Introducción a los Sistemas de Control

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción a los Sistemas de Control"

Transcripción

1 Capítulo 1 Introducción a los Sistemas de Control Introducción Si se considera que la Ingeniería es una actividad involucrada en la comprensión y el control de los materiales y las fuerzas de la naturaleza en beneficio de la humanidad. En tal sentido el control automático ha desempeñado una función vital en el avance de la ingeniería y la ciencia [1]. El control por realimentación tiene una larga historia que comenzó con el deseo primordial de los seres humanos de dominar los materiales y las fuerzas de la naturaleza en su provecho. Los primeros ejemplos de dispositivos de control incluyen los sistemas de regulación de relojes y los mecanismos para mantener los molinos de viento orientados en la dirección del viento. La ingeniería de control ha tenido un enorme impacto en la sociedad. Åström cita a Wilbur Wright (1901): «Sabemos como construir aeroplanos.» «Sabemos como construir motores.» «El no saber cómo equilibrar y maniobrar aún desafía a los estudiantes del problema de vuelo.» «Cuando esta única dificultad sea resuelta, la era del vuelo habrá arribado, ya que todas las demás dificultades son de menor importancia.» Los hermanos Wright resolvieron cómo equilibrar y maniobrar y volaron el Kitty Hawk el 17 de diciembre de 1903! Hoy por hoy la ingeniería de control ha tenido un enorme impacto en la sociedad. De hecho, ninguno de los sistemas modernos (aviones, trenes de alta velocidad, reproductores de CD, etc.) podrían operar sin la ayuda de sofisticados sistemas de control. Además de su extrema importancia en los sistemas de vehículos espaciales, de guiado de misiles, robóticos y similares; el control automático se ha vuelto una parte importante e integral de los procesos modernos industriales y de manufactura [1]. Por ejemplo, el control automático es esencial en las operaciones industriales como el control de presión, temperatura, humedad, viscosidad y flujo en las industrias de proceso. Debido a que los avances en la teoría y la práctica del control automático aportan los medios para obtener un desempeño óptimo de los sistemas dinámicos, mejorar la productividad, aligerar la carga de muchas operaciones manuales repetitivas y rutinarias, así como de otras actividades, casi todos los ingenieros y científicos deben tener un buen conocimiento de este campo [1].

2 2 Introducción a los Sistemas de Control Breve Resumen Histórico La Ingeniería, al menos desde que Newton y Leibnitz crearon el cálculo infinitesimal en 1660, usa la matemática. cuando en 1760 James Watt construyó el primer motor de vapor, la Ingeniería tuvo que comenzar a lidiar seriamente con el problema de la interacción hombre-máquina y por primera vez, se vio en la creciente necesidad de desarrollar sistemas que ayudaran al hombre a controlar éstas, es decir, a ajustar su funcionamiento continuamente de acuerdo sus cambiantes necesidades, y, lo que es más difícil, hacerlo de una forma que no implicara la presencia continua de una persona. Esta lucha de la Ingeniería por el control continúa hasta el día de hoy. En tal sentido el primer trabajo significativo en control automático fue el regulador de velocidad centrífugo de James Watt para el control de la velocidad de una máquina de vapor [1]. Velocidad Caldera Medida Esferas de metal Gobernador Salida en el Eje Vapor Válvula Motor Figura 1. Regulador centrífugo de Watt En el siglo XVIII. Minorsky, Hazen y Nyquist 1, entre muchos otros, aportaron trabajos importantes en las etapas iniciales del desarrollo de la teoría de control. En 1922, Nicholas Minorsky ( ) 2 trabajó en los controladores automáticos para dirigir embarcaciones, y mostró que la estabilidad puede determinarse a partir de las ecuaciones diferenciales que describen el sistema. Minorsky formuló la ley de control que ahora se denomina PID. Su trabajo se conoció ampliamente sólo hacia finales de los años Reconoce la no-linealidad de los sistemas y aplica la linealización mediante el desarrollo en serie de Taylor a sistemas no-lineales correspondientes al movimiento angular de un buque. Estudia la estabilidad y los efectos de los retrasos de la información sobre las salidas de los sistemas En 1932, Harry Nyquist ( ) diseñó un procedimiento relativamente simple para determinar la estabilidad de sistemas en lazo cerrado, con base en la respuesta en lazo abierto en estado estable cuando la entrada aplicada es una senoidal. Nyquist publica lo que se llamaría el análisis de Nyquist, el cual no requiere de ecuaciones diferenciales sino de la respuesta frecuencial (en términos de variables complejas y que puede ser obtenida experimentalmente). La respuesta frecuencial se basa en los trabajos de Laplace, Fourier, Cauchy y otros. Se obtiene una mayor comprensión de los beneficios de la realimentación negativa en los sistemas. Antes de 1932 el enfoque basado en las ecuaciones diferenciales había sido la gran herramienta del ingeniero del control; en la década que siguió a la contribución de 1 Nyquist, H., "Regeneration Theory," Bell Syst. Tech. J., Minorsky, N., "Directional Stability and Automatically Steered Bodies," J. Am. Soc. Nav. Eng., vol. 34, p. 280, 1922.

3 Teoría de Control 3 Nyquist estas técnicas fueron casi completamente reemplazadas por métodos basados en la teoría de variable compleja los cuales fueron la consecuencia natural y directa de su nuevo planteamiento. Las primeras aplicaciones se realizaron en sistemas de comunicación En 1934, Harold Locke Hazen ( ) fue quien introdujo el término servomecanismos para los sistemas de control de posición, analizó el diseño de los servomecanismos con relevadores, capaces de seguir con precisión una entrada cambiante. Hazen y sus estudiantes estudian y diseñan, por medio de un analizador diferencial (máquina análoga de cálculo, MIT) que permite la simulación de un sistema dinámico, un servomecanismo de alto desempeño. Aparte de proponer un marco conceptual, Hazen utiliza herramientas matemáticas como el cálculo operacional de Heaviside. En sus trabajos estudia el diseño de servomecanismos para posicionar ejes. Realiza el primer estudio teórico de los servomecanismos, el cual se convirtió en el punto de arranque de la siguiente generación de especialistas en sistemas de control Durante la década de los cuarenta, los métodos de la respuesta en frecuencia hicieron posible que los ingenieros diseñaran sistemas de control lineales en lazo cerrado que cumplieran con los requerimientos de desempeño. En 1940 H.W. Bode usó las gráficas de respuesta frecuencial de magnitud y fase e investigó la estabilidad en lazo cerrado usando las nociones de margen de ganancia y fase. En 1945 aparecen los detalles completos del trabajo de Bode en su libro "Network Analysis and Feedback Amplifier Design". En 1942, H. Harris del MIT realizó un paso crucial en la transferencia de las técnicas utilizadas en el análisis de los amplificadores realimentados de los sistemas de telefonía a otras clases de sistemas. En su trabajo "The analisys and design of servomechanics", introduce el uso de funciones de transferencia en el análisis de un sistema realimentado general. Esto permitió que un servomecanismo mecánico o un sistema de control de un proceso químico se representasen mediante diagramas de bloques y utilizasen las técnicas del dominio frecuencial. En 1943, Albert C. Hall mostró que tratando los bloques en un diagrama de bloques como funciones de transferencia (usó la transformada de Laplace), el centro de transferencia de un sistema podía ser dibujado y el criterio de Nyquist para la estabilidad podía ser usado. A finales de los años cuarenta y principios de los cincuenta, se desarrolló por completo el método del lugar geométrico de las raíces propuesto por Evans 3. Ragazzini y Zadeh definen como transformada Z la transformada introducida por Hurewicz. La teoría de la transformada es desarrollada independientemente por Tsypkin (1949 y 1950) y Barker (1952). La transformada Z permite que los resultados obtenidos en el estudio de los sistemas continuos se puedan aplicar a los sistemas discretizados en el tiempo. Esto hace que se desarrollen los estudios que pretenden trasladar al campo discreto los resultados obtenidos para el campo continuo. La transformada Z modificada (para sistemas discretos con retardo) es desarrollada por Tsypkin (1950), Barker (1951), Linvill (1951) y Jury (1956). Linvill ve el muestreo como una modulación de la amplitud y logra describir el comportamiento intermuestreo en los sistemas de tiempo discreto. Los métodos de respuesta en frecuencia y del lugar geométrico de las raíces, que forman el núcleo de la teoría de control clásica, conducen a sistemas estables que satisfacen un conjunto más o menos arbitrario de requerimientos de desempeño. En general, estos sistemas son aceptables pero no óptimos en forma significativa. Desde el final de la década de los cincuenta, el énfasis en los problemas de diseño de control se ha movido del diseño de uno de muchos sistemas que trabajen apropiadamente al diseño de un sistema óptimo de algún modo significativo. Conforme las plantas modernas con muchas entradas y salidas se vuelven más y más complejas, la descripción de un sistema de control moderno requiere de una gran cantidad de ecuaciones. La teoría del control clásica, que trata de los sistemas con una entrada y una salida, pierde su solidez ante sistemas con entradas y salidas múltiples. Desde alrededor de 1960, debido a que la disponibilidad de las computadoras digitales hizo posible el análisis en el dominio del tiempo de sistemas complejos, la teoría de control moderna, basada en el análisis en el dominio del tiempo y la síntesis a partir de variables de estados, se ha desarrollado para 3 Evans, W.R., "Graphical Analysis of Control Systems," Trans. AIEE, vol. 67, pp ,1948.

4 4 Introducción a los Sistemas de Control enfrentar la creciente complejidad de las plantas modernas y los requerimientos limitativos respecto de la precisión, el peso y el costo en aplicaciones militares, espaciales e industriales. Durante los años comprendidos entre 1960 y 1980, se investigaron a fondo el control óptimo tanto de sistemas deterministicos como estocásticos, y el control adaptable, mediante el aprendizaje de sistemas complejos. De 1980 a la fecha, los descubrimientos en la teoría de control moderna se centraron en el control robusto, el control de H. y temas asociados. Ahora que las computadoras digitales se han vuelto más baratas y más compactas, se usan como parte integral de los sistemas de control. Las aplicaciones recientes de la teoría de control moderna incluyen sistemas ajenos a la ingeniería, como los biológicos, biomédicos, económicos y socioeconómicos. Tabla 1: Desarrollo de los Sistemas de Control. Fecha Evento Histórico 1769 James Watt desarrolla la máquina de vapor, colocándole un gobernador, o sistema basado en la fuerza centrífuga, para el control automático del paso de vapor desde la caldera, y por ende, de la potencia mecánica 1800 Producción en serie de mosquetes por Eli Whitney 1865 Ingeniero norteamericano ofrece un torpedo autónomo a Presidente J.J.Pérez, capaz, según él, de hundir a la armada española que bloqueaba Valparaíso. J.J.Pérez le contesta y si se chinga? 1868 J.C.Maxwell formula el primer modelo matemático de un sistema de control automático, precisamente el gobernador de la máquina de Watt 1880 Whitehead en Inglaterra y Schwartzkopf en Alemania perfeccionan el sistema de control de los torpedos, corrigiéndose la inestabilidad o delfineo (porpoising) 1891 La torpedera Lynch hunde al acorazado rebelde Blanco Encalada en el puerto de Caldera, usando torpedos Whitehead 1913 Producción en serie de autos por Henry Ford 1927 H.W.Bode analiza matemáticamente los amplificadores de retroalimentación (regenerativos) 1932 H.Nyquist desarrolla un método para analizar la estabilidad de un sistema 1952 Sistema de control numérico (NC) desarrollado en el M.I.T. para el control de los ejes de las máquinas-herramienta 1954 George Devol la transferencia programada de artículos, que se considera el primer diseño 1960 robótico Primer Robot práctico, el Unimate, usado para la manutención de equipos para el vaciado de metales en moldes 1980 Estudio a fondo del diseño de sistemas robustos de control 1990 Las empresas manufactureras transnacionales ponen énfasis en la automatización Definiciones Básicas Resulta pertinente, antes de continuar el desarrollo y explicación de los sistemas de control, que se establezcan una serie definiciones básicas. Una definición única de sistema es complicada, pero a continuación se muestran algunas: Un sistema es un ordenamiento, conjunto o colección de cosas conectadas o relacionadas de manera que constituyan un todo. Un sistema es un ordenamiento de componentes físicos conectados o relacionados de manera que formen una unidad completa p que puedan actuar como tal. Por simplicidad, en este curso se admite una definición más amplia y que considera aun sistema a una combinación de componentes que actúan juntos y realizan un objetivo determinado. Un sistema no necesariamente es físico. El concepto de sistema se aplica a fenómenos abstractos y dinámicos, tales como los que se encuentran en la economía. Por tanto, la palabra sistema debe interpretarse como una implicación de sistemas físicos, biológicos, económicos y similares [1]. La palabra control generalmente se usa para designar regulación, dirección o comando. Al combinar las definiciones anteriores se tiene: Un sistema de control es un ordenamiento de componentes físicos conectados de tal manera que el mismo pueda comandar, dirigir o regularse a sí mismo o a otro sistema. En el sentido más abstracto es posible considerar cada objeto físico como un sistema de control. Cada cosa altera su medio ambiente de alguna manera, activa o positivamente [1]. Variable controlada y variable manipulada. La variable controlada es la cantidad o condición que se mide y controla. La variable manipulada es la cantidad o condición que el controlador modifica para

5 Teoría de Control 5 afectar el valor de la variable controlada. Por lo común, la variable controlada es la salida (el resultado) del sistema. Controlar significa medir el valor de la variable controlada del sistema y aplicar la variable manipulada al sistema para corregir o limitar una desviación del valor medido a partir de un valor deseado. En el estudio de la ingeniería de control, se hace necesario definir términos adicionales que resultan necesarios para describir los sistemas de control. Plantas. Una planta puede ser una parte de un equipo, tal vez un conjunto de las partes de una máquina que funcionan juntas, el propósito de la cual es ejecutar una operación particular. En este curso, considerando lo que la literatura típica efectúa al respecto, se llamará planta a cualquier objeto físico que se va a controlar (tal como un dispositivo mecánico, un horno de calefacción, un reactor químico o una nave espacial). Proceso. Define un proceso como una operación o un desarrollo natural progresivamente continuo, marcado por una serie de cambios graduales que se suceden uno al otro en una forma relativamente fija y que conducen a un resultado o propósito determinados; o una operación artificial o voluntaria progresiva que consiste en una serie de acciones o movimientos controlados, sistemáticamente dirigidos hacia un resultado o propósito determinados. En este curso de denominará proceso a cualquier operación que se va a controlar. Algunos ejemplos son los procesos químicos, económicos y biológicos. Perturbaciones. Una perturbación es una señal que tiende a afectar negativamente el valor de la salida de un sistema. Si la perturbación se genera dentro del sistema se denomina interna, en tanto que una perturbación externa se produce fuera del sistema y es una entrada. Control realimentado (feedback control). El control realimentado se refiere a una operación que, en presencia de perturbaciones, tiende a reducir la diferencia entre la salida de un sistema y alguna entrada de referencia y lo continúa haciendo con base en esta diferencia. Aquí sólo se especifican con este término las perturbaciones impredecibles, dado que las perturbaciones predecibles o conocidas siempre pueden compensarse dentro del sistema. Los componentes básicos de un sistema de control: (1) Objetivos de control, (2) Componentes del sistema de control (3) Resultados o Salidas. Figura 1. Esquema Básico de un Sistema Control de Lazo Cerrado versus Control de Lazo abierto [1] Los sistemas de control se clasifican en sistemas de lazo abierto (open loop) y a lazo cerrado (closed loop). La distinción la determina la acción de control, que es la que activa al sistema para producir la salida. Un sistema de control de lazo abierto es aquel en el cual la acción de control es independiente de la salida. Un sistema de control de lazo cerrado es aquel en el que la acción de control es en cierto modo dependiente de la salida. Sistemas de Control Realimentados (Feedback Control Systems) Según Ogata K. es un sistema que mantiene una relación preescrita entre la salida y la entrada de referencia, comparándolas y usando la diferencia como medio de control, se denomina sistema de control realimentado. Un ejemplo sería el sistema de control de temperatura de una habitación. Midiendo la temperatura real y comparándola con la temperatura de referencia (la temperatura deseada), el termostato activa o desactiva el equipo de calefacción o de enfriamiento para asegurar que la temperatura de la habitación se conserve en un nivel, cómodo sin considerar las condiciones externas Los sistemas de control realimentados no se limitan a la ingeniería, sino que también se encuentran en diversos campos ajenos a ella.

6 6 Introducción a los Sistemas de Control Sistemas de Control en Lazo Cerrado Los sistemas de control realimentados se denominan también sistemas de control en lazo cerrado. En la práctica, los términos control realimentado y control en lazo cerrado se usan indistintamente. En un sistema de control en lazo cerrado, se alimenta al controlador la señal de error de actuación, que es la diferencia entre la señal de entrada y la señal de realimentación (que puede ser la señal de salida misma o una función de la señal de salida y sus derivadas y/o integrales), a fin de reducir el error y llevar la salida del sistema a un valor conveniente. El término control en lazo cerrado siempre implica el uso de una acción de control realimentado para reducir el error del sistema. Entrada de Referencia r + - Sistema de Control Ganancia de la Realimentación Variable Controlada y Figura 2. Sistema de Control de Lazo Cerrado R () s C ( s) ( s) Y( s) H ( s) G p D( s) G D ( s) Figura 3. Esquema de Bloques y Señales Típico de un Sistema de Control de Lazo Cerrado Sistemas de Control en Lazo Abierto Los sistemas en los cuales la salida no afecta la acción de control se denominan sistemas de control en lazo abierto. En otras palabras, en un sistema de control en lazo abierto no se mide la salida ni se realimenta para compararla con la entrada. Un ejemplo práctico es una lavadora. El remojo, el lavado y el enjuague en la lavadora operan con una base de tiempo. La máquina no mide la señal de salida, que es la limpie la de la ropa. Entrada de Referencia r Controlador Sistema de Control Figura 4. Sistema de Control de Lazo Abierto Variable Controlada y

7 Teoría de Control 7 Planta D( s) ( s) G p + + G D ( s) G p (s) : Modelo de la perturbación G D (s) : Como la entrada de control afecta la salida Figura 5. Esquema de Bloques y Señales Típico de un Sistema de Control de Lazo Abierto En cualquier sistema de control en lazo abierto, la salida no se compara con la entrada de referencia. Por tanto, a cada entrada de referencia le corresponde una condición operativa fija; como resultado, la precisión del sistema depende de la calibración. Ante la presencia de perturbaciones, un sistema de control en lazo abierto no realiza la tarea deseada. En la práctica, el control en lazo abierto sólo se usa si se conoce la relación entre la entrada y la salida y si no hay perturbaciones internas ni externas. Es evidente que estos sistemas no son de control realimentado. Observe que cualquier sistema de control que opere con una base de tiempo es en lazo abierto. Por ejemplo, el control del tránsito mediante señales operadas con una base de tiempo es otro ejemplo de control en lazo abierto. Sistemas de control en lazo cerrado en comparación con los sistemas en lazo abierto. Una ventaja del sistema de control en lazo cerrado es que el uso de la realimentación vuelve la respuesta del sistema relativamente insensible a las perturbaciones externas y a las variaciones internas en los parámetros del sistema. Por tanto, es posible usar componentes relativamente precisos y baratos para obtener el control adecuado de una planta determinada, en tanto que hacer eso es imposible en el caso de un sistema en lazo abierto. Desde el punto de vista de la estabilidad, el sistema de control en lazo abierto es más fácil de desarrollar, porque la estabilidad del sistema no es un problema importante. Por otra parte, la estabilidad es una función principal en el sistema de control en lazo cerrado, lo cual puede conducir a corregir en exceso errores que producen oscilaciones de amplitud constante o cambiante. Debe señalarse que, para los sistemas en los que se conocen con anticipación las entradas y en los cuales no hay perturbaciones, es aconsejable emplear un control en lazo abierto. Los sistemas de control en lazo cerrado sólo tienen ventajas cuando se presentan perturbaciones impredecibles y/o variaciones impredecibles en los componentes del sistema. Observe que la valoración de la energía de salida determina en forma parcial el costo, el peso y el tamaño de un sistema de control. La cantidad de componentes usados en un sistema de control en lazo cerrado es mayor que la que se emplea para un sistema de control equivalente en lazo abierto. Por tanto, el sistema de control en lazo cerrado suele tener costos y potencias más grandes. Para disminuir la energía requerida de un sistema, se emplea un control en lazo abierto cuando puede aplicarse. Por lo general, una combinación adecuada de controles en lazo abierto y en lazo cerrado es menos costosa y ofrecerá un desempeño satisfactorio del sistema general. Y( s) Comparación entre sistemas en Lazo Abierto y Lazo Cerrado Lazo Abierto La estabilidad del sistema no es un problema importante en este tipo de sistemas y es más fácil de lograr. Son aplicables cuando se conoce con anticipación las entradas y no existen perturbaciones. Se usan componentes relativamente precisos y baratos para obtener el control adecuado. Lazo Cerrado La estabilidad es una función principal en este tipo de sistema ya que puede conducir a corregir exceso de errores que producen oscilaciones de amplitud constante y cambiante. Son aplicables cuando se presentan perturbaciones y/o impredecibles en los componentes del sistema. Emplea mayor cantidad de componentes siendo estos más precisos y por ende más costosos.

8 8 Introducción a los Sistemas de Control La realimentación vuelve la respuesta insensible a las perturbaciones externas y variaciones internas en los parámetros del sistema Una combinación adecuada entre controles de lazo abierto y cerrado es menos costosa y ofrecerá un desempeño satisfactorio del sistema general. Ejemplo de un Sistema de Control: Control de Velocidad Máquina de vapor, dispositivo mecánico que convierte la energía del vapor de agua en energía mecánica y que tiene varias aplicaciones en propulsión y generación de electricidad. El principio básico de la máquina de vapor es la transformación de la energía calorífica del vapor de agua en energía mecánica, haciendo que el vapor se expanda y se enfríe en un cilindro equipado con un pistón móvil. El vapor utilizado en la generación de energía o para calefacción suele producirse dentro de una caldera. La caldera más simple es un depósito cerrado que contiene agua y que se calienta con una llama hasta que el agua se convierte en vapor saturado. Los sistemas domésticos de calefacción cuentan con una caldera de este tipo, pero las plantas de generación de energía utilizan sistemas de diseño más complejo que cuentan con varios dispositivos auxiliares. La eficiencia de los motores de vapor es baja por lo general, lo que hace que en la mayoría de las aplicaciones de generación de energía se utilicen turbinas de vapor en lugar de máquinas de vapor. Los gobernadores de velocidad de máquina, especialmente el gobernador de esferas volantes centrifuga, ha sido usado desde finales de la centuria de James Watt ( ) fue el primero en aplicar el gobernador centrifugo a una maquina de vapor alrededor de Hay evidencia que el considero una aplicación patente de su gobernador y probablemente deducido esto debido a las patentes más antiguas para dispositivos centrífugos usados para regular la velocidad de ruedas de agua y molinos de vientos en la industria. Durante el siglo XIX el interés en los gobernadores de velocidad se intensifico y un numero bastante alto de artículos académico fueron escritos sobre esto. Los problemas dinámicos asociados con la gobernación de velocidad casi seguramente esta muy bien desarrollado por los ingenieros que estudian la teoría matemática del control automático. El principio básico del regulador de velocidad de Watt para una máquina a vapor muy general puede ser mostrado en el diagrama esquemático de la Figura 5. Aceite a Presión Combustible Válvula piloto Cilindro de Potencia Cerrar Abrir Máquina Válvula de Control Figura 6. Sistema de Control de Velocidad [1] Carga La cantidad de combustible de combustible (q fuel ) que se admite para la máquina se ajusta de acuerdo con la diferencia entre la velocidad de la máquina que se pretende (ω ref ) y la velocidad real (ω r (t)). La secuencia de acciones puede describirse del modo siguiente: el regulador de velocidad se ajusta de modo que, a la velocidad deseada, no fluya aceite a presión en ningún lado del cilindro de potencia. Si la velocidad real cae abajo del valor deseado (ω r (t) < ω ref ) debido a una perturbación, la disminución de la

9 Teoría de Control 9 fuerza centrífuga del regulador de velocidad provoca que la válvula de control se mueva hacia abajo, aportando más combustible y la velocidad del motor aumenta hasta alcanzar el valor deseado. En cambio, si la velocidad del motor aumenta sobre el valor deseado (ω r (t) > ω ref ), el incremento en la fuerza centrífuga del controlador provoca que la válvula de control se mueva hacia arriba. Esto disminuye la provisión de combustible y la velocidad del motor se reduce hasta alcanzar el valor deseado [1]. En éste sistema de control de velocidad, la planta (el sistema controlado) es la máquina y la variable controlada es la velocidad de la misma. La diferencia entre la velocidad deseada y la velocidad real es la señal de error. La señal de control (la cantidad de combustible) que se va a aplicar a la planta (la máquina) es la señal de actuación. La entrada externa que se aplica para afectar la variable controlada es la perturbación. Un cambio inesperado en la carga es una perturbación [1]. Consideraciones en el Control de Velocidad En la producción de electricidad, los dispositivos de control posen una importancia capital, para lograr y asegurar un suministro de electricidad de calidad. En el caso de los sistemas de generación de electricidad es típico que las grandes centrales sean del tipo a vapor o hidráulicas, donde la fuente primaria de energía es el vapor proveniente de una caldera o la columna de agua sustraída desde un embalse. En un sistema de generación ya sea hidráulico o de vapor, el sistema de gobernación esta constituido por un trasductor de velocidad, un comparador y una o mas amplificadores de fuerza. Posición de Referencia + - Error de Posición Relevador de Velocidad Relevador de Posición Gobernador de Velocidad Posición Servo Motor Posición de la Válvula Gobernador de Velocidad Válvula de Vapor y Turbina Torque desarrollado Torque de Carga - + Torque Acelerante Inercia del rotor Velocidad Figura 7. Diagrama de Bloque del Sistema de Control de una Turbina de Vapor La Figura 7 muestra el diagrama de bloque del sistema de un sistema de turbina a vapor-generador. El gobernadore de velocidad en la figura es un trasductor de velocidad, la salida del cual es típicamente la posición de una varilla que es proporcional a la velocidad. Esta posición es comparada mecánicamente con una posición de referencia (pre-ajustada) que produce un error de posición que es proporcional al error de velocidad. La fuerza de controla esta posición es pequeña y debe ser amplificada en tanto fuerza como posición. Este es el propósito de dos amplificadores denotados como relevador de velocidad y servomotor. Esta misma figura también describe el sistema de control de una turbina hidráulica si la posición de la válvula es cambiada por la posición de la compuerta (en una represa) y el bloque de la válvula es considerado la compuerta y el sistema de la turbina hidráulica. El trasductor de velocidad es el corazón del sistema de gobernación, y puede ser un dispositivo mecánico, hidráulico o eléctrico. Este debe medir la velocidad en el eje y proveer una señal de salida en una forma apropiada (posición, presión o voltaje) para comparación contra su referencia, y la subsiguiente amplificación del error. El gobernador centrífugo de bolas (centrifugal flyballs governor) ha sido históricamente usado para este propósito. La Figura 8, muestra tres ejemplos de gobernadores de bolas centrifugas como han sido concebido por los ingenieros que los diseñaron.

10 10 Introducción a los Sistemas de Control Resorte Brazos Bolas Voladoras Collar deslizante Eje Giratorio Válvula de vapor Varilla Giratoria (a) (b) Resorte Bolas Voladoras Palanca del Gobernador Eje de la Turbina Posición Palanca Velocidad (c) Figura 8. Ejemplo de gobernadores centrífugos con bolas voladoras [2] Los tres poseen el mismo tres componentes esenciales: los bolas con peso giratorias (flyballs), resorte de estricción, y un enlace mecánico que cambia una eje o collar de posición cuando la velocidad cambia. Un ejemplo de un gobernador hidráulico es mostrado en la Figura 9. En ésta figura una bomba principal de aceite provee la alta presión hidráulica que fluye a través del orificio de la bomba del gobernador. El valor de fluido de aceite del gobernador es determinado por la presión reducida desde la bomba de aceite del gobernador, la presión de salida de la cual solamente es una mitad de la principal. Sin embrago, la

11 Teoría de Control 11 presión de la bomba del gobernador varia con el cuadrado de la velocidad. Este controla la presión agua abajo desde el orificio, el cual es usado para controlar el ajuste de regulador a través de un sistema de control hidráulico. Eje de la turbina Eyector de aceite Figura 9. Gobernador hidráulico [2] La medición de la velocidad pude ser también hecha electromecánicamente por el acople de un pequeño generador al eje cuya salida de voltaje o frecuencia es dependiente de la velocidad. Tales dispositivos no son empleados muy ampliamente en las centrales de producción de electricidad grandes. Los más nuevos diseños de gobernadores usan lógica de electrónica de alta velocidad. Bomba de aceite principal Orificio Válvula Check Bomba de aceite del gobernador Reservorio de Aceite Figura 10. Gobernador de Esferas Voladoras [2] Gobernador de aceite Velocidad del Gobernador Control de la varilla de regulación Velocidad de la turbina

12 12 Introducción a los Sistemas de Control Figura 11. Diagrama de Fuerzas del Gobernador de Esferas Voladoras [2] Eje de la Turbina Succión de aceite Bomba del Gobernador Cambiador de velocidad Pivote Orifico Moto Válvula Válvula piloto Figura 12. Sistema de Regulación de Velocidad de Turbina a Vapor Diseño de Sistemas de Control [1] Los sistemas de control actuales son, por lo general, no lineales 4. Sin embargo, si es posible aproximarlos mediante modelos matemáticos lineales, podemos usar uno o más métodos de diseño bien desarrollados. En un sentido práctico, las especificaciones de desempeño determinadas para el sistema particular sugieren cuál método usar. Si se presentan las especificaciones de desempeño en términos de las características de respuesta transitoria y/o las medidas de desempeño en el dominio de la frecuencia, no se tiene otra opción que usar un enfoque convencional basado en los métodos del lugar geométrico de las raíces y/o la respuesta en frecuencia. Si las especificaciones de desempeño se presentan como índices de desempeño en términos de las variables de estado, deben usarse los enfoques de control moderno. En tanto que el diseño de un sistema de control mediante los enfoques del lugar geométrico de las raíces y de la respuesta en frecuencia es una tarea de la ingeniería, el diseño del sistema en el contexto de la teoría 4 Dinámica descrita por ecuaciones diferenciales no lineales. Válvula de vapor Servomotor

13 Teoría de Control 13 de control moderna (métodos en el espacio de estados) emplea formulaciones matemáticas del problema y aplica la teoría matemática para diseñar los problemas en los que el sistema puede tener entradas y salidas múltiples y ser variantes con el tiempo. Aplicando la teoría de control moderna, el diseñador puede iniciar a partir de un índice de desempeño, junto con las restricciones impuestas en el sistema, y avanzar para diseñar un sistema estable mediante un procedimiento completamente analítico. La ventaja del diseño basado en la teoría de control moderna es que permite al diseñador producir un sistema de control óptimo en relación con el índice de desempeño considerado. Los sistemas que pueden diseñarse mediante un enfoque convencional están por lo general limitados a una entrada y una salida, y son lineales e invariantes con el tiempo. El diseñador busca satisfacer todas las especificaciones de desempeño mediante la repetición estudiada de prueba y error. Después de diseñar un sistema, el diseñador verifica si satisface todas las especificaciones de desempeño. Si no las cumple, repite el proceso de diseño ajustando los parámetros o modificando la configuración del sistema hasta que se cumplan las especificaciones determinadas. Aunque el diseño se basa en un procedimiento de prueba y error, el ingenio y los conocimientos del diseñador cumplen una función importante en un diseño exitoso. Un diseñador experimentado será capaz de diseñar un sistema aceptable sin realizar muchas pruebas. Por lo general, es conveniente que el sistema diseñado exhiba la menor cantidad posible de errores, en respuesta a la señal de entrada. A este respecto, debe ser razonable el amortiguamiento del sistema. La dinámica del sistema debe ser relativamente insensible a variaciones pequeñas en sus parámetros. Las perturbaciones no deseadas deben estar bien atenuadas. Si el diseño del sistema se reduce a unos cuantos candidatos, puede hacerse una elección óptima entre ellos a partir de consideraciones como el desempeño general proyectado, el costo, el espacio y el peso. Referencias Documentales [1] Ogata, K., Ingeniería de Control Moderna, Prentice Hall, [2] Anderson, P.M. & Fuad, A.A. Power System Control and Stability. Second Edition. IEEE Press. [3] Kundur, P. Power System Stability and Control. Mc Graw Hill, 1999.

Control. Controlar. variable controlada variable manipulada Control realimentado. Sistema. Sistemas de control realimentado.

Control. Controlar. variable controlada variable manipulada Control realimentado. Sistema. Sistemas de control realimentado. Clase 1 Definir: Control. Poder o dominio que una persona u objeto ejerce sobre alguien o algo (En ingeniería: Conjunto de mecanismos y dispositivos que regulan el funcionamiento de una máquina, un aparato

Más detalles

Lectura 1: Introducción a los Sistemas de Control Automático

Lectura 1: Introducción a los Sistemas de Control Automático Lectura 1: Introducción a los Sistemas de Control Automático 1 Lecturas recomendadas Cap. 1, pags. 1-11, 15-17, Sistemas de Control Automático, KUO Benjamín, Séptima Edición. Cap. 1, pags. 1-8, Ingeniería

Más detalles

Introducción a los sistemas de control

Introducción a los sistemas de control Universidad Gran Mariscal de Ayacucho Facultad de Ingeniería Departamento de Informática Introducción a los sistemas de control Prof. OSMAR LUNAR Qué es control? Es la acción o el efecto de poder decidir

Más detalles

Teoría de Control. Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/controli.htm. ELC-33103 Teoría de Control

Teoría de Control. Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/controli.htm. ELC-33103 Teoría de Control ELC-33103 Teoría de Control a la Teoría de Control Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/controli.htm 1. Si se considera que la Ingeniería es una actividad

Más detalles

Unidad I Análisis de Sistemas Realimentados

Unidad I Análisis de Sistemas Realimentados Prof. Gerardo Torres - gerardotorres@ula.ve - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados

Más detalles

Control Analógico I. Introducción. Dr. Fernando Ornelas Tellez. Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica

Control Analógico I. Introducción. Dr. Fernando Ornelas Tellez. Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Control Analógico I Introducción Dr. Fernando Ornelas Tellez Universidad Michoacana de San Nicolás de Hidalgo Facultad de Ingeniería Eléctrica Morelia, Michoacan Dr. Fernando Ornelas Tellez UMSNH-FIE Division

Más detalles

Unidad V Respuesta de los sistemas de control

Unidad V Respuesta de los sistemas de control Unidad V Respuesta de los sistemas de control MC Nicolás Quiroz Hernández Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina

Más detalles

Introducción a los sistemas de control

Introducción a los sistemas de control Introducción a los sistemas de control 1-1 Introducción Las teorías de control que se utilizan habitualmente son la teoría de control clásica (también denominada teoría de control convencional), la teoría

Más detalles

CONTROL AUTOMÁTICO - HISTORIA

CONTROL AUTOMÁTICO - HISTORIA CONTROL AUTOMÁTICO - HISTORIA Control automático en la industria. Un poco de historia, aspectos generales. La aplicación del principio de realimentación tiene sus comienzos en máquinas e instrumentos muy

Más detalles

Tema 1. Introducción a los sistemas de control Un poco de historia

Tema 1. Introducción a los sistemas de control Un poco de historia Un poco de historia Control clásico El diseño de sistemas de control durante la Revolución Industrial estaba basado en prueba y error unido con una gran dosis de intuición ingenieril. A mediados de la

Más detalles

Tema 1. Introducción al Control Automático

Tema 1. Introducción al Control Automático Tema 1. Introducción al Control Automático Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido Tema 1.- Introducción al Control automático 1.1. Introducción. 1.2. Conceptos y

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA BOLIVARIANA SISTEMAS DE CONTROL DE LAZO ABIERTO Y SISTEMA DE CONTROL LAZO CERRADO

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA BOLIVARIANA SISTEMAS DE CONTROL DE LAZO ABIERTO Y SISTEMA DE CONTROL LAZO CERRADO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA BOLIVARIANA SISTEMAS DE CONTROL DE LAZO ABIERTO Y SISTEMA DE CONTROL LAZO CERRADO Prof. Gloria M. Botina B Contenido Sistema Clasificación

Más detalles

Teoría de Control. Máster en Modelización e Investigación Matemática, Estadística y Computación. Silvia Marcaida (UPV/EHU) 1 Ion Zaballa (UPV/EHU) 2

Teoría de Control. Máster en Modelización e Investigación Matemática, Estadística y Computación. Silvia Marcaida (UPV/EHU) 1 Ion Zaballa (UPV/EHU) 2 Teoría de Control Máster en Modelización e Investigación Matemática, Estadística y Computación Silvia Marcaida (UPV/EHU) 1 Ion Zaballa (UPV/EHU) 2 1 silvia.marcaida@ehu.eus, 2 ion.zaballa@ehu.eus Curso

Más detalles

Glosario de Términos de Control

Glosario de Términos de Control Glosario de Términos de Control Unifiquemos términos a fin de utilizar un lenguaje común en este aspecto de la tecnología. Siempre teniendo en cuenta que nuestro objeto de estudio serán los sistemas de

Más detalles

Tema 1. Introducción al Control Automático

Tema 1. Introducción al Control Automático Tema 1. Introducción al Control Automático Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido Tema 1.- Introducción al Control automático 1.1. Introducción. 1.2. Conceptos y

Más detalles

Contenidos Control y Automatización

Contenidos Control y Automatización Tema 1: Conceptos básicos Susana Borromeo Juan Antonio Hernández- Tamames Curso 2014-2015 1 Contenidos Control y Automatización 1. Conceptos básicos. 2. Modelado matemático de sistemas Físicos. Linealización.

Más detalles

Introducción a los Sistemas de Control

Introducción a los Sistemas de Control Introducción a los Sistemas de Control Organización de la presentación - Introducción a la teoría de control y su utilidad - Ejemplo simple: modelado de un motor de continua que mueve una cinta transportadora.

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 4

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 4 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 4 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA I. CONTENIDO 1.

Más detalles

Lic. Elizabeth Delgadillo Camacho

Lic. Elizabeth Delgadillo Camacho TEMA 1. FUNDAMENTOS DE INGENIERÍA DE CONTROL 1.1. Introducción Cuando un estudiante comienza los estudios de ingeniería con clara vocación por lo que será su profesión, debe considerar que esta comprende

Más detalles

MT 227 Introducción a la realimentación y control. Elizabeth Villota

MT 227 Introducción a la realimentación y control. Elizabeth Villota MT 227 Introducción a la realimentación y control Elizabeth Villota Objetivos Proveer información general acerca de MT 227 - describir la estructura del curso, método de evaluación, aspectos administrativos,

Más detalles

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo I Introducción

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo I Introducción Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo I Introducción D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Conceptos Básicos Propiedades

Más detalles

RESUMEN Nº1: CONTROL EN CASCADA.

RESUMEN Nº1: CONTROL EN CASCADA. RESUMEN Nº1: CONTROL EN CASCADA. En éste informe se tiene como objetivo presentar una de las técnicas que se han desarrollado, y frecuentemente utilizado, con el fin de mejorar el desempeño del control

Más detalles

01 Introducción.doc 1

01 Introducción.doc 1 1. Introducción al Control Automático 1. Introducción al Control Automático 1 1.1. Idea de Control 2 1.2. Objetivos del Control 13 1.3. Historia 17 1.4. Componentes del Lazo 21 1.5. Tipos de Control 25

Más detalles

HORARIO DE CLASES SEGUNDO SEMESTRE

HORARIO DE CLASES SEGUNDO SEMESTRE HORARIO DE CLASES LUNES MIERCOLES 17 a 18:15 hs 17 a 18:15 hs Ln 14/08/17: CRONOGRAMA DE CLASES y PARCIALES CONTROL I -AÑO 2017- SEGUNDO SEMESTRE Introducción a los sistemas de Control. Definiciones de

Más detalles

ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: Teórico #4 Cursada 2015

ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: Teórico #4 Cursada 2015 ASIGNATURA: SISTEMAS DE CONTROL CÓDIGO: 0336 Teórico #4 Cursada 2015 RESUMEN CLASE ANTERIOR (Teórico #3) Capítulo 1 - Introducción 1-1. Descripción y aplicaciones de sistemas de control automático. 1-2.

Más detalles

MT 227 Introducción a la realimentación y control. Elizabeth Villota

MT 227 Introducción a la realimentación y control. Elizabeth Villota MT 227 Introducción a la realimentación y control Elizabeth Villota 1 Objetivos Proveer información general acerca de MT 227 - describir la estructura del curso, método de evaluación, aspectos administrativos,

Más detalles

Experiencia docente en la impartición de un curso de modelado y control de sistemas continuos usando herramientas interactivas

Experiencia docente en la impartición de un curso de modelado y control de sistemas continuos usando herramientas interactivas Grado en Ingeniería Electrónica Industrial Experiencia docente en la impartición de un curso de modelado y control de sistemas continuos usando herramientas interactivas 2 1. Asignatura Modelado y control

Más detalles

Año académico GUÍA DOCENTE CONTROL REALIMENTADO ENGINYER INDUSTRIAL. Profesorado: JOSEP RIBÓ PABLO

Año académico GUÍA DOCENTE CONTROL REALIMENTADO ENGINYER INDUSTRIAL. Profesorado: JOSEP RIBÓ PABLO Año académico 2015-16 GUÍA DOCENTE CONTROL REALIMENTADO ENGINYER INDUSTRIAL Profesorado: JOSEP RIBÓ PABLO Información general de la asignatura Denominación Carácter CONTROL REALIMENTADO OPTATIVA Número

Más detalles

9.3. Turbinas a gas y sus sistemas de regulación de velocidad. Los controles de arranque y parada, sólo toman el control en esas etapas.

9.3. Turbinas a gas y sus sistemas de regulación de velocidad. Los controles de arranque y parada, sólo toman el control en esas etapas. 9.3. Turbinas a gas y sus sistemas de regulación de velocidad En las unidades con turbinas a gas las acciones de control son realizadas por 4 sistemas de control que compiten por el manejo de la válvula

Más detalles

3. CONTROL EN CASCADA

3. CONTROL EN CASCADA 3. CONTROL EN CASCADA El control en cascada es una estrategia que mejora significativamente, en algunas aplicaciones, el desempeño que muestra un control por retroalimentación y que ha sido conocida desde

Más detalles

Prefacio. 1 Sistemas de control

Prefacio. 1 Sistemas de control INGENIERIA DE CONTROL por BOLTON Editorial Marcombo Prefacio 1 Sistemas de control Sistemas Modelos Sistemas en lazo abierto y cerrado Elementos básicos de un sistema en lazo abierto Elementos básicos

Más detalles

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación

Ejercicio 3 Un sistema de control de velocidad de un motor de corriente continua se modela mediante la ecuación Trabajo práctico Nº 4 Fundamentos de control realimentado - Segundo cuatrimestre 2017 Ejercicio 1 Aplicando el criterio de estabilidad de Routh: i) Determine la cantidad de raíces en el semiplano derecho

Más detalles

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo

Más detalles

CONTROLES COMPLEJOS EN LAZO CERRADO CONTROL DE PROCESOS

CONTROLES COMPLEJOS EN LAZO CERRADO CONTROL DE PROCESOS CONTROLES COMPLEJOS EN LAZO CERRADO CONTROL DE PROCESOS 2 CONTROL REALIMENTADO Ventajas Produce acción correctora en cuanto existe error La acción correctora es independiente de la fuente y tipo de la

Más detalles

11. CONTROL DE FRECUENCIA Y DE POTENCIA ACTIVA

11. CONTROL DE FRECUENCIA Y DE POTENCIA ACTIVA 11. CONTROL DE FRECUENCIA Y DE POTENCIA ACTIVA 11.1. Importancia de la Constancia de Frecuencia La constancia de la frecuencia en Sistemas Interconectados, contribuye a lograr el funcionamiento estable

Más detalles

PRINCIPIOS DE SERVOSISTEMAS

PRINCIPIOS DE SERVOSISTEMAS PRINCIPIOS DE SERVOSISTEMAS Hoy en día los sistemas de control constituyen la base de todo proceso industrial y automatización en general, siendo su finalidad proporcionar una respuesta adecuada a un estímulo

Más detalles

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control

Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Lugar Geométrico de las Raíces Herramienta para diseño de sistemas de control Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Modelado Modelo: representación

Más detalles

PROGRAMA INSTRUCCIONAL

PROGRAMA INSTRUCCIONAL UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO UNIVERSIDAD FACULTAD DE INGENIERIA ESCUELA DE MANTENIMIENTO MECÁNICO ESCUELA DE TELECOMUNICACIONES ESCUELA DE ELÉCTRICA ESCUELA DE COMPUTACIÓN PROGRAMA

Más detalles

MT 227C: Clase Introducción n a la realimentación n y control

MT 227C: Clase Introducción n a la realimentación n y control MT 227C: Clase 01-01 Introducción n a la realimentación n y control Elizabeth Villota Cerna 08 Abril 2009 Objetivos Proveer información general acerca de MT 227 - describir la estructura del curso, método

Más detalles

Universidad Ricardo Palma

Universidad Ricardo Palma 1. DATOS ADMINISTRATIVOS Universidad Ricardo Palma FACULTAD DE INGENIERÍA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRONICA DEPARTAMENTO ACADÉMICO DE INGENIERÍA SÍLABO 1.1 Nombre del curso : CONTROL

Más detalles

TEMA N 1 INTRODUCCIÓN AL CONTROL AUTOMÁTICO DE PROCESOS

TEMA N 1 INTRODUCCIÓN AL CONTROL AUTOMÁTICO DE PROCESOS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS TEMA N 1

Más detalles

DISEÑO Y CONSTRUCCION DE UN SISTEMA DE RECTIFICACION CONTROLADO APLICADO A UN MOTOR DC

DISEÑO Y CONSTRUCCION DE UN SISTEMA DE RECTIFICACION CONTROLADO APLICADO A UN MOTOR DC DISEÑO Y CONSTRUCCION DE UN SISTEMA DE RECTIFICACION CONTROLADO APLICADO A UN MOTOR DC Gunther Andrade 1, Guillermo Eras 2, Jazmín Llerena 3, Fabricio Ordóñez 4, Norman Chootong 5 RESUMEN El objetivo de

Más detalles

OBJETIVOS. Proveer información general acerca de MT describir la estructura del curso, método de evaluación, aspectos

OBJETIVOS. Proveer información general acerca de MT describir la estructura del curso, método de evaluación, aspectos MT 227C: Clase 01-01 Introducción a la realimentación y control ELIZABETH VILLOTA CERNA 02 SEPTIEMBRE 2009 OBJETIVOS Proveer información general acerca de MT 227 - describir la estructura del curso, método

Más detalles

Planificaciones Teoría de Control II. Docente responsable: SACO ROBERTO. 1 de 5

Planificaciones Teoría de Control II. Docente responsable: SACO ROBERTO. 1 de 5 Planificaciones 6628 - Teoría de Control II Docente responsable: SACO ROBERTO 1 de 5 OBJETIVOS En este curso se introduce al estudiante de ingeniería electrónica a los problemas del control de sistemas

Más detalles

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos...

1. Concepto de amplificación de señales en los circuitos de control Amplificadores estáticos Amplificadores magnéticos... Contenido 1. Concepto de amplificación de señales en los circuitos de control.... 2 2. Amplificadores estáticos.... 2 2.1. Amplificadores magnéticos... 2 2.2. Amplificadores electrónicos.... 3 3. Amplificadores

Más detalles

Proyecto de curso. Control I II

Proyecto de curso. Control I II Proyecto de curso Control I - 27141 2017-II Escuela de Ingenierías Eléctrica, Electrónica y de Telecomunicaciones Universidad Industrial de Santander Bucaramanga, agosto de 2017 1. Introducción La caracterización

Más detalles

Qué es la Teoría Matemática de Control

Qué es la Teoría Matemática de Control Qué es la Teoría Matemática de Control Constanza Sánchez de la Vega Departamento de Matemática, Facultad de Cs. Exactas y Naturales, Universidad de Buenos Aires. 21 de Octubre de 2009 Controlar Controlar

Más detalles

Carrera: Ingeniero Químico Asignatura: Área del Conocimiento: Licenciatura Ingeniero Químico de Abril de 2010

Carrera: Ingeniero Químico Asignatura: Área del Conocimiento: Licenciatura Ingeniero Químico de Abril de 2010 Carrera: Ingeniero Químico Asignatura: Dinámica y Control de Procesos Área del Conocimiento: Ciencias de la Ingeniería Generales de la Asignatura: Nombre de la Asignatura: Clave Asignatura: Nivel: Carrera:

Más detalles

FORMATO CONTENIDO DE CURSO O SÍLABO

FORMATO CONTENIDO DE CURSO O SÍLABO 1. INFORMACIÓN GENERAL DEL CURSO Facultad Ingeniería Fecha de Actualización 20/03/2017 Programa Ingeniería Química Semestre IX Nombre Modelamiento, Control y Simulación de procesos químicos Código 72745

Más detalles

Asignaturas antecedentes y subsecuentes

Asignaturas antecedentes y subsecuentes PROGRAMA DE ESTUDIOS Sistemas de Control Digital Área a la que pertenece: Área de Formación Integral Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0187 Asignaturas antecedentes y

Más detalles

CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS

CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS CONTROL APLICADO MODELADO DE SISTEMAS DINÁMICOS MODELO MATEMÁTICO SISTEMA SE NECESITA CONOCER MODELO MATEMÁTICO CARACTERÍSTICAS DINÁMICAS DEBE REPRESENTAR BIEN NO ES ÚNICO Tenga presente que un modelo

Más detalles

Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Dinámica del Robot. UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides UCR ECCI CI-2657 Robótica Prof. M.Sc. Kryscia Daviana Ramírez Benavides Introducción La dinámica se ocupa de la relación entre las fuerzas que actúan sobre un cuerpo y el movimiento en el que se origina.

Más detalles

Teoría de Control. Silvia Marcaida, Ion Zaballa

Teoría de Control. Silvia Marcaida, Ion Zaballa Teoría de Control Silvia Marcaida, Ion Zaballa Departamento de Matemática Aplicada y Estadística e Investigación Operativa Euskal Herriko Unibertsitatea 2 Nota importante : Estas notas son una versión

Más detalles

SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD

SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD SISTEMAS DE CONTROL AUTOMÁTICO DEFINICIÓN_TIPOS_PARTES DIAGRAMA DE BLOQUES ESTABILIDAD DEFINICIÓN Un Sistema de Control es un conjunto de elementos o componentes relacionados entre si que controlan alguna

Más detalles

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica

INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica INSTITUTO POLITÉCNICO NACIONAL Escuela Superior de Ingeniería Mecánica y Eléctrica Ingeniería en Control y Automatización TEORÍA DE CONTROL 1: GUÍA PARA EL EXAMEN EXTRAORDINARIO (TEORÍA) Nombre: Grupo

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación SYLLABUS DEL CURSO Control Automático

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación SYLLABUS DEL CURSO Control Automático 1. CÓDIGO Y NÚMERO DE CRÉDITOS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL Facultad de Ingeniería en Electricidad y Computación Control Automático CÓDIGO: FIEC03418 NÚMERO DE CRÉDITOS: 5 Teóricos: 4 Prácticos:

Más detalles

Educación Media Técnico-Profesional Sector Electricidad Especialidad: Electricidad Módulo SISTEMAS NEUMÁTICOS E HIDRÁULICOS

Educación Media Técnico-Profesional Sector Electricidad Especialidad: Electricidad Módulo SISTEMAS NEUMÁTICOS E HIDRÁULICOS Educación Media Técnico-Profesional Sector Electricidad Especialidad: Electricidad Módulo SISTEMAS NEUMÁTICOS E HIDRÁULICOS Introducción Este módulo está asociado al área de competencia Operar y mantener

Más detalles

Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO

Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO Procesos de Fabricación I. Guía 1 1 SISTEMAS DE CONTROL HIDRÁULICO Y NEUMÁTICO Sistemas de Control Hidráulico y Neumático. Guía 2 1 Tema: UTILIZACIÓN DE SOFTWARE PARA DISEÑO Y SIMULACIÓN DE CIRCUITOS NEUMÁTICOS.

Más detalles

1: EL CONCEPTO DE CONTROL INVERSO ADAPTATIVO

1: EL CONCEPTO DE CONTROL INVERSO ADAPTATIVO Capítulo 1: EL CONCEPTO DE CONTROL INVERSO ADAPTATIVO INTRODUCCIÓN 1.1. INTRODUCCIÓN Las técnicas de filtrado adaptativo han sido aplicadas con éxito a los sistemas de antenas adaptativas, a problemas

Más detalles

MECATRONICA Editorial Marcombo. Prefacio

MECATRONICA Editorial Marcombo. Prefacio MECATRONICA Editorial Marcombo Prefacio 1. Mecatrónica 1.1. Qué es la mecatrónica? 1.2. Sistemas 1.3. Sistemas de medición 1.4. Sistemas de control 1.5. Controladores basados en un microprocesador 1.6.

Más detalles

Álvaro Andrés Velásquez T. Depto. de Ciencias Básicas Septiembre de 2009

Álvaro Andrés Velásquez T. Depto. de Ciencias Básicas Septiembre de 2009 Álvaro Andrés Velásquez T. Depto. de Ciencias Básicas Septiembre de 2009 Estructura de un curso teórico práctico básico de ciencias Estructura de un curso teórico práctico con proyecto de materia Importancia

Más detalles

CAPÍTULO 3. Conceptos y esquemas de control

CAPÍTULO 3. Conceptos y esquemas de control CAPÍTULO 3 Conceptos y esquemas de control 3 Conceptos y esquemas de control En este capítulo se presentan los diferentes esquemas de control aplicados a la planta piloto. Para ello se describe primero

Más detalles

SINTONIZACION DE UN CONTROLADOR PID PARA FUNCION DE TRANSFERENCIA DE SEGUNDO ORDEN USANDO ALGORITMOS GENETICOS BASADO EN TOOLBOX DE MATLAB.

SINTONIZACION DE UN CONTROLADOR PID PARA FUNCION DE TRANSFERENCIA DE SEGUNDO ORDEN USANDO ALGORITMOS GENETICOS BASADO EN TOOLBOX DE MATLAB. 1 SINTONIZACION DE UN CONTROLADOR PID PARA FUNCION DE TRANSFERENCIA DE SEGUNDO ORDEN USANDO ALGORITMOS GENETICOS BASADO EN TOOLBOX DE MATLAB. Fredy Alexander Guasmayan Guasmayan Cedula: 14 590 212 Universidad

Más detalles

Control Automático 1

Control Automático 1 Control Automático 1 Profesor: Julio Braslavsky Auxiliar: Virginia Mazzone Código: CAUT1 Característica: Núcleo Básico Clases: Lunes y Miércoles de 19 a 22 Consultas: Martes y Jueves de 15 a 18 Email:

Más detalles

Contenido. Circuitos Eléctricos - Dorf. Alfaomega

Contenido. Circuitos Eléctricos - Dorf. Alfaomega CAPÍTULO 1 Variables de circuitos eléctricos... 1 1.1 Introducción... 1 1.2 Circuitos eléctricos y corriente... 1 1.3 Sistemas de unidades... 5 1.4 Voltaje... 7 1.5 Potencia y energía... 7 1.6 Análisis

Más detalles

Automatización Industrial Telecontrol y automatismos. IES Consaburum- Consuegra

Automatización Industrial Telecontrol y automatismos. IES Consaburum- Consuegra Introducción Definiciones Actuador: es aquel elemento que puede provocar un efecto controlado sobre un proceso. Según la fuente de energía: Eléctricos: energía eléctrica Neumáticos: aire comprimido Hidráulicos:

Más detalles

INGENIERÍA EN MECATRÓNICA

INGENIERÍA EN MECATRÓNICA HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Control automático 2. Competencias a la que contribuye la asignatura Desarrollar proyectos de automatización y control,

Más detalles

22036 CONTROL E INSTRUMENTACIÓN DE PROCESOS QUÍMICOS Pàg 1 de 5

22036 CONTROL E INSTRUMENTACIÓN DE PROCESOS QUÍMICOS Pàg 1 de 5 22036 CONTROL E INSTRUMENTACIÓN DE PROCESOS QUÍMICOS Pàg 1 de 5 ASIGNATURA: CONTROL E INSTRUMENTACIÓN DE PROCESOS QUÍMICOS ESTUDIOS: INGENIERIA QUÍMICA (2n ciclo) CÓDIGO: 22036 TIPO: TR CURSO: 5º SEMESTRE:

Más detalles

Antecedentes de Control

Antecedentes de Control Apéndice A Antecedentes de Control Para cualquier tipo de análisis de sistemas de control, es importante establecer ciertos conceptos básicos. Sistemas de control retroalimentados Un sistema que mantiene

Más detalles

Metodología de diseño de Sistemas de Control

Metodología de diseño de Sistemas de Control Metodología de diseño de Sistemas de Control Tema 2 1 Conocimiento del problema Explotación Definición de las especificaciones Test Metodología de diseño de Sistemas de Control...proceso iterativo Modelado

Más detalles

Ingeniería de Control I Tema 11. Reguladores PID

Ingeniería de Control I Tema 11. Reguladores PID Ingeniería de Control I Tema 11 Reguladores PID 1 Tema 11. Reguladores PID Introducción Especificaciones de funcionamiento Acciones básicas de control Ajuste empírico de reguladores. Métodos de Ziegler-

Más detalles

Diseño de Estrategias de Control para un Estanque

Diseño de Estrategias de Control para un Estanque Ejercicio Nº 1 EL42D: Control de Sistemas. (Semestre Primavera 2008) Profesora: Dra. Doris Sáez H. Ayudante: Camila Troncoso Solar. (camtroncoso@gmail.cl) Diseño de Estrategias de Control para un Estanque

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA INSTITUTO DE INVESTIGACION DE LA FACULTAD DE INGENIERIA ELECTRICA Y ELECTRONICA INFORME FINAL DEL TEXTO TEXTO: DISEÑO DE SISTEMAS

Más detalles

Cursos de Capacitación Técnica

Cursos de Capacitación Técnica Cursos de Capacitación Técnica Hidráulica Neumática Índice HIB Hidráulica Básica 3 HIA Hidráulica Avanzada 4 TFH Tecnología de Filtración Hidráulica 5 IEH Introducción a la Electrohidráulica 6 NEB Neumática

Más detalles

1. Modelos Matemáticos y Experimentales 1

1. Modelos Matemáticos y Experimentales 1 . Modelos Matemáticos y Experimentales. Modelos Matemáticos y Experimentales.. Definición.. Tipos de Procesos.3. Tipos de Modelos 3.4. Transformada de Laplace 4.5. Función de Transferencia 7.6. Función

Más detalles

Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático

Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático ASIGNATURA: TEORÍA DE SISTEMAS LINEALES Nombre de la asignatura: TEORÍA DE SISTEMAS LINEALES Línea de investigación o de trabajo: Electrónica de Potencia y Control Automático Tiempo de dedicación del estudiante

Más detalles

SISTEMAS DE CONTROL TECNOLOGÍA 4º ESO

SISTEMAS DE CONTROL TECNOLOGÍA 4º ESO SISTEMAS DE CONTROL TECNOLOGÍA 4º ESO SISTEMA DE CONTROL AUTOMÁTICO ES UN CONJUNTO DE ELEMENTOS QUE, AL RECIBIR UNA SEÑAL DE ENTRADA, REALIZA ALGUNA ACTIVIDAD DE FORMA AUTOMÁTICASIN INTERVENCIÓN HUMANA

Más detalles

Análisis de la estabilidad del

Análisis de la estabilidad del Análisis de la estabilidad del ángulo del rotor de un sistema máquina-barra infinita Iván Camilo Durán Tovar Ingeniero Electricista, Magíster Ingeniería Eléctrica. icdurant@unal.edu.co Oscar David Flórez

Más detalles

TEORÍA DE CONTROL CONTROLADOR PID

TEORÍA DE CONTROL CONTROLADOR PID TEORÍA DE CONTROL CONTROLADOR PID Historia del controlador PID. Nicolás Minorsky 1922 Nicolás Minorsky había analizado las propiedades de los controladores tipo PID en su publicación Estabilidad direccional

Más detalles

2. Estabilidad en Sistemas Lineales Invariantes en el Tiempo.

2. Estabilidad en Sistemas Lineales Invariantes en el Tiempo. Capítulo 3 2. Estabilidad en Sistemas Lineales Invariantes en el Tiempo. 3.1 Introducción Un sistema estable se define como aquel que tiene una respuesta limitada. Es decir, un sistema es estable si estando

Más detalles

Análisis de represa hidroeléctrica a escala

Análisis de represa hidroeléctrica a escala Análisis de represa hidroeléctrica a escala Resumen ejecutivo Se analiza mediante las herramientas básicas de la mecánica de fluidos el funcionamiento de una represa hidroeléctrica a pequeña escala. Se

Más detalles

Control PID. Ing. Esp. John Jairo Piñeros C.

Control PID. Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Control PID Ing. Esp. John Jairo Piñeros C. Que es PID? Variable Proporcional Variable Integral Variable Derivativa cuando se puede usar un controlador PI, PID?

Más detalles

Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD

Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD Para un motor de CD controlado por armadura como el mostrado en la figura si suponemos que la corriente del campo se mantiene constante y se aplica un

Más detalles

2. INSTRUMENTACIÓN SÍSMICA

2. INSTRUMENTACIÓN SÍSMICA 2. INSTRUMENTACIÓN SÍSMICA 2.1 MEDICIÓN DE LA VIBRACIÓN La medición de la vibración se puede definir como el estudio de las oscilaciones mecánicas de un sistema dinámico cuando éste es sometido a algún

Más detalles

DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO:

DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: ELECTRÓNICA ACADEMIA A LA QUE SISTEMAS DE CONTROL AUTOMATICO PERTENECE: NOMBRE DE LA MATERIA: TEORIA DE CONTROL 1 CLAVE DE LA MATERIA: ET216 CARÁCTER DEL

Más detalles

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10

LABORATORIO DE SISTEMAS DE CONTROL AUTOMÁTICO PRÁCTICA N 10 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control 1. TEMA LABORATORIO DE SISTEMAS DE CONTROL

Más detalles

Pablo Ramírez López 1

Pablo Ramírez López 1 1. Esquema. 1. Generalidades. 2. Sistemas de control automático: conceptos. 2.1. Representación de los sistemas de control. Diagrama de bloques. 3. Tipos de sistemas de control. 3.1. Sistemas de control

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS PROGRAMA SINTÉTICO

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS PROGRAMA SINTÉTICO PROGRAMA SINTÉTICO CARRERA: Ingeniería en Comunicaciones y Electrónica ASIGNATURA: Señales y Sistemas de Control Clásico. SEMESTRE: Sexto OBJETIVO GENERAL: El alumno empleará modelos descriptivos de sistemas

Más detalles

LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL

LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones

Más detalles

4. SISTEMAS DE CONTROL CON ENTRADAS ESTOCÁSTICAS. Los componentes esenciales de un sistema de control son:

4. SISTEMAS DE CONTROL CON ENTRADAS ESTOCÁSTICAS. Los componentes esenciales de un sistema de control son: 4. SISTEMAS DE CONTROL CON ENTRADAS ESTOCÁSTICAS. 4.1 INTRODUCCIÓN Un sistema de control es un sistema dinámico que cuando evoluciona en el tiempo se comporta de una forma predescrita. Los componentes

Más detalles

PRINCIPIOS DE SISTEMAS DE CONTROL

PRINCIPIOS DE SISTEMAS DE CONTROL PRINCIPIOS DE SISTEMAS DE CONTROL DEFINICIÓN DE AUTOMATIZACIÓN La Real Academia de Ciencias Exactas Físicas y Naturales define la Automática como el estudio de los métodos y procedimientos cuya finalidad

Más detalles

Proyecto: Posicionamiento de una Antena Parabólica

Proyecto: Posicionamiento de una Antena Parabólica Capítulo 1 Proyecto: Posicionamiento de una Antena Parabólica 1.1 Descripción del sistema y especificaciones Se pretende controlar la posición angular (θ) de una antena parabólica de acuerdo a una referencia

Más detalles

INTRODUCCION AL CONTROL AUTOMATICO

INTRODUCCION AL CONTROL AUTOMATICO MSc. Edgar Carrera Automatización Industrial Pagina: 1 de 8 INTRODUCCION AL CONTROL AUTOMATICO El control automático industrial que también se llama tecnología de instrumentación de procesos, robótica

Más detalles

CONTROL I ING. QUIRINO JIMENEZ D. CAPITULO I. INTRODUCCIÓN AL ANÁLISIS DE SISTEMAS DE CONTROL.

CONTROL I ING. QUIRINO JIMENEZ D. CAPITULO I. INTRODUCCIÓN AL ANÁLISIS DE SISTEMAS DE CONTROL. CPITULO I. INTRODUCCIÓN L NÁLII DE ITEM DE CONTROL. El control automático ha jugado un papel importante en el avance de la ciencia y de la ingeniería. Los sistemas de control ejercen una poderosa influencia

Más detalles

Departamento Ingeniería en Sistemas de Información

Departamento Ingeniería en Sistemas de Información ASIGNATURA: TEORIA DE CONTROL MODALIDAD: Cuatrimestral DEPARTAMENTO: ING. EN SIST. DE INFORMACION HORAS SEM.: 6 horas AREA: MODELOS HORAS/AÑO: 96 horas BLOQUE TECNOLOGÍAS BÁSICAS HORAS RELOJ 72 NIVEL:

Más detalles

Monitorización continua las 24 Horas del día Capacidad de operar en redes de área extensa, a través de diferentes vías de comunicación

Monitorización continua las 24 Horas del día Capacidad de operar en redes de área extensa, a través de diferentes vías de comunicación 1.0 Introducción Hoy en día es difícil imaginar una actividad productiva sin el apoyo de un computador o de una máquina, en la actualidad estas herramientas no sólo están al servicio de intereses económicos,

Más detalles

Control PID. Sintonización e implementación

Control PID. Sintonización e implementación Control PID. Sintonización e implementación Elizabeth Villota Cerna Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM Julio 2012 1 Control PID Control PID una de las formas más

Más detalles

2Procesos. Definición. Evolución. Clasificación. Control y automatización.

2Procesos. Definición. Evolución. Clasificación. Control y automatización. AUTOATIZACIÓN Y CONTROL DE S INDUSTRIALES FIEE - UNAC VÍCTOR GUTIÉRREZ TOCAS 2Procesos. Definición. Evolución. Clasificación. y automatización. El sistema es un conjunto elementos, interrelacionados entre

Más detalles

6- TIPOS DE CONTROL UTILIZADOS

6- TIPOS DE CONTROL UTILIZADOS 6- TIPOS DE CONTROL UTILIZADOS 6.1 Control manual Dado un proceso de cualquier tipo y una actuación sobre el mismo que provoque un efecto, se define como control manual o en lazo abierto a la forma de

Más detalles

A b C D E F H I J k B 2. Objetivos generales. Estado del arte. Modelado del motor

A b C D E F H I J k B 2. Objetivos generales. Estado del arte. Modelado del motor A b C D E F H I J k Objetivos generales Estado del arte Modelado del motor Análisis del sistema Objetivos y tareas de Innovación Educativa para Modelado PID por asignación de polos Diseño de controladores

Más detalles