1 Tema 9.-. Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 9.1. Caracteres de un grupo. A la hora de resolver una ecuación f(x) = 0 con f(x) k[x], tomamos un

Más detalles

Campos finitos y teoría de Galois

Campos finitos y teoría de Galois Campos finitos y teoría de Galois José Ibrahim Villanueva Gutiérrez 1. Campos finitos 1.0.1. Campos finitos Recordemos la siguiente definición. Definición 1. Un campo K es un conjunto con dos operaciones

Más detalles

9 Grupos abelianos libres

9 Grupos abelianos libres 42 TEORIA DE GRUPOS 9 Grupos abelianos libres En Álgebra Lineal es clásica la estructura de espacio vectorial V sobre un cuerpo K. Esta sección trata de estudiar el caso análogo de un grupo abeliano sobre

Más detalles

Anillos de Galois. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014

Anillos de Galois. XXVII Escuela Venezolana de Matemáticas EMALCA. Edgar Martínez-Moro Sept. 2014 Anillos de Galois XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Definición y primeras propiedades Un anillo asociativo A se llama anillo de Galois (denotado GR por sus siglas

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

ALGEBRA LINEAL Segundo Semestre. Parte II

ALGEBRA LINEAL Segundo Semestre. Parte II 1 Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas ALGEBRA LINEAL 2015 Segundo Semestre Parte II 2 1. Valores y Vectores propios. Diagonalización.Forma de Jordan. 1.1. Polinomios

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS RAÍCES MÚLTIPLES. Dado un polinomio con coeficientes en un cuerpo existirá siempre un elemento del cuerpo que anula el polinomio? Siempre existe un cuerpo donde podamos encontrar

Más detalles

una aplicación biyectiva h : A A.

una aplicación biyectiva h : A A. Álgebra Básica Examen de septiembre 9-9-016 apellidos nombre Observaciones: -) Los cuatro ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global. -)

Más detalles

Peter Ludwig Mejdell Sylow, matemático noruego ( ).

Peter Ludwig Mejdell Sylow, matemático noruego ( ). CONCURSO ÁLGEBRA Y LÓGICA 473426 PRUEBA DE OPOSICIÓN: DR. MARCO ANDRÉS FARINATI Teoremas de Sylow [1872, Math. Ann.] Peter Ludwig Mejdell Sylow, matemático noruego (1832-1918). Sea G un grupo finito y

Más detalles

Exámenes de álgebra básica de enero de Grupos 1 y 3.

Exámenes de álgebra básica de enero de Grupos 1 y 3. Exámenes de álgebra básica de enero de 2019. Grupos 1 y 3. GRUPOS 1. Calcular razonadamente todos los subgrupos normales de S 4. Un subgrupo H de un grupo G es normal si y solamente si para cada g G se

Más detalles

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos

EL TEOREMA DE SEIFERT-VAN KAMPEN. 1. Preliminares sobre grupos EL TEOREMA DE SEIFERT-VAN KAMPEN 1. Preliminares sobre grupos Sea G un grupo. Denotaremos de forma multiplicativa la operación en G. Así, el producto de x, y G es x y, y el inverso de x G es x 1. Para

Más detalles

Ejercicios del Capítulo 3

Ejercicios del Capítulo 3 69 Ejercicios del Capítulo 3 Leyenda: fácil, difícil, muy difícil, opcional. Sección 3.1 1. Hallar el cuerpo de descomposición sobre Q del polinomio x 6 8, y calcular el grado de la extensión correspondiente.

Más detalles

520142: ALGEBRA y ALGEBRA LINEAL

520142: ALGEBRA y ALGEBRA LINEAL 520142: ALGEBRA y ALGEBRA LINEAL Segundo Semestre 2008, Universidad de Concepción CAPITULO 10: Espacios Vectoriales DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición

Más detalles

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014 Apuntes de teoría Departamento de Álgebra Universidad de Sevilla Tema 3: Teoría de Galois. Nota: Los apuntes de este tema se basan principalmente

Más detalles

11 El subgrupo de torsión. Teorema de invariancia

11 El subgrupo de torsión. Teorema de invariancia 64 TEORIA DE GRUPOS 11 El subgrupo de torsión. Teorema de invariancia La descomposición de un grupo abeliano de tipo finito en suma directa de subgrupos cíclicos y/o monógenos no es única. De hecho, Z

Más detalles

Universidad Autónoma de Madrid Martes 19 de junio de Examen final: Álgebra II

Universidad Autónoma de Madrid Martes 19 de junio de Examen final: Álgebra II Universidad Autónoma de Madrid Martes 19 de junio de 2007 Examen final: Álgebra II Apellidos: D.N.I.: Nombre: Grupo: IMPORTANTE: Justifica todas tus respuestas. 1. Decide razonadamente si las siguientes

Más detalles

NOTAS DE TRABAJO, 16 EXTENSIONES DE CUERPOS

NOTAS DE TRABAJO, 16 EXTENSIONES DE CUERPOS NOTAS DE TRABAJO, 16 EXTENSIONES DE CUERPOS Teoría de Galois Pascual Jara Martínez Departamento de Álgebra. Universidad de Granada Granada, 2001 2017 Primera redacción: 2001. Segunda redacción: Julio 2014.

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS CLASIFICACIÓN DE GRUPOS FINITOS. Vamos a ver una clasificación de los grupos finitos. Va a ser un poco superficial, pero nos dará una idea de como puede ser usada en algunas aplicaciones.

Más detalles

Algebra III (Grado en Matemáticas)

Algebra III (Grado en Matemáticas) Algebra III (Grado en Matemáticas) Relación de ejercicios de exámenes propuestos en los cursos 2013-14, 2014-15 y 2015-16 (Extensiones de cuerpos y Teoría de Galois) Curso 2016-2017 1. a) Dado f = (X 6

Más detalles

José F. Fernando y José Manuel Gamboa

José F. Fernando y José Manuel Gamboa ECUACIONES ALGEBRAICAS, CURSO 2016-2017 José F. Fernando y José Manuel Gamboa Polinomios en varias variables 1. Calcular la suma de los cubos de las raíces en C del polinomio f(t) := t 3 2t 2 + 3t 4? 2.

Más detalles

2.2. Extensiones de cuerpos

2.2. Extensiones de cuerpos 29 2.2. Extensiones de cuerpos Habitualmente, para resolver una ecuación algebraica no basta con hacer sumas, restas, multiplicaciones y divisiones de los coeficientes, sino que tenemos que añadir algo

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Estructuras Algebraicas Módulos noetherianos y Artinianos Zarate Sebastian 8 de julio de 2015 Índice 1. Preliminares 1 1.1. Grupos................................... 1 1.2. Anillos...................................

Más detalles

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados.

Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 215/216 Tema 2: Teorema de estructura de los grupos abelianos finitamente generados. 1.1. Grupo abeliano libre. Bases. Definición 1.1. El grupo Z n con

Más detalles

0. Enteros. 10. Prueba que el cuadrado de todo número impar deja resto 1 al dividirlo por 8. es un número entero.

0. Enteros. 10. Prueba que el cuadrado de todo número impar deja resto 1 al dividirlo por 8. es un número entero. Introducción al Álgebra (curso 00-003) 1 0. Enteros 1. Para los números enteros a y b que se citan, halla su máximo común divisor y mínimo común múltiplo, así como enteros n y m tales que na + mb sea el

Más detalles

Álgebra II Primer Cuatrimestre 2007

Álgebra II Primer Cuatrimestre 2007 Álgebra II Primer Cuatrimestre 2007 Práctica 7: Teoremas clásicos de estructura 1. Módulos y anillos semisimples 1.1. Sea A un anillo y sea M un A-módulo simple. Entonces o bien M, considerado como grupo

Más detalles

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 SOLUCIONES Ejercicio 1 (5 puntos). Sea A un anillo conmutativo y K un cuerpo. a) Definir: i) Unidad en A. ii) Elemento irreducible

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Ejercicios de Álgebra Básica. Curso 2016/17

Ejercicios de Álgebra Básica. Curso 2016/17 Tema 4: Polinomios Ejercicios de Álgebra Básica. Curso 2016/17 El anillo k[x]. Divisibilidad Ejercicio 1. Sea A un anillo. Prueba que, si A es dominio de integridad, A[x] = A y demuestra con un contraejemplo

Más detalles

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad

Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad Tema 1.- Nociones preliminares: grupos, anillos, cuerpos. Divisibilidad 1.1 Grupos Al haber alterado el orden de los temas, este apartado ya se ha visto en el tema 9 1.2 Anillos y cuerpos Definición 1.2.1.

Más detalles

Aplicaciones de la teoría de Galois

Aplicaciones de la teoría de Galois Tema 13.-. Aplicaciones de la teoría de Galois 13.1. Resolubilidad por radicales Se trata en este punto de caracterizar las ecuaciones que son resolubles por radicales en términos de su grupo de Galois.

Más detalles

6.1. Anillos de polinomios.

6.1. Anillos de polinomios. 1 Tema 6.-. Anillo de polinomios. División y factorización. Lema de Gauss. 6.1. Anillos de polinomios. Definición 6.1.1. Sea A un anillo. El anillo de polinomios en la indeterminada X con coeficientes

Más detalles

XXVII Escuela Venezolana de Matemáticas EMALCA. Códigos (I) Edgar Martínez-Moro Sept. 2014

XXVII Escuela Venezolana de Matemáticas EMALCA. Códigos (I) Edgar Martínez-Moro Sept. 2014 XXVII Escuela Venezolana de Matemáticas EMALCA Códigos (I) Edgar Martínez-Moro Sept. 2014 Códigos correctores Un código corrector de errores es un subconjunto C A n, siendo A un alfabeto finito y n un

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Espacios Vectoriales Verónica Briceño V. noviembre 2013 Verónica Briceño V. () Espacios Vectoriales noviembre 2013 1 / 47 En esta Presentación... En esta Presentación veremos: Espacios

Más detalles

Intersección y suma de subespacios

Intersección y suma de subespacios Intersección y suma de subespacios Objetivos Demostrar que la intersección y la suma de dos subespacios de un espacio vectorial también son sus subespaicios Requisitos Espacio vectorial, subespacio vectorial

Más detalles

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b Capítulo 3 Anillos Hemos utilizado estructuras en las que hay dos operaciones, como la suma y el producto en Z. El objeto más básico de este tipo es un anillo, cuyos axiomas son bastante parecidos a los

Más detalles

58 7. ESPACIOS COCIENTE

58 7. ESPACIOS COCIENTE CAPíULO 7 Espacios cociente En esta sección estudiamos el cociente de un espacio vectorial por un subespacio W. Este cociente se define como el conjunto cociente de por una relación de equivalencia conveniente.

Más detalles

Álgebra III Práctica 3 Segundo Cuatrimestre de 2018

Álgebra III Práctica 3 Segundo Cuatrimestre de 2018 Departamento de Matemática - Facultad de Ciencias Exactas y Naturales - UBA 1 Álgebra III Práctica 3 Segundo Cuatrimestre de 2018 Extensiones normales, separables e inseparables Ejercicio 1. Determinar

Más detalles

Algebra II. Relación 2. Curso Grupos: generalidades y ejemplos. Ejercicio 2. Describir explícitamente la tabla de multiplicar de los grupos

Algebra II. Relación 2. Curso Grupos: generalidades y ejemplos. Ejercicio 2. Describir explícitamente la tabla de multiplicar de los grupos Algebra II Relación 2 Curso 2017-2018 Grupos: generalidades y ejemplos Ejercicio 1. Describir explícitamente la tabla de multiplicar de los grupos Z n para n = 4, n = 6 y n = 8, donde por Z n denotamos

Más detalles

Polinomios (lista de problemas para examen)

Polinomios (lista de problemas para examen) Polinomios (lista de problemas para examen) En esta lista de problemas el conjunto de los polinomios de una variable con coeficientes complejos se denota por P(C). También se usa la notación C[x], si la

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-2 SEMANA 7: ESPACIOS VECTORIALES 3.5. Generadores de un espacio vectorial Sea V un espacio vectorial

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Polinomios Sea (A, +,.) un anillo conmutativo. Indicamos con A[x] al conjunto de polinomios en una indeterminada x con coeficientes en

Más detalles

Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss.

Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss. Tema 7.- Divisibilidad. Dominios de factorización única. Lema de Gauss. 7.1 Divisibilidad Definición 7.1.1. Sea A un dominio de integridad. 1. Sean a, b A, cona 0. Sediráquea divide a b, oquea es un divisor

Más detalles

Anillo de polinomios con coeficientes en un cuerpo

Anillo de polinomios con coeficientes en un cuerpo Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 10[1/14] 26 de abril de 2007 Semana 10[2/14] Grupos Un grupo es un caso particular de una estructura algebraica. Veremos que esta noción rescata ampliamente las propiedades de estructuras tales

Más detalles

Teoría de Galois. τ((a+bi)+(c+di)) = τ((a+c)+i(b+d)) = (a+c) i(b+d) = (a ib)+(c id) = τ(a+ib)+τ(c+id).

Teoría de Galois. τ((a+bi)+(c+di)) = τ((a+c)+i(b+d)) = (a+c) i(b+d) = (a ib)+(c id) = τ(a+ib)+τ(c+id). CAPÍTULO 14 Teoría de Galois 14.1. DEFINICIONES BÁSICAS. Sea τ la función τ : C C definida por τ(a+bi) = a bi. Pruebe que τ es un automorfismo de C. Solución. Tenemos que Además, se tiene que τ((a+bi)+(c+di))

Más detalles

Álgebra y estructuras finitas/discretas (Grupos A)

Álgebra y estructuras finitas/discretas (Grupos A) Álgebra y estructuras finitas/discretas (Grupos A) Curso 2007-2008 Soluciones a algunos de los ejercicios propuestos en el Tema 2 Antes de ver la solución de un ejercicio, repase la teoría correspondiente

Más detalles

Anillos finitos locales

Anillos finitos locales Anillos finitos locales XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Estructura de los anillos finitos Un anillo conmutativo A es local si tiene un único ideal maximal

Más detalles

1 Introducción al Álgebra conmutativa

1 Introducción al Álgebra conmutativa 1 Introducción al Álgebra conmutativa Escrito por: Patrizio Guagliardo y Miguel Monsalve. A continuación, daremos algunas definiciones básicas de estructuras algebraicas para empezar a trabajar rápidamente

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS GRUPOS CÍCLICOS. Los grupos que pueden ser generados por un único elemento se llaman Grupos Cíclicos. Un único elemento como generador hace que sea fácil trabajar con ellos. Además,

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros.

Preliminares. 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. CAPíTULO 1 Preliminares 1. Notación simbólica. Conjuntos. También se da en el curso de Conjuntos y Numeros. El método matemático es axiomático y deductivo: a partir de unos principios aceptados inicialmente

Más detalles

ÁLGEBRA II Primer Cuatrimestre 2014

ÁLGEBRA II Primer Cuatrimestre 2014 ÁLGEBRA II Primer Cuatrimestre 2014 Práctica 1: Grupos - Primera Parte Definiciones y ejemplos 1.1. (a) Sea n y sea n = {z : z n = 1}. Mostrar que n, con respecto al producto de es un grupo abeliano cíclico.

Más detalles

Estructura de los Grupos

Estructura de los Grupos Capítulo 6 Estructura de los Grupos 6.1 Introducción En nuestro viaje dentro de la teoría de grupos, hemos estudiado muchos ejemplos de grupos interesantes, como los grupos de simetría, los enteros módulo

Más detalles

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010

Polinomios (II) Polinomios reales irreducibles. Pares de raíces conjugadas. Sesión teórica 4 (págs ) 27 de septiembre de 2010 Polinomios (II) 1 Sesión teórica 4 (págs. 3-9) 7 de septiembre de 010 Pares de raíces conjugadas irreducibles Consideremos un polinomio f (x) =a0 + a1x + ax + + anx n R[x], es decir, con coeficientes reales

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

Cuatro Problemas de Algebra en la IMO.

Cuatro Problemas de Algebra en la IMO. Cuatro Problemas de Algebra en la IMO. Rafael Sánchez Lamoneda UCV. Escuela de Matemáticas Barquisimeto, 10 de Marzo de 2008 Introducción. El objetivo de esta conferencia es analizar cuatro problemas de

Más detalles

Álgebra. Curso

Álgebra. Curso Álgebra. Curso 2012-2013 1 de julio de 2013 Resolución Primera parte Ejercicio. 1. (A) Dado F C[X] tal que (F, F ) = 1, prueba que C[X]/(F ) es un anillo reducido, esto es, sin elementos nilpotentes no

Más detalles

ALGEBRA MODERNA Examen Parcial 1: Respuestas y Sugerencias

ALGEBRA MODERNA Examen Parcial 1: Respuestas y Sugerencias ALGEBRA MODERNA Examen Parcial 1: Respuestas y Sugerencias 21 de abril de 2004 1 Da las definiciones de grupo, subgrupo normal y acción de un grupo G en un conjunto X. Definición. La pareja (G, ), donde

Más detalles

Transformaciones lineales

Transformaciones lineales CAPíTULO 4 Transformaciones lineales En este capítulo estudiamos las primeras propiedades de las transformaciones lineales entre espacios vectoriales. 1. Construcciones de transformaciones lineales Lema

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Tema 4: CÓDIGOS CÍCLICOS Mayo de 2017 Tema 4 Códigos cíclicos 1 Definición

Más detalles

Tema 6.- Teorema de Riemann.

Tema 6.- Teorema de Riemann. Tema 6.- Teorema de Riemann. Sea C una curva plana proyectiva y sea X el modelo no singular. Teorema de Riemann.- Existe g N tal que, para todo divisor D en X, se tiene d(d) grado(d) + 1 g. Dada la curva

Más detalles

Teoremas de Taylor. Capítulo 7

Teoremas de Taylor. Capítulo 7 Capítulo 7 Teoremas de Taylor Una vez más nos disponemos a extender a las funciones de varias variables resultados ya conocidos para funciones de una variable, los teoremas de aproximación de Taylor. Por

Más detalles

Veamos que la operación multiplicación heredada de Z m es interna:

Veamos que la operación multiplicación heredada de Z m es interna: Tema 3 El cuerpo (, +,.) (p número primo) 3.1 El grupo multiplicativo En el tema anterior se vio que (Z m, +,.) es un anillo conmutativo con elementos identidad. No preguntamos ahora para qué elementos

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Capítulo 5 Aplicaciones Lineales 51 Definición y Propiedades Sean V y W dos espacios vectoriales sobre el mismo cuerpo K Definición 511 Se dice que una aplicación f : V W es una aplicación lineal o un

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2016 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Capítulo 7 Aplicaciones Lineales 7.1 Definición y Propiedades Sean V y W dos espacios vectoriales sobre el mismo cuerpo K. Definición 7.1.1 Se dice que una aplicación f : V W es una aplicación lineal o

Más detalles

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS

LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS LEYES DE COMPOSICIÓN INTERNA Y ELEMENTOS DISTINGUIDOS Sea una estructura formada por un conjunto A, sobre cuyos elementos se ha definido una operación o ley interna, comúnmente denotada por " * ", que

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales [Versión preliminar] Prof. Isabel Arratia Z. Algebra Lineal 1 En el estudio de las matrices y, en particular, de los sistemas de ecuaciones lineales realizamos sumas y multiplicación

Más detalles

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión

Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión EJERCICIOS ESTRUCTURAS ALGEBRAICAS (2004-2005) 1 Ejercicio 70 : En este ejercicio vamos a caracterizar completamente la expresión f = a 1 f 1 +... + a s f s + r que se obtiene al aplicar el algoritmo de

Más detalles

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares).

Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Capítulo 6 Espacios Vectoriales 6.1 Definiciones Sea V un conjunto no vacío (cuyos elementos se llamarán vectores) y sea K un cuerpo (cuyos elementos se llamarán escalares). Definición 6.1.1 Se dice que

Más detalles

Estructuras algebraicas

Estructuras algebraicas Semana 11[1/22] 4 de mayo de 2007 Anillos y cuerpos Semana 11[2/22] Anillos Comenzamos ahora el estudio de estructuras algebraicas que tengan definidas dos operaciones, y las clasificaremos en anillos

Más detalles

Clase de Álgebra Lineal

Clase de Álgebra Lineal Clase de Álgebra Lineal M.Sc. Carlos Mario De Oro Facultad de Ciencias Básicas Departamento de matemáticas 04.2017 Page 1 Espacios vectoriales Definicion. Espacio Vectorial (E.V.) Un V espacio vectorial

Más detalles

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema

Más detalles

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo.

1. (F, +) es un grupo abeliano, denominado el grupo aditivo del campo. Capítulo 5 Campos finitos 5.1. Introducción Presentaremos algunos conceptos básicos de la teoría de los campos finitos. Para mayor información, consultar el texto de McEliece [61] o el de Lidl y Niederreiter

Más detalles

Álgebra Básica Primera parte

Álgebra Básica Primera parte Álgebra Básica Primera parte 21-1-2016 apellidos nombre Observaciones: -) Todos los ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global, según se

Más detalles

4.1 Anillo de polinomios con coeficientes en un cuerpo

4.1 Anillo de polinomios con coeficientes en un cuerpo Tema 4 Polinomios 4.1 Anillo de polinomios con coeficientes en un cuerpo Aunque se puede definir el conjunto de los polinomios con coeficientes en un anillo, nuestro estudio se va a centrar en el conjunto

Más detalles

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla

Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014. Apuntes de teoría. Departamento de Álgebra Universidad de Sevilla Estructuras algebraicas Grado en Matemáticas. Curso 2013/2014 Apuntes de teoría Departamento de Álgebra Universidad de Sevilla Tema 2: Anillos e ideales. Divisibilidad y factorización. 2.1. Anillos, subanillos

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Problemas resueltos de Teoría de Galois

Problemas resueltos de Teoría de Galois Problemas resueltos de Teoría de Galois Redactados por Lorena Vidal Blasco Becaria de Colaboración del Departamento de Algebra de la Universidad de Valencia 23.09.09 1.Sea k = Z/pZ, p primo y p(x) k[x]

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2017 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Tema 1. Anillos e ideales. Operaciones. Divisibilidad

Tema 1. Anillos e ideales. Operaciones. Divisibilidad Tema 1. Anillos e ideales. Operaciones. Divisibilidad y factorización. La parte correspondiente a Anillos e ideales. Operaciones se corresponde con el capítulo 1 del libro Atiyah, M.F., Macdonald, I.G.,

Más detalles

TIPOS DE GRUPOS. 1. Generadores Hemos visto que una buena idea para expresar un grupo es mediante

TIPOS DE GRUPOS. 1. Generadores Hemos visto que una buena idea para expresar un grupo es mediante TIPOS DE GRUPOS 1. Generadores Hemos visto que una buena idea para expresar un grupo es mediante generadores. Por ejemplo: C 8 = g 2π/8, D 6 = g 2π/6, r 0, S 3 = (12), (123), O(2, R) = g α, r 0 : α R y

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Un espacio vectorial sobre K es una conjunto V que cumple: 1) Existe una regla que asocia a dos elementos u, v V su suma que se denota por u + v, que es también elemento de V y que

Más detalles

ÁLGEBRA II Primer Cuatrimestre 2017

ÁLGEBRA II Primer Cuatrimestre 2017 ÁLGEBRA II Primer Cuatrimestre 2017 Práctica 1: Grupos - Primera Parte Definiciones y ejemplos 1.1. Probar que los siguientes conjuntos son grupos abelianos con el producto de números complejos. Determinar

Más detalles

ALGEBRA LINEAL Segundo Semestre. Parte II

ALGEBRA LINEAL Segundo Semestre. Parte II 1 Universidad Nacional de La Plata Facultad de Ciencias Astronómicas y Geofísicas ALGEBRA LINEAL 2015 Segundo Semestre Parte II 2 1. Valores y Vectores propios. Diagonalización.Forma de Jordan. 1.1. Polinomios

Más detalles

Tema 4: ESPACIOS VECTORIALES

Tema 4: ESPACIOS VECTORIALES Álgebra I - Curso 2005/06 - Grupos M1 y M2 Tema 4: ESPACIOS VECTORIALES por Mario López Gómez 1. Definición, propiedades y ejemplos. El concepto de espacio vectorial es sin duda uno de los más importantes

Más detalles