Cálculo Matemático. dx + 6y = 0, dx. dt + dy

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo Matemático. dx + 6y = 0, dx. dt + dy"

Transcripción

1 Cálculo Matemático. (Tema 11) Hoja 1 Escuela Universitaria de Arquitectura Técnica Cálculo Matemático. Tema 11: Ecuaciones diferenciales Curso Introducción Los términos ecuaciones diferenciales invitan a pensar en la busqueda de soluciones de ciertas ecuaciones donde la incógnita debe ser una función, dada la referencia a la diferenciabilidad. En este tema nos plantearemos el estudio de ciertas ecuaciones, tales como y + 2y + y = 0, siendo y = f(x) la incógnita que hemos de hallar. 2 Conceptos básicos Una ecuación que contiene las derivadas de una o más variables dependientes con respecto a una o más variables independientes es una ecuación diferencial. + 5y = d 2 y ex, 2 + 6y = 0, dt + dt = 2x + y El orden de una ecuación diferencial es el de la derivada de mayor orden en la ecuación. Por ejemplo d 2 ( ) 3 y y = e x es una ecuación diferencial de segundo orden. A veces las ecuaciones diferenciales de primer orden se escriben en la forma M(x, y) + N(x, y) = 0. Por ejemplo, si suponemos que y representa la variable dependiente en (y x) + 4x = 0, entonces y =, por lo que al dividir todo por obtenemos la expresión equivalente 4x y + y = x. En general escribiremos una ecuación diferencial de orden n como sigue F (x, y, y,..., y (n) ) = 0 o bien dn y n = f(x, y, y,..., y (n 1) ) Se llama solución de una ecuación diferencial a una función que al ser sustituida en la misma, la convierte en una identidad. Ejemplos. a) y = x4 16 es una solución de = x y. b) y = xe x es una solución de y 2y + y = 0. 3 Ecuaciones diferenciales ordinarias de primer orden Una ecuación diferencial ordinaria de primer orden y de primer grado, si se resuelve respecto a la derivada puede escribirse en la forma = f(x, y) En el caso sencillo de la ecuación = f(x), es fácil obtener la solución mediante integración y = f(x) + C la cual contiene una constante arbitraria, que puede calcularse si se conoce el valor y(x 0 ) = y 0, quedando y = y 0 + x x 0 f(x)

2 Cálculo Matemático. (Tema 11) Hoja 2 Este ejemplo pone de manifiesto que las soluciones de una ecuación diferencial de primer orden constituyen una familia de curvas, cada una de las cuales responde a lo que se domina un problema de valores iniciales. y = f(x, y) y(x 0 ) = y 0 Ejemplo. Resolver el problema de valores iniciales y = y y(0) = 3 La ecuación diferencial y = y tiene como solución general, la familia de funciones y = Ce x, la curva que verifica que y(0) = 3, es decir, que pasa por el punto (0, 3) es y = 3e x. Si cambiamos las condiciones iniciales, como por ejemplo y(1) = 2, estaremos buscando la curva de la familia que pasa por el punto (1, 2), que no es otra que la que se obtiene para C = 2e 1, con lo que obtenemos y = 2e x Ecuaciones con variables separadas Las ecuaciones separables o de variables separadas son ecuaciones diferenciales de la forma = g(x)h(y) o bien f 2(y) = f 1 (x) El método de resolución consiste en, una vez separadas las variables a ambos lados de la igualdad, integrar en cada miembro respecto a la variable correspondiente, es decir 1 h(y) = g(x) o bien f 2 (y) = f 1 (x) Ejemplos. 1. Resolver (1 + x) y = 0. (1 + x) = y 1 y = x 1 y = x ln y = ln 1 + x + c 1 de donde obtenemos y = e ln 1+x +c1 y = e ln 1+x e c1 y = C(1 + x) 2. Resolver el problema de valor inicial = x, y(4) = 3. y y = x y = x y2 2 = x2 2 + c 1 x 2 + y 2 = c 2 para obtener la solución que pasa por el punto (4, 3), basta con sustituir estos valores en x e y con lo que nos queda que c 2 = 25. Por lo tanto la solución buscada es x 2 + y 2 = 25

3 Cálculo Matemático. (Tema 11) Hoja 3 3. En ocasiones el procedimiento para solucionar una ecuación diferencial, nos puede llevar a la perdida de soluciones. Por ejemplo, para resolver la ecuación = y2 4, actuamos comos sigue y 2 4 = y 2 4 = despejando ahora la y obtenemos la solución general ln y 2 y + 2 = 4x + c 1 y 2 y + 2 = Ce4x y = Ce4x 1 Ce 4x Ahora bien, si factorizamos el lado derecho de la ecuación diferencial = y2 4, tenemos la expresión = (y 2)(y + 2), lo que pone de manifiesto que y = 2 e y = 2 son dos soluciones constantes (de equilibrio) de nuestra ecuación diferencial. La solución y = 2 se obtiene de nuestra solución general tomando C = 0, pero no se puede obtener y = 2 a partir de la solución general para ningún valor de C. 3.2 Ecuaciones diferenciales homogéneas Las ecuaciones diferenciales homogéneas son aquellas que pueden escribirse de la forma = f( y x ) las cuales se reducen a una de variables separadas tras efectuar el cambio z = y, o lo que es lo mismo x y = xz, obteniéndose = x dz Ejemplos. 1. x dz + z = f(z) + z, por lo que la ecuación se transforma en dz f(z) z = x = y x + tg y. Haciendo el cambio y = xz, obtenemos x dz f(z) z = ln x + lnk x = Ce x dz cosz dz + z = z + tgz = senz x senz = Cx sen y x = Cx dz f(z) z 2. (x + y) (y x) = 0. Para comprobar que es una ecuación diferencial homogénea, despejemos. efectuando el cambio y = xz, obtenemos (x + y) = (y x) = x + y y x = 1 + y x y x 1 x dz + z = 1 + z z 1 (z 1)dz 1 + 2z z 2 = x 1 2 ln 1 + 2z z2 = ln x + lnc x 2 + 2xy y 2 = C

4 Cálculo Matemático. (Tema 11) Hoja Ecuaciones diferenciales lineales de primer orden Se llama ecuación diferencial lineal de primer orden a una ecuación del tipo siguiente + p(x)y = f(x) donde p(x) y f(x) se considerarán funciones continuas. Si f(x) 0, la ecuación se dice homogénea y es en realidad una ecuación de variables separadas. En caso contrario la ecuación se dice no homogénea. Para solucionar las ecuaciones lineales no homogéneas, se procede como sigue: multiplicamos la ecuación por la p(x) expresión e, con lo que obtenemos p(x) e + p(x)e p(x) p(x) y = f(x)e o lo que es lo mismo d [ ] p(x) e p(x) y = f(x)e integrando a ambos lados nos queda p(x) e p(x) y = f(x)e y = e p(x) p(x) f(x)e Ejemplos. 1. y x = x2. Multiplicamos la ecuación por e 2. 1 x y x 2 = x d [ y 1 ] = x y 1x x = 1 x = 1, con lo que tenemos x x = x2 2 + C y = x3 2 + Cx y cotg x = 2x sen x. Multiplicamos la ecuación por e cotg x = 1, con lo que tenemos sen x 1 cos x y sen x sen 2 x = 2x d [ y ] 1 = 2x y sen x 1 sen x = 2x = x 2 +C y = x 2 sen x+csen x 3.4 Ecuaciones diferenciales exactas Puede suceder que el primer miembro de la ecuación M(x, y) + N(x, y) = 0 sea la diferencial total de cierta función u(x, y), es decir, du(x, y) = u u (x, y) + (x, y) = M(x, y) + N(x, y) x y y por lo tanto la ecuación diferencial puede ser escrita en la forma du(x, y) = 0 u(x, y) = C (solución de la ecuación, con C constante) A este tipo de ecuaciones diferenciales se les denomina ecuaciones exactas y una condición necesaria y suficiente para que una ecuación M(x, y) + N(x, y) = 0 lo sea es que

5 Cálculo Matemático. (Tema 11) Hoja 5 M y N (x, y) = (x, y) x La forma de resolver este tipo de ecuaciones es la siguiente. Dado que u u (x, y) = M(x, y) y (x, y) = N(x, y) x y podemos llegar a u(x, y), mediante integración de M(x, y) respecto a x o bien, mediante integración de N(x, y) respecto a y. En el primero de los casos tendríamos u(x, y) = M(x, y) + C(y) donde todo lo que dependa de y se considera constante en el proceso de integración. Para obtener la función C(y), bastará con imponer que u y (x, y) = [ ] M(x, y) + C (y) = N(x, y) y En el segundo u(x, y) = N(x, y) + C(x) donde todo lo que dependa de x se considera constante en el proceso de integración. Para obtener la función C(x), bastará con imponer que [ ] u (x, y) = N(x, y) + C (x) = M(x, y) x x Ejemplos. 1. (x + y + 1) + (x y 2 + 3) = 0. Dado que M(x, y) = x + y + 1 y que N(x, y) = x y 2 + 3, se tiene que (x + y + 1) y (x, y) = 1 = (x y2 + 3) (x, y) x con lo que se trata de una ecuación diferencial exacta, luego u(x, y) = M(x, y) + C(y) = (x + y + 1) + C(y) = x2 + yx + x + C(y) 2 para calcular C(y) u y (x, y) = x + C (y) = N(x, y) = x y C (y) = y C(y) = y y por lo que la solución será u(x, y) = C x2 2 + yx + x y y = C (C constante) 2. y sen x y cos x = 1. Escribiendo la ecuación en la forma equivalente (y sen x 1) cos x = 0, se tiene que M(x, y) = y sen x 1 y N(x, y) = cos x, por lo que (y sen x 1) (x, y) = sen x = y ( cos x) (x, y) x

6 Cálculo Matemático. (Tema 11) Hoja 6 para calcular C(x) u(x, y) = N(x, y) + C(x) = cos x + C(x) = ycosx + C(x) u x (x, y) = ysenx + C (x) = M(x, y) = y sen x 1 C (x) = 1 C(x) = x por lo que la solución será u(x, y) = C ycosx x = C (C constante) 4 Ecuaciones lineales de orden superior con coeficientes constantes Comenzaremos introduciendo algunos ejemplos en los que comparecen ecuaciones diferenciales lineales de orden superior y coeficientes constantes, para luego pasar a estudiar su resolución. 4.1 Vibraciones Mecánicas En la vida cotidiana aparacen diversos ejemplos de vibraciones mecánicas: automóviles al circular por suelo irregular, obras arquitectónicas sometidas a fuerzas exteriores, problemas de aeronáutica. etc. Para llegar a entender este tipo de movimientos se suele empezar estudiando un sistema muy sencillo, consistente en un resorte en espiral uno de cuyos extremos está fijo en un punto y en el otro está suspendido un cuerpo con una determinada masa. Para el estudio de este sistema recordemos dos leyes físicas fundamentales. Ley de Hooke: en un sistema resorte-masa la fuerza de restitución, opuesta a la dirección del alargamiento del resorte, es de magnitud proporcional al valor del alargamiento. Ejemplo: si un cuerpo de 2 Kg de masa estira el resorte 6 cm entonces el resorte ejerce una fuerza 6k con k > 0. Además se puede calcular k teniendo en cuenta que en la posición de equilibrio el peso y la fuerza de restitución son iguales en módulo y de sentidos opuestos, por lo que = 6k, por tanto k = Segunda Ley de Newton: si la masa de un cuerpo es constante, F = m a. Consideramos x(t) la posición en el instante t de la masa, partiendo de que x(0) = 0 es el punto de equilibrio, es decir, entendemos x > 0 cuando la posición del objeto está por debajo de la de equilibrio y x < 0 cuando está por encima. Analicemos ahora las distintas fuerzas que actúan sobre la masa m. Gravedad: fuerza dirigida hacia abajo de magnitud F 1 = m g.

7 Cálculo Matemático. (Tema 11) Hoja 7 Fuerza de restitución: fuerza hacia arriba ejercida por el resorte y que es proporcional al alargamiento. Si tomamos l como el alargamiento inicial, es decir, en la posición de equilibrio, en cada instante t el alargamiento será (l + x), luego F 2 = k(l + x) = kl kx. Pero en la posición de equilibrio esta fuerza es igual, en magnitud, al peso kl = mg. Por lo tanto F 2 = kx mg. Fuerza de amortiguación: fuerza de resistencia del medio. Supondremos que es proporcional a la velocidad de la masa, pero en dirección opuesta a ésta F 3 = b, b > 0; (b cte de amortiguación). dt Fuerzas externas: todas las fuerzas externas que actúan sobre la masa (magnéticas y de otros tipos) F 4 = f(t). Para simplificar supondremos que sólo dependen del tiempo y no de la posición. La trayectoria de la masa verifica entonces: m d2 x dt 2 = F 1 + F 2 + F 3 + F 4 = mg kx mg b dt + f(t), de donde se obtiene la ecuación diferencial de segundo orden m d2 x dt 2 + b + kx = f(t). dt Según los valores de b y f(t) se distinguen los siguientes casos: 1. b = 0, f(t) = 0. Sistema libre no amortiguado. Produce el movimiento armónico simple. El objeto no se para. 2. b > 0, f(t) = 0. Sistema libre amortiguado (a) Si b 2 < 4mk, movimiento oscilatorio o subamortiguado. El objeto oscila cada vez menos. (b) Si b 2 = 4mk, movimiento críticamente amortiguado. El objeto no oscila. (c) Si b 2 > 4mk, movimiento sobre amortiguado. El objeto no oscila. En cualquiera de los casos anteriores f(t) 0 con lo que la ecuación diferencial se reduce a m d2 x dt 2 + b + kx = 0. dt Si nos planteamos cómo deben ser las funciones solución de esta última ecuación, no sería muy descabellado pensar que han de ser exponenciales o trigonométricas, pues la ecuación nos dice que no debe haber mucha diferencia entre la función x(t) y sus derivadas. Ejemplos: d2 x dt x = 0; dt x 1(t) = e 4t cos(3t), x 2 (t) = e 4t sen(3t). d2 x dt dt + 25x = 0; x 1(t) = e 5t, x 2 (t) = te 5t.

8 Cálculo Matemático. (Tema 11) Hoja Teoría general La ecuación homogénea Pasemos a continuación a demostrar una serie de propiedades de las soluciones de las ecuaciones diferenciales lineales homogéneas, que nos ayudarán a entender el método de resolución de éstas. Sea la ecuación diferencial a 0 y (n) (x) + a 1 y (n 1) (x) a n y(x) = f(x) (4.1) donde a 0, a 1,..., a n son constantes reales, y(x) C n, f(x) C (a x b). En caso de que f 0 (función nula) la ecuación (4.1) se dice homogénea a 0 y (n) (x) + a 1 y (n 1) (x) a n y(x) = 0. (4.2) Proposición. Si y 1 (x) es solución de la ecuación lineal homogénea (4.2), entonces Cy 1 (x) es también solución de la ecuación (4.2) para toda constante C. Demostración. Dado que para todo k N se verifica que igualdad (4.2) aplicado a Cy 1 (x) quedaría dk k [Cy 1(x)] = Cy (k) 1 (x), el lado derecho de la o lo que es lo mismo a 0 Cy (n) 1 (x) + a 1 Cy (n 1) 1 (x) a n Cy 1 (x) C[a 0 y (n) 1 (x) + a 1 y (n 1) 1 (x) a n y 1 (x)] = 0. Nótese que la suma expresada entre corchetes es cero, ya que y 1 (x) es solución de (4.2). Proposición. Si y 1 (x) e y 2 (x) son dos soluciones de la ecuación homogénea (4.2), entonces y 1 (x) + y 2 (x) también es solución de dicha ecuación. Demostración. Dado que para todo k N se verifica que derecho de la igualdad (4.2) aplicado a y 1 (x) + y 2 (x) quedaría dk k [y 1(x) + y 2 (x)] = y (k) 1 (x) + y(k) 2 (x), el lado o lo que es lo mismo a 0 [y (n) 1 (x) + y (n) 2 (x)] + a 1 [y (n 1) 1 (x) + y (n 1) 2 (x)] a n [y 1 (x) + y 2 (x)] [a 0 y (n) 1 (x) + a 1 y (n 1) 1 (x) a n y 1 (x)] + [a 0 y (n) 2 (x) + a 1 y (n 1) 2 (x) a n y 2 (x)] = 0 nótese que las sumas expresadas entre corchetes son cero, ya que y 1 (x) e y 2 (x) son soluciones de (4.2). Corolario. Si y 1 (x), y 2 (x),..., y p (x) son soluciones de (4.2), entonces y(x) = solución de (4.2), siendo C 1, C 2,..., C p constantes arbitrarias. n C i y i (x) es también i=1 Proposición. Si la ecuación (4.2) admite una solución compleja y(x) = u(x) + iv(x), (y : R C), entonces las funciones reales Re(y(x)) = u(x), Im(y(x)) = v(x) son también soluciones de (4.2). Demostración. Dado que para todo k N se verifica que dk k [u(x)+iv(x)] = u(k) (x)+iv (k) (x), la igualdad (4.2) aplicada a u(x) + iv(x) quedaría 0 = 0 + i0 = a 0 [u (n) (x) + iv (n) (x)] + a 1 [u (n 1) (x) + iv (n 1) (x)] a n [u(x) + iv(x)]

9 Cálculo Matemático. (Tema 11) Hoja 9 o lo que es lo mismo 0 = 0 + i0 = [a 0 u (n) (x) + a 1 u (n 1) (x) a n u(x)] + i[a 0 v (n) (x) + a 1 v (n 1) (x) a n v(x)] aplicando la igualdad de números complejos, se deduce que a 0 u (n) (x) + a 1 u (n 1) (x) +... a 0 v (n) (x) + a 1 v (n 1) (x) a n v(x) = 0. + a n u(x) = 0 y Definición. Decimos que las funciones y 1 (x), y 2 (x),..., y m (x) son linealmente dependientes en cierto segmento de variación de x, a x b, si existen constantes no todas nulas α 1, α 2,..., α m, tales que α 1 y 1 (x) + α 2 y 2 (x) α m y m (x) = 0 (a x b) En caso de que esta última identidad sólo se verifique para α 1 = α 2 =... = α m = 0, diremos que las funciones son linealmente independientes en a x b. Ejemplos: Las siguientes funciones son linealmente independientes en cualquier segmento a x b. 1. 1, x, x 2,..., x n 2. e k 1x, e k 2x,..., e k mx (k i k j si i j). 3. e k 1x, x e k 1x,..., x n 1 e k 1x,..., e k px, x e k px,..., x n p e k px (k i k j si i j). Proposición. Si las funciones y 1, y 2,..., y n son linealmente dependientes en el segmento a x b, entonces en dicho segmento el determinante y 1 y 2 y 3 y n y 1 y 2 y 3 y n W (x) = W [y 1, y 2,..., y n ] = y 1 y 2 y 3 y n y (n 1) 1 y (n 1) 2 y (n 1) 3 y n (n 1) llamado wroskiano, es idénticamente nulo. Demostración. Como y 1, y 2,..., y n son linealmente dependientes, deben existir α 1, α 2,..., α m constantes, no todas nulas, tales que α 1 y 1 (x) + α 2 y 2 (x) α m y m (x) = 0. (a x b) Derivando esta igualdad n 1 veces obtenemos el sistema α 1 y 1 (x) + α 2 y 2 (x) α m y m (x) = 0 α 1 y 1(x) + α 2 y 2(x) α m y m(x) = 0... α 1 y (n 1) 1 (x) + α 2 y (n 1) 2 (x) α m y (n 1) m (x) = 0. Para cada x 0 [a, b], este sistema representa un sistema lineal homogéneo con incógnitas α i, i = 1, 2,...n. Como existe solución distinta de la trivial, el determinante de la matriz del sistema es cero, es decir, W (x 0 ) = 0, y dado que esto se verifica para todo x 0 [a, b], concluimos que W (x) = 0 en dicho segmento.

10 Cálculo Matemático. (Tema 11) Hoja 10 Teorema. Dada la ecuación diferencial p 0 (x)y (n) (x) + p 1 (x)y (n 1) (x) p n (x)y(x) = q(x) si p i (x), i = 0, 1,..., n y q(x) son funciones continuas en un intervalo (a, b) que contiene al punto x 0, entonces el problema de valores iniciales { p0 (x)y (n) (x) + p 1 (x)y (n 1) (x) p n (x)y(x) = q(x) admite una solución única en el intervalo (a, b). y(x 0 ) = y 0, y (x 0 ) = y 1,..., y (n 1) (x 0 ) = y n 1 Nota: En nuestro caso p i (x) = a i cte para todo i = 0, 1,..., n y q(x) = 0, por tanto son funciones continuas en cualquier intervalo (todo R). Por lo que tenemos garantizada la aplicación del teorema. Proposición. Si las funciones linealmente independientes y 1, y 2,..., y n son soluciones de la ecuación lineal homogénea (4.2), en el segmento a x b, entonces W (x) 0 para todo x [a, b]. Demostración. Usemos el método de reducción al absurdo. Supongamos que existe x 0 [a, b] para el que W (x 0 ) = 0. Elegimos constantes α i (i = 1, 2,..., n) tales que se verifica el sistema α 1 y 1 (x 0 ) + α 2 y 2 (x 0 ) α n y n (x 0 ) = 0 α 1 y 1(x 0 ) + α 2 y 2(x 0 ) α n y n(x 0 ) = 0... α 1 y (n 1) 1 (x 0 ) + α 2 y (n 1) 2 (x 0 ) α n y (n 1) n (x 0 ) = 0. Debido a que W (x 0 ) = 0, tenemos garantizada la existencia de soluciones distintas de la trivial (algún α i 0). La función y(x) = α 1 y 1 (x) + α 2 y 2 (x) α n y n (x) es solución de la ecuación homogénea (Corolario 2.1), verificando y(x 0 ) = 0, y (x 0 ) = 0,..., y (n 1) (x 0 ) = 0, pero estas mismas condiciones iniciales las verifica la función y 0. Por el teorema de existencia y unicidad, deducimos que α 1 y 1 (x) + α 2 y 2 (x) α n y n (x) = 0 con algún α i 0, lo que contradice la hipótesis. Por tanto, para todo x [a, b], W (x) 0. Proposición. La combinación lineal y(x) = n C i y i (x), con coeficientes constantes arbitrarios, de n i=1 soluciones particulares linealmente independientes en el segmento a x b, de la ecuación (4.2), constituye la solución general de esta ecuación en dicho intervalo. Demostración. La ecuación (4.2), para a x b, verifica las condiciones del teorema de existencia n y unicidad. Por ello la solución y(x) = C i y i (x) será general, es decir, contendrá a todas las soluciones i=1 particulares sin excepción, si es posible escoger las constantes arbitrarias C i de manera que se satisfagan las condiciones iniciales dadas arbitrariamente y(x 0 ) = y 0, y (x 0 ) = y 0,..., y (n 1) (x 0 ) = y0 n 1 donde x 0 es un punto cualquiera del segmento a x b. n Al exigir que y(x) = C i y i (x) satisfaga las condiciones iniciales impuestas, obtenemos un sistema de n i=1 ecuaciones lineales con respecto a C i (i = 1, 2,..., n) C 1 y 1 (x 0 ) + C 2 y 2 (x 0 ) C n y n (x 0 ) = y 0 C 1 y 1(x 0 ) + C 2 y 2(x 0 ) C n y n(x 0 ) = y 0... C 1 y (n 1) 1 (x 0 ) + C 2 y (n 1) 2 (x 0 ) C n y n (n 1) (x 0 ) = y0 n 1

11 Cálculo Matemático. (Tema 11) Hoja 11 cuyo determinante es diferente de cero, puesto que dicho determinante es el wroskiano, W (x 0 ) de n soluciones linealmente independientes de la ecuación (4.2). Por tanto, este sistema es resoluble con respecto a C i para cualquier x 0 [a, b] y para cualesquiera segundos miembros. Corolario. Esta última proposisción nos asegura que el número máximo de soluciones linealmente independientes de una ecuación diferencial lineal homogénea es igual a su orden. Definición. Se llama sistema fundamental de soluciones de una ecuación diferencial lineal homogénea, de orden n, al conjunto de cualesquiera n soluciones particulares linealmente independientes. El siguiente teorema resume los resultados obtenidos hasta el momento Teorema. Supongamos que p i (x), (i = 0, 1, 2,..., n) son funciones continuas sobre el intervalo I, e y i (x), (i = 1, 2,..., n) son soluciones de la ecuación diferencial lineal homogénea Entonces las siguientes proposiciones son equivalentes: p 0 (x)y (n) (x) + p 1 (x)y (n 1) (x) p n (x)y(x) = {y 1, y 2,..., y n } es un conjunto fundamental de soluciones. 2. W [y 1, y 2,..., y n ] 0 en todo I. 3. {y 1, y 2,..., y n } es un conjunto linealmente independiente de soluciones. 4. La solución general de la ecuación viene dada por y(x) = n C i y i (x)) = C 1 y 1 (x) + C 2 y 2 (x) C n y n (x). i=1 Ya estamos en condiciones de intentar resolver las ecuaciones diferenciales lineales de orden superior y coeficientes constantes. Dada la ecuación a 0 y (n) (x) + a 1 y (n 1) (x) a n y(x) = 0, hemos de encontrar n soluciones linealmente independientes para construir la solución general. Tal y como habíamos apuntado parece lógico empezar por buscar soluciones del tipo y(x) = e rx. Teniendo en cuenta que y (k) (x) = dk k y(x) = rk e rx, llevado a la ecuación obtenemos: a 0 r n e rx + a 1 r n 1 e rx a n e rx = 0, (a 0 r n + a 1 r n a n )e rx = 0, y como e rx 0 debe ser a 0 r n + a 1 r n a n = 0. Ésta es la llamada ecuación característica. Las raíces de la ecuación característica determinan los valores de r para los que e rx es solución de la ecuación diferencial. Estudiemos las distintas posibilidades para dichas raíces. 1. La ecuación característica posee n raíces reales y distintas, r 1, r 2,..., r n. En este caso, las funciones y 1 (x) = e r1x, y 2 (x) = e r2x,..., y n (x) = e rnx, forman un sistema fundamental de soluciones. Por tanto la solución general será n y(x) = C i y i (x) = C 1 e r1x + C 2 e r2x C n e rnx. i=1

12 Cálculo Matemático. (Tema 11) Hoja 12 Ejemplos: (a) y 3y + 2y = 0. (b) y y = La ecuación característica posee raíces complejas simples (éstas aparecen por pares, una y su conjugada): r 1 = a + ib r 2 = a ib. Puesto que e r 1x = e (a+ib)x = e ax e ibx = e ax [cos(bx) + isen(bx)], e r 2x = e (a ib)x = e ax e ibx = e ax [cos(bx) isen(bx)], haciendo uso de la Proposición 3, deducimos que e ax cos(bx) y e ax sen(bx) (parte real e imaginaria, respectivamente) son soluciones de la ecuación diferencial homogénea. Así, cada par de raíces complejas a ± bi aportan las soluciones e ax cos(bx), e ax sen(bx) al sistema fundamental de soluciones. Ejemplos: (a) y + 4y + 5y = 0. (b) y + a 2 y = 0. (c) y + 4y + 5y = La ecuación característica posee raíces múltiples r i raíz real con orden de multiplicidad k e rix, xe rix, x 2 e rix,..., x k 1 e rix son las soluciones aportadas por la raíz r i al sistema fundamental de soluciones. a ± ib raíces con orden de multiplicidad p. Ejemplos: e ax cos(bx), e ax sen(bx), xe ax cos(bx), xe ax sen(bx),..., x p 1 e ax cos(bx), x p 1 e ax sen(bx) son las soluciones aportadas por a ± ib. (a) y 3y + 2y = 0. (b) y (iv) + 8y + 10y + 56y + 25y = 0. (c) y (iv) 2y + 2y 2y + y = 0. Retomemos ahora nuestro ejemplo del muelle m d2 x 2 + b + kx = f(t), dt mx + bx + kx = f(t). Analizaremos cómo son las soluciones de esta ecuación en diferentes casos.

13 Cálculo Matemático. (Tema 11) Hoja Sistema libre no amortiguado. En este caso no hay rozamiento, ni fuerzas externas. Es decir, b = 0, f(t) 0. La ecuación se reduce a mx + kx = 0. ( ) k mr 2 + k = 0 = r 2 = w 2 haciendo w = = r = ±iw. m La solución es de la forma x(t) = C 1 cos(wt) + C 2 sen(wt). Si hacemos C 1 = A sen φ, C 2 = A cos φ o lo que es lo mismo A = escribir x(t) = A sen(wt + φ) C C2 2, tag φ = C 1 C 2, podemos El movimiento resultante se conoce como movimiento armónico simple. A amplitud del movimiento, φ ángulo de fase y 2π w periodo. 2. Sistema libre amortiguado. Ahora no hay fuerzas externas, pero sí rozamiento. Es decir, b > 0, f(t) 0. La ecuación es mx + bx + kx = 0. (a) b 2 < 4mk, r = b 4mk b ± i 2 Haciendo otra vez A = mr 2 + bm + k = 0 = r = b ± b 2 4mk x(t) = e b t [C 1 cos( C C2 2, tag φ = C 1 C 2 4mk b 2 4mk b 2 t) + C 2 sen( t)]. x(t) = Ae b 4mk b t 2 sen[( )t + φ]. Éste es el movimiento oscilatorio o subamortiguado. La cantidad 4πm 4mk b 2 se llama cuasiperiodo. 2π 4mk b 2 =

14 Cálculo Matemático. (Tema 11) Hoja 14 (b) b 2 = 4mk, r = b raíz doble: x(t) = C 1 e b t + C 2 t e b t = e b t [C 1 + C 2 t]. La solución tiene un único punto crítico (máximo o mínimo) cuando C 2 b C 1 b C 2t = 0 (por tanto no oscila). Éste se llama movimiento críticamente amortiguado. (c) b 2 > 4mk, r 1 = b + b2 4mk es y r 2 = b b2 4mk. Ocurre que r 2 < r 1 < 0. La solución x(t) = C 1 e r 1t + C 2 e r 2t, y el comportamiento es esencialmente como en el caso anterior. Éste es el movimiento sobreamortiguado La ecuación no homogénea o completa Pasemos a continuación a estudiar la ecuación completa a 0 y (n) (x) + a 1 y (n 1) (x) a n y(x) = f(x). Proposición. Si y p (x) es una solución particular de la ecuación completa e y 1 (x) es solución de la correspondiente ecuación homogénea, entonces y(x) = y 1 (x) + y p (x) es también solución de la ecuación completa. d n Demostración. Si denotamos por L al operador a 0 n + a d n 1 1 n a n, es obvio que Ly 1 (x) = 0 y que Ly p (x) = f(x), por tanto Ly(x) = L[y 1 (x) + y p (x)] = Ly 1 (x) + Ly p (x) = 0 + f(x) = f(x). Teorema. La solución general de la ecuación no homogénea viene dada por y(x) = y h (x) + y p (x)

15 Cálculo Matemático. (Tema 11) Hoja 15 donde y h (x) es la solución general de la correspondiente ecuación homogénea e y p (x) cualquier solución particular de la ecuación completa. Demostración. homogénea. Análoga a la del teorema que daba la expresión de la solución general de la ecuación Nuestro problema consiste ahora en cómo buscar una solución particular de la ecuación completa. Introduciremos, a través de ejemplos, dos métodos. El primero, denominado de los coeficientes indeterminados, consiste en imitar el término no homogéneo de la ecuación, y sólo se puede aplicar cuando dicho término tenga una expresión adecuada. El segundo, llamado de variación de las constantes, es más general que el primero y puede aplicarse en cualquier caso. Coeficientes indeterminados 1. y + 3y + 2y = 3x + 1, probar a determinar a y b para que y p (x) = ax + b sea solución. 2. y + y = e 2x, probar a determinar A para que y p (x) = Ae 2x sea solución. 3. y + 2y + y = cos(2x), probar a determinar A y B para que y p (x) = A cos(2x) + B sen(2x) sea solución. 4. y + 2y + y = (2x 1)cos(2x), probar a determinar A, B, C y D para que y p (x) = (Ax + B)cos(2x) + (Cx + D)sen(2x) sea solución. En los siguientes ejemplos hemos de modificar algo este método debido a que el término no homogéneo de la ecuación está parcial o totalmente recogido en la solución general de la ecuación homogénea. Este hecho se debe a la naturaleza de las raíces de la ecuación característica. En todos ellos resuélvase primero la ecuación homogénea. 5. y (iv) + y = 5x 2 2x + 1. Pruébese primero con y p (x) = Ax 2 + Bx + C, y luego con y p (x) = x 2 (Ax 2 + Bx + C). 6. y + y = cos x. Pruébese primero con y p (x) = A cos x + B sen x, y después con y p (x) = x(a cos x + B sen x). 7. y + y = x cos x. Pruébese primero con y p (x) = (Ax + B)cos x + (Cx + D)sen x, y luego con y p (x) = x[(ax + B)cos x + (Cx + D)sen x]. 8. y (iv) 4y + 14y 20y + 25 = (3x + 1)e x cos(2x). Pruébese primero con y p (x) = (Ax + B)e x cos(2x) + (Cx + D)e x sen(2x), y luego con y p (x) = x 2 [(Ax + B)e x cos(2x) + (Cx + D)e x sen(2x)]. Dada la ecuación a 0 y (n) (x) + a 1 y (n 1) (x) a n y(x) = f(x), el siguiente resumen es útil para la búsqueda de soluciones particulares por el método de los coeficientes indeterminados. 1. Si f(x) = b s x s + b s 1 x s b 1 x + b 0 : (a) r = 0 no es raíz de la ecuación característica: y p (x) = A s x s A 1 x + A 0. (b) r = 0 es raíz de orden k de la ecuación característica: y p (x) = x k (A s x s A 1 x + A 0 ).

16 Cálculo Matemático. (Tema 11) Hoja Si f(x) = p(x)cos(bx) + q(x)sen(bx), donde p(x) y q(x) son polinomios no necesariamente de igual grado: (a) r = ±ib no son raíces de la ecuación característica: y p (x) = P (x)cos(bx) + Q(x)sen(bx) siendo P (x) y Q(x) polinomios, a determinar, de grado l = max[grado p(x), grado q(x)]. (b) r = ±ib son raíces de orden k de la ecuación característica: y p (x) = x k [P (x)cos(bx) + Q(x)sen(bx)] siendo P (x) y Q(x) polinomios, a determinar, de grado l = max[grado p(x), grado q(x)]. 3. Si f(x) = p(x)e ax, donde p(x) es un polinomio: (a) r = a no es raíz de la ecuación característica: y p (x) = P (x)e ax siendo P (x) un polinomio, a determinar, de igual grado que p(x). (b) r = a es raíz de orden k de la ecuación característica: y p (x) = x k P (x)e ax siendo P (x) un polinomio, a determinar, de igual grado que p(x). 4. Si f(x) = e ax [p(x)cos(bx) + q(x)sen(bx)], donde p(x) y q(x) son polinomios no necesariamente de igual grado: (a) r = a ± ib no son raíces de la ecuación característica: y p (x) = e ax [P (x)cos(bx) + Q(x)sen(bx)] siendo P (x) y Q(x) polinomios, a determinar, de grado l = max[grado p(x), grado q(x)]. (b) r = a ± ib son raíces de orden k de la ecuación característica: y p (x) = x k e ax [P (x)cos(bx) + Q(x)sen(bx)] siendo P (x) y Q(x) polinomios, a determinar, de grado l = max[grado p(x), grado q(x)]. Variación de las constantes Este método es más general que el anterior y puede aplicarse en cualquier caso. Dada la ecuación a 0 y (n) (x) + a 1 y (n 1) (x) a n y(x) = f(x), hallaremos la solución general de la correspondiente ecuación homogénea y h (x) = C 1 y 1 (x) + C 2 y 2 (x) C n y n (x), y supondremos que existe una solución particular de la ecuación completa de la forma y p (x) = C 1 (x)y 1 (x) + C 2 (x)y 2 (x) C n (x)y n (x), donde las funciones incognitas C i (x), i = 1, 2,..., n las calcularemos resolviendo el sistema: C 1(x)y 1 (x) + C 2(x)y 2 (x) C n(x)y n (x) = 0 C 1(x)y 1(x) + C 2(x)y 2(x) C n(x)y n(x) = 0 C 1(x)y 1 (x) + C 2(x)y 2 (x) C n(x)y n(x) = 0... C 1(x)y (n 1) 1 (x) + C 2(x)y (n 1) 2 (x) C n(x)y n (n 1) (x) = f(x).

17 Cálculo Matemático. (Tema 11) Hoja 17 Ejemplos: 1. y 6y + 9y = e3x x 2 2. y + y = 1 sen x

TEMA I: ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR Y COEFICIENTES CONSTANTES

TEMA I: ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR Y COEFICIENTES CONSTANTES TEMA I: ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR Y COEFICIENTES CONSTANTES 1. Introducción Comenzaremos introduciendo algunos ejemplos en los que comparecen ecuaciones diferenciales lineales

Más detalles

CÁLCULO III. Apuntes

CÁLCULO III. Apuntes CÁLCULO III. Apuntes Grado en Ingeniería en Tecnologías Industriales Tema 2 Arturo de Pablo Elena Romera Open Course Ware, UC3M http://ocw.uc3m.es/matematicas 2 ECUACIONES LINEALES DE ORDEN SUPERIOR Presentamos

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales María Muñoz Guillermo maria.mg@upct.es U.P.C.T. Matemáticas I(1 o Grado en Ingeniería Electrónica Industrial y Automática) M. Muñoz (U.P.C.T.) Ecuaciones Diferenciales Matemáticas

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

7 Ecuación diferencial ordinaria de orden n con coecientes constantes

7 Ecuación diferencial ordinaria de orden n con coecientes constantes 7 Ecuación diferencial ordinaria de orden n con coecientes constantes La ecuación lineal homogénea de coecientes constantes de orden n es: donde a 1, a 2,..., a n son constantes. a n y (n) + a n 1 y n

Más detalles

1. Ecuaciones de primer orden

1. Ecuaciones de primer orden UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Ecuaciones diferenciales ordinarias. Definición 1. Llamamos ecuación diferencial ordinaria (E. D. O.) a una ecuación

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

2xy 3x 2 y 2 y(0) = 1

2xy 3x 2 y 2 y(0) = 1 ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA DEPARTAMENTO DE MATEMÁTICA APLICADA II Ingeniería Técnica Industrial. Especialidad en Mecánica Soluciones al Primer Parcial de Ampliación de Matemáticas. Curso

Más detalles

0.1. SISTEMAS DE ECUACIONES

0.1. SISTEMAS DE ECUACIONES .. SISTEMS DE ECUCIONES.. SISTEMS DE ECUCIONES... Conceptos previos l comienzo del tema de nimos los sistemas de ecuaciones diferenciales en general. En esta sección vamos a ver el caso particular en el

Más detalles

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN Movimiento Libre No Amortiguado Una de las aplicaciones de las ecuaciones diferenciales de segundo orden es la resolución de problemas de movimiento armónico

Más detalles

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior

Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela

Más detalles

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son Tiempo total: 2 horas 4 minutos Problema 1 [2 puntos]. Colgamos una masa m de un muelle vertical cuya constante de Hooke es λ. El medio ofrece una resistencia igual a µ veces la velocidad instantánea.

Más detalles

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior 1 Ecuaciones diferenciales lineales de orden mayor que 1 Una ecuación diferencial lineal (en adelante ecuación lineal) de orden

Más detalles

1. ECUAC. DIFERENCIALES ORDINARIAS

1. ECUAC. DIFERENCIALES ORDINARIAS 1 1. ECUAC. DIFERENCIALES ORDINARIAS Variables separables. 1. Hallar la solución general de la ecuación de variables separables (x 2 + 4) dy dx = xy. Al separar variables, queda la expresión 1 y dy = ambos

Más detalles

Fundamentos de Matemáticas

Fundamentos de Matemáticas Fundamentos de Matemáticas Ecuaciones diferenciales Solución: Tarea 4 (Total: 18 puntos) II.2. Ecuaciones diferenciales de primer orden La ecuación de Ricatti es una ecuación no-lineal = P (x) + Q(x)y

Más detalles

5.1. Primitiva de una función. Reglas básicas

5.1. Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1. Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

5.- ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR

5.- ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR 5.- ECUACIONES DIFERENCIALES LINEALES DE ORDEN SUPERIOR Una ecuación diferencial lineal de orden n es de la forma: a n (x)y (n) + a n (x)y (n ) + + a 2 (x)y + a (x)y + a 0 (x)y = b(x) Pero solamente abordaremos

Más detalles

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal 9.1 Definición Se llama ecuación diferencial ordinaria

Más detalles

1. Utilizando el cambio de variable y = z α y eligiendo adecuadamente α integrar el problema de valor inicial dy dx = xy 3x 2 y 4 y(2) = 1

1. Utilizando el cambio de variable y = z α y eligiendo adecuadamente α integrar el problema de valor inicial dy dx = xy 3x 2 y 4 y(2) = 1 1 Ecuaciones diferenciales homogéneas 1 Utilizando el cambio de variable y = z α y eligiendo adecuadamente α integrar el problema de valor inicial = xy 3x y 4 y() = 1 Solution 1 Utilizamos el cambio de

Más detalles

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO

CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO MATEMÁTICAS AVANZADAS PARA LA INGENIERÍA EN SISTEMAS CLAVE: MIS 206 PROFESOR: MTRO. ALEJANDRO SALAZAR GUERRERO 1 1. SISTEMAS LINEALES DISCRETOS Y CONTINUOS 1.1. Modelos matemáticos 1.2. Sistemas 1.3. Entrada

Más detalles

Hoja de Problemas Ecuaciones Diferenciales Ordinarias

Hoja de Problemas Ecuaciones Diferenciales Ordinarias Unidad docente de Matemáticas Matemáticas (CC. Químicas) Hoja de Problemas Ecuaciones Diferenciales Ordinarias 1. Comprobar si la función indicada en cada caso es una solución de la ecuación diferencial

Más detalles

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008

UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA. Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 UNIVERSIDAD DE VALPARAISO INGENIERIA CIVIL OCEANICA Ecuaciones Diferenciales Ecuaciones Lineales de orden superior Segundo Semestre 2008 VIVIANA BARILE M 1. Decida si las funciones respectivas son linealmente

Más detalles

Ecuaciones diferenciales lineales con coeficientes variables

Ecuaciones diferenciales lineales con coeficientes variables Tema 5 Ecuaciones diferenciales lineales con coeficientes variables 5 Existencia y unicidad Partimos de una ecuación de la forma a 0 (x y (n + a (x y (n + + a n (x y + a n (x y = b(x (5 con a 0 (x 0 donde

Más detalles

Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre de Otoño, 2012

Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre de Otoño, 2012 Universidad de Chile Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Profesora Salomé Martínez Departamento de Ingeniería Matemática Semestre de Otoño, 2012 Pauta: Auxiliar

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Nivelación de Matemática MTHA UNLP EDO 1 Ecuaciones Diferenciales Ordinarias 1. Introducción Una ecuación diferencial ordinaria es una ecuación de la forma: F (x, y, y,..., y (n) ) = 0 que expresa una

Más detalles

Soluciones de la ecuación diferencial lineal homogénea

Soluciones de la ecuación diferencial lineal homogénea Ecuaciones diferenciales lineales de orden superior Ampliación de matemáticas urso 2008-2009 Ecuación diferencial lineal de orden n (x dn y n + P (x dn y n + + P n (x dy + P n(xy = G(x ( donde, P,...,

Más detalles

Lección 6: Ecuaciones diferenciales

Lección 6: Ecuaciones diferenciales Lección 6: Ecuaciones diferenciales 61 Introducción La estática comparativa ha dominado el estudio de la economía durante mucho tiempo, y aún hoy se sigue utilizando para resolver muchos problemas económicos

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Coeficientes Indeterminados y Variación de Parámetros) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases

Más detalles

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2

Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. e x + C 2 - Comprobar que la función y = C senx + C 2 x es solución de la ecuación diferencial ( - x cotgx) d2 y dx 2 - x dy dx + y = 0 2- a) Comprobar que la función y = 2x + C e x es solución de la ecuación diferencial

Más detalles

Ecuaciones lineales de orden superior

Ecuaciones lineales de orden superior ANEXO GUIA 5 Ecuaciones lineales de orden superior Las ideas presentadas para ecuaciones lineales de segundo orden se pueden generalizar a ecuaciones lineales de orden n d n x n + a n 1(t) dn 1 x n 1 +

Más detalles

Apéndice sobre ecuaciones diferenciales lineales

Apéndice sobre ecuaciones diferenciales lineales Apéndice sobre ecuaciones diferenciales lineales Juan-Miguel Gracia 10 de febrero de 2008 Índice 2 Determinante wronskiano. Wronskiano de f 1 (t), f 2 (t),..., f n (t). Derivada de un determinante de funciones.

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 8: Ecuaciones Diferenciales Ordinarias Elaborado por los profesores Edgar Cabello y Marcos González Es muy común encontrar que los modelos matemáticos que se necesitan para el estudio de problemas

Más detalles

Tema 16. Ecuaciones diferenciales

Tema 16. Ecuaciones diferenciales Tema 16. Ecuaciones diferenciales Juan Medina Molina 12 de mayo de 2005 Introducción Dedicaremos el último tema del curso a resolver ecuaciones diferenciales de orden uno y lineales de orden superior.

Más detalles

Ecuaciones diferenciales en la Química. Modelos.

Ecuaciones diferenciales en la Química. Modelos. Capítulo 1 Ecuaciones diferenciales en la Química. Modelos. 1.1 Introducción. Muchos fenómenos naturales (físicos, químicos, biológicos, etc. ) responden, en sus resultados, a formulaciones matemáticas

Más detalles

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados

Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados Capítulo 5 Espacios Vectoriales Euclídeos. Métodos de los mínimos cuadrados En este tema iniciamos el estudio de los conceptos geométricos de distancia y perpendicularidad en K n. Empezaremos con las definiciones

Más detalles

Cálculo de Primitivas

Cálculo de Primitivas . Primitivas de una función Sea I un intervalo y f : I IR. Se dice que f tiene tiene una primitiva en I si existe una función G : I IR, continua en I, derivable en el interior de I y verificando que G

Más detalles

E.D.L. de 2 o orden II. Variación de parámetros. Coeficientes Indeterminados.

E.D.L. de 2 o orden II. Variación de parámetros. Coeficientes Indeterminados. E.E.I. CÁLCULO II Y ECUACIONES DIFERENCIALES Curso 06-7 Lección 0 Lunes 7 abr 07) E.D.L. de o orden II. Variación de parámetros. Coeficientes Indeterminados.. El método de variación de parámetros para

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN *

COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN * 40 CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 5. Determine la solución general de y 6y y 34y 0 si se sabe que y e 4x cos x es una solución. 52. Para resolver y (4) y 0, es necesario encontrar

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Ecuaciones de 2do Orden) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López EDO 1/20 Operadores

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES DEFINICIÓN Ecuación Diferencial es una ecuación que contiene las derivadas o diferenciales de una función de una o más variables. 1. Si hay una sola variable independiente, las

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES ORDINARIAS LINEALES DE SEGUNDO ORDEN ARIEL M. SALORT asalort@dm.uba.ar Marzo de 2016 1. Teoría general Una ecuación diferencial ordinaria lineal de segundo orden puede ser escrita

Más detalles

Una serie de potencias es una expresión del tipo: a n (x x 0 ) n (5.2) n=0

Una serie de potencias es una expresión del tipo: a n (x x 0 ) n (5.2) n=0 Capítulo 5 Nos dedicaremos ahora a desarrollar métodos específicos para encontrar la solución general de la ecuación lineal de segundo orden: y + p(x)y + q(x)y = g(x) (5.1) Sabemos que la solución general

Más detalles

No usar por academias

No usar por academias ECUACIONES DIFERENCIALES I Grupo D 1 de septiembre de 003 Apellidos: Nombre: D.N.I.: Firma: 1. Considérese la ecuación y = 1 + y x. i) Hallar su solución general. ii) Dibujar aproximadamente sus curvas

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior OBJETIVOS PARTICULARES Describir los conceptos de combinación lineal, dependencia e independencia lineal, conjunto fundamental de soluciones y solución

Más detalles

Sistemas de Ecuaciones Diferenciales Ordinarias.

Sistemas de Ecuaciones Diferenciales Ordinarias. E.E.I. CÁLCULO II Y ECUACIONES DIFERENCIALES Curso 2016-17 Lección 23 (Martes 25 abr 2017) Sistemas de Ecuaciones Diferenciales Ordinarias. 1. Observaciones generales sobre los sistemas de ecuaciones diferenciales

Más detalles

Ecuaciones diferenciales lineales con coeficientes constantes

Ecuaciones diferenciales lineales con coeficientes constantes Tema 4 Ecuaciones diferenciales lineales con coeficientes constantes Una ecuación diferencial lineal de orden n tiene la forma a 0 (x)y (n) + a 1 (x)y (n 1) + + a n 1 (x)y + a n (x)y = b(x) (41) Vamos

Más detalles

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1 UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA II Ciclo del 2017 Lista de ejercicios # 1 Ecuaciones diferenciales ordinarias de orden 1 Soluciones

Más detalles

Prácticas de Métodos Numéricos Prof. Tomás Martín

Prácticas de Métodos Numéricos Prof. Tomás Martín %%Control 1. Lecciones A-B Tomás Martín Hernández Iniciada: 16 de febrero de 2009 10:49 Preguntas: 5 Prácticas de Métodos Numéricos Prof. Tomás Martín 1. (Puntos: 0,5) Importante: El separador decimal

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..3 Vibraciones forzadas Los sistemas estudiados hasta ahora exhiben una dinámica que depende de ciertas constantes intrínsecas al sistema, es decir, las únicas

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.1 Conceptos básicos En este capítulo trataremos sobre el procedimiento que debemos llevar a cabo para obtener la solución general de la ED lineal

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

4.1 Anillo de polinomios con coeficientes en un cuerpo

4.1 Anillo de polinomios con coeficientes en un cuerpo Tema 4 Polinomios 4.1 Anillo de polinomios con coeficientes en un cuerpo Aunque se puede definir el conjunto de los polinomios con coeficientes en un anillo, nuestro estudio se va a centrar en el conjunto

Más detalles

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f

Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) x u + f 1 228 Extensión de la regla de la cadena Funciones diferenciables. z = f(x, y), x = x(u, v, w), y = y(u, v, w) z = f ( x(u, v, w), y(u, v, w) ) z u = f x x u + f y y u z v = f x x v + f y y v z w = f x

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior Práctica 2 Ecuaciones diferenciales de orden superior 2.1. Introducción Una ED de orden n es una ecuación de la forma o escrito en forma normal g(x, y, y,...,y (n) ) = 0 (2.1) y (n) = f(x, y, y,...,y (n

Más detalles

MÉTODOS DE INTEGRACION

MÉTODOS DE INTEGRACION MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales

Más detalles

+ = 0, siendo z=f(x,y).

+ = 0, siendo z=f(x,y). Ecuaciones diferenciales de primer orden ECUACIONES DIFERENCIALES Definición. Se llama ecuación diferencial a toda ecuación que inclua una función, que es la incógnita, alguna de sus derivadas o diferenciales.

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Introducción y algunos métodos de solución) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López

Más detalles

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial 1 Tema 5. Introducción a las ecuaciones diferenciales ordinarias 1.- Comprobar que la función y = C 1 senx + C 2 x es solución de la ecuación diferencial (1 - x cotgx) d2 y dx 2 - x dy dx + y = 0. 2.-

Más detalles

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales

E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales ETS Minas: Métodos Matemáticos Resumen y ejemplos Tema 9: Sistemas de EDOs lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Noviembre

Más detalles

Tema 3: Espacios eucĺıdeos

Tema 3: Espacios eucĺıdeos Marisa Serrano, Zulima Fernández Universidad de Oviedo 25 de noviembre de 2009 email: mlserrano@uniovi.es Índice 1 2 3.1 V, R espacio vectorial, la aplicación : V V R ( v, u) v u a) v 1, v 2, u V α, β

Más detalles

4.2 Reducción de orden

4.2 Reducción de orden 4. educción de orden 87 Un conjunto de funciones f y ; y g que cumple con la condición anterior se llama un conjunto fundamental de soluciones. Es decir, un conjunto f y ; y g será un conjunto fundamental

Más detalles

el alargamiento s Masa Longitud Masa peso

el alargamiento s Masa Longitud Masa peso MODELADO ORDEN SUPERIOR SISTEMA RESORTE-MASA, MOVIMIENTO LIBRE NO AMORTIGUADO I. Modelos lineales. Con valores iniciales: 1) Sistemas resorte-masa, movimiento libre no amortiguado (SRM/MLNA). ) Sistemas

Más detalles

218 Ecuaciones diferenciales. ) r 2 D 4: 9. y.4/ C y 000 3y 00 5y 0 2y D y.4/ 16y D y.4/ C 2y 00 C y D y.7/ 2y.5/ C y.3/ D 0.

218 Ecuaciones diferenciales. ) r 2 D 4: 9. y.4/ C y 000 3y 00 5y 0 2y D y.4/ 16y D y.4/ C 2y 00 C y D y.7/ 2y.5/ C y.3/ D 0. 218 Ecuaciones diferenciales Ejemplo 4.4.18 Resolver la ecuación diferencial y.7/ C 8y.5/ C 16y.3/ D 0. Proponiendo como solución y D e rx, se obtiene la ecuación característica r 7 C 8r 5 C 16r 3 D 0;

Más detalles

1. Ecuaciones exactas.

1. Ecuaciones exactas. 1. Ecuaciones exactas. Definición Sean D un subconjunto abierto de R 2 y M, N : D R dos funciones continuas en D. Se dice que la ecuación diferencial: está escrita en forma exacta en D cuando existe una

Más detalles

Selectividad Matemáticas II junio 2012, Andalucía

Selectividad Matemáticas II junio 2012, Andalucía Selectividad Matemáticas II junio 0, Andalucía Pedro González Ruiz 0 de junio de 0. Opción A Problema. Sea la función f : R R definida por f(x) = e x (x ).. Calcular las asíntotas de f.. Hallar los extremos

Más detalles

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM Integrales indefinidas. Teoremas º Bachillerato Editorial SM Esquema Primitiva de una función La función G(x) es una primitiva de la función f(x) en un intervalo I si G'(x) = f(x) para todo x del intervalo

Más detalles

CÁLCULO AVANZADO EN INGENIERÍA PRÁCTICA 1

CÁLCULO AVANZADO EN INGENIERÍA PRÁCTICA 1 Colominas I., Gómez H. Problemas de EDPs en la matemática aplicada 5/117 CÁLCULO AVANZADO EN INGENIERÍA PRÁCTICA 1 Introducción (Curso 017 018 1. Demostrar que la solución general de la ecuación α + β

Más detalles

Movimiento Oscilatorio. Principios de Mecánica. Licenciatura de Física. Curso

Movimiento Oscilatorio. Principios de Mecánica. Licenciatura de Física. Curso Movimiento Oscilatorio. Principios de Mecánica. Licenciatura de Física. Curso 2007-2008. 1 Índice. 1. Introducción. 2. Movimiento Oscilatorio Armónico Simple. 3. Oscilaciones amortiguadas. 4. Oscilaciones

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO 2 Métodos de solución de ED de primer orden 2.6 Ecuaciones diferenciales exactas Antes de abordar este tema, sugerimos al lector revise la última sección de este capítulo, la cual trata sobre

Más detalles

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales

Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales Álgebra y Álgebra II - Segundo Cuatrimestre 2017 Práctico 4 - Espacios Vectoriales (1) Sea n N. Mostrar que el conjunto de polinomios sobre R de grado menor que n es un subespacio vectorial de R[x]. Este

Más detalles

a de un conjunto S de R n si

a de un conjunto S de R n si 1 235 Máximos, mínimos y puntos de ensilladura Definición.- Se dice que una función real f( x) tiene un máximo absoluto en un punto a de un conjunto S de R n si f( x) f( a) (2) para todo x S. El número

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.)

Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) Tema 1 Generalidades sobre Ecuaciones Diferenciales Ordinarias (E.D.O.) 1.1 Definiciones Se llama ecuación diferencial a toda ecuación que contiene las derivadas de una o más variables dependientes respecto

Más detalles

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 1 Tema 9.-. Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 9.1. Caracteres de un grupo. A la hora de resolver una ecuación f(x) = 0 con f(x) k[x], tomamos un

Más detalles

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir,

2. La fórmula de la derivada de un producto de dos funciones, aplicada a f(x) g(x), permite escribir, INTRO. MÉTODOS DE INTEGR. ( II ) En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones

Más detalles

Contenidos. Grupo EDUMATICUS. Departamento de Matemática Aplicada. Universidad de Málaga 2

Contenidos. Grupo EDUMATICUS. Departamento de Matemática Aplicada. Universidad de Málaga 2 Tema 2 Ecuaciones diferenciales ordinarias de primer orden Definiciones generales Problema de Cauchy Contenidos Resolución de ecuaciones diferenciales ordinarias de primer orden Resolución de ecuaciones

Más detalles

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0.

TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0. NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +

Más detalles

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial

Tema 1. Espacios Vectoriales Definición de Espacio Vectorial Tema 1 Espacios Vectoriales. 1.1. Definición de Espacio Vectorial Notas 1.1.1. Denotaremos por N, Z, Q, R, C, a los conjuntos de los números Naturales, Enteros, Racionales, Reales y Complejos, respectivamente.

Más detalles

, donde denota la matriz traspuesta de B.

, donde denota la matriz traspuesta de B. Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº Páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

El Problema de Cauchy para EDPs de Primer Orden

El Problema de Cauchy para EDPs de Primer Orden Capítulo 2 El Problema de Cauchy para EDPs de Primer Orden Este capítulo está dedicado al estudio de EDPs de primer orden, esto es, ecuaciones en las que sólo aparecen derivadas parciales de a lo sumo

Más detalles

Contenido. 3. Ecuaciones diferenciales de orden superior. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/53 53

Contenido. 3. Ecuaciones diferenciales de orden superior. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/53 53 Contenido 3. Ecuaciones diferenciales de orden superior 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/53 53 Contenido: Tema 03 3. Ecuaciones diferenciales de orden

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales de primer orden 21 de noviembre de 2016 de primer orden Introducción Introducción a las ecuaciones diferenciales Las primeras ecuaciones diferenciales surgen al tratar de resolver ciertos problemas de

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Selectividad Junio 14 Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger una de

Más detalles

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas.

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. 1.- El polinomio p 3 (x) = 2 (x + 1) + x(x + 1) 2x(x + 1)(x 1) interpola a los primeros cuatro datos de la tabla x

Más detalles

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN

MATEMÁTICAS: PAU 2016 JUNIO CASTILLA Y LEÓN MATEMÁTICAS: PAU 26 JUNIO CASTILLA Y LEÓN Opción A Ejercicio A 5 a a) Discutir para qué valores de a R la matriz M = ( ) tiene inversa. Calcular M a para a =. ( 5 puntos) Para que exista inversa de una

Más detalles

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL

VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay

Más detalles

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO

POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO POLINOMIOS Y DIVISIÓN DE POLINOMIOS MATEMÁTICAS 3º ESO Dado que los polinomios se utilizan para describir curvas de diferentes tipos, la gente los utiliza en el mundo real para dibujar curvas. Por ejemplo,

Más detalles

Matemáticas Empresariales I. Cálculo de Primitivas

Matemáticas Empresariales I. Cálculo de Primitivas Matemáticas Empresariales I Lección 7 Cálculo de Primitivas Manuel León Navarro Colegio Universitario Cardenal Cisneros M. León Matemáticas Empresariales I 1 / 45 Concepto de Integral Indefinida Definición

Más detalles

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/2006 - HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 1) A continuación diremos de qué tipo son las ecuaciones diferenciales ordinarias (e.

Más detalles

TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN

TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN e-mail: imozas@el.uned.es https://www.innova.uned.es/webpages/ilde/web/inde.htm TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN Ecuación diferencial ordinaria de orden n.- Es una relación entre la variable,

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4.7. Variación de parámetros para E de orden n escripción del método general Una vez discutido el método de variación de parámetros para ecuaciones

Más detalles

Apellidos:... Nombre:... Examen

Apellidos:... Nombre:... Examen Cálculo Numérico I. Grado en Matemáticas y doble grado Física/Matemáticas. 16 de junio de 017 Curso 016/017. Apellidos:... Nombre:... Examen 1. Explicar razonadamente si las siguientes afirmaciones son

Más detalles