INTRODUCCIÓN AL MOVIMIENTO PLANO

Tamaño: px
Comenzar la demostración a partir de la página:

Download "INTRODUCCIÓN AL MOVIMIENTO PLANO"

Transcripción

1 INTRODUCCIÓN AL MOVIMIENTO PLANO Índice 1. Introducción al movimiento plano Definición cinemática de movimiento plano Caso de Traslación pura Caso de Rotación pura Polares o Curvas de rodadura Propiedades de las curvas de rodadura Determinación analítica de las curvas de rodadura Campo de velocidades del movimiento plano y situación del CIR Posición del CIR Ecuaciones de la base Ecuaciones de la Ruleta Determinación geométrica de las curvas de rodadura Perfiles conjugados Campo de aceleraciones Fórmula del campo de aceleraciones Centro de aceleraciones Ejemplo del disco que rueda sin deslizar sobre una recta 6

2 1. Introducción al movimiento plano 1.1. Definición cinemática de movimiento plano Se dice que un sólido S tiene un movimiento plano respecto a otro S 1 si las velocidades de todos sus puntos son siempre paralelas a un plano fijo de S 1. Sea a un versor normal a dicho d a plano, constante en uno ( a a = 1, = ). De la definición anterior se tiene que: {{ dt {{ 1 unitario constante en 1 t, M S, a v M 1 a = Para dos puntos cualesquiera A y B de S, la fórmula del campo de velocidades es: A,B S, v A 1 = v B 1 + ω 1 BA Pre-multiplicando escalarmente por a la expresión anterior, se obtiene: a v 1 A = a v 1 B + a ( ω 1 BA) = = BA ( a ω 1 ), A,B S ω 1 = λ a Caso de Traslación pura Si λ(t) = ω 1 (t) = Traslación pura permanente. Su estudio es trivial por la sencillez del campo de velocidades uniforme en cada instante Caso de Rotación pura Si λ(t) v MD = v M 1 ω 1 ω 1 = ( v MD = ) Rotación pura permanente. EIRMD π M (M; v M 1 ) π N(N; v N 1 ) porque v MD = Por la estructura helicoidal del campo de velocidades de este segundo caso en cualquier plano π perpendicular al vector ω 1 se dan todas las velocidades posibles y todas ellas contenidas en el plano (por tener ω 1 dirección constante esto se produce de forma permanente). Nos restringimos a dicho plano geométrico y consideramos sendos planos π (ligado al sólido móvil) y π 1 (ligado al referente del movimiento) que coinciden geométricamente en π. El movimiento S /S 1 es equivalente al que tiene el plano π con respecto al plano π 1. Las ventajas de esta equivalencia se mostrarán posteriormente. Consecuencias: N EIRMD a t I π S S 1 C C 1 El EIRMD corta al plano π en un punto I denominado centro instantáneo de rotación (CIR). Las axoides del movimiento son cilindros de generatrices paralelas a a.

3 2. Polares o Curvas de rodadura Se llama base o polar fija a la intersección de la axoide fija con el plano π 1 (coincide con el lugar geométrico que describe el CIR en el plano π 1 ). Se llama ruleta o polar móvil a la intersección de la axoide móvil con el plano π (coincide con el lugar geométrico que describe el CIR en el plano π ) Propiedades de las curvas de rodadura Sea I el CIR del movimiento S /S 1. Se tiene: v MD = v I 1 = Movimiento sin deslizamiento Sea el mosquito (sólido 2) al que le gusta estar siempre en el centro instantáneo de rotación. Por composición de movimientos se tiene: v 21 I = v 2 I + v 1 I = v I (denominada velocidad de sucesión del centro instantáneo) Sean C 1 y C las polares fija y móvil respectivamente. Tomemos origen de arcos de ambas en la posición inicial y sean s 1 y s los parámetros longitud de arco respectivos. Por definición, se tiene: v I 21 = ds 1 dt t I C 1 v I 2 = ds dt t I C v 21 I = vi 2 { t I C 1 = t I C = t I Tangencia de las curvas de rodadura s 1 = s + Cte Igualdad de arcos recorridos Supongamos que π es el plano z = de un sistema de referencia. Sean ω 1 = λ k la velocidad angular y t I el versor tangente común a las curvas de rodadura en el CIR. La componente de pivotamiento sería: ω p 1 = ( ω 1 N) N ω N p = t I 1 = Movimiento sin pivotamiento a ω 1 Luego el movimiento plano que no es una traslación pura consiste en una rodadura sin pivotamiento y sin deslizamiento. De aquí que a las polares se las denomine también curvas de rodadura Determinación analítica de las curvas de rodadura Campo de velocidades del movimiento plano y situación del CIR v 1 M = v 1 I + ω 1 IM = ω 1 IM v 1 M = ω 1 IM (CVMP) Posición del CIR Convenimos en no poner el si es subíndice único, para simplificar la escritura. Para O : v 1 O = ω {{ 1 IO (1) {{ ξ ı 1 + η j 1 k 1 [ ω 1 (1)] : ω 1 v O 1 = ω 1 ( ω 1 IO) = = ω 1 2 IO OI = ω 1 v O 1 ω 1 2 = η ı 1 + ξ j 1 (2) η y 1 y I x O θ x 1 O 1 ξ 1

4 Ecuaciones de la base O 1 I = O 1 O+ OI Componentes x I 1 = ξ η y I 1 = η + ξ Geometría x I 1 = ξ dη dθ y I 1 = η + dξ dθ Ecuaciones de la Ruleta ı 1 j 1 k1 = ı j k [Q] 1 = ı j cosθ sinθ k sinθ cosθ (3) 1 OI = ı j x I η k y I z I = ı 1 j 1 k1 ξ (3) = ı j cosθ sinθ η k sinθ cosθ ξ 1 Componentes x I = ξsinθ ηcosθ y I = ξcosθ+ ηsinθ Geometría x I = dξ dη sinθ cosθ dθ dθ y I = dξ dη cosθ + sinθ dθ dθ 2.3. Determinación geométrica de las curvas de rodadura Perfiles conjugados N Se denominan Pareja de perfiles conjugados a una curva S del plano móvil y su envolvente S 1 en el plano M S fijo o viceversa. Los casos degenerados también tienen interés, como pronto veremos. Q S 1 Propiedad fundamental de los perfiles conjugados: la perpendicular común a una pareja de perfiles conjugados C pasa por el CIR. Demostración: I C 1 Sea una escuadra NMQ (sólido 2) que se mueve de forma que su lado MN permanece siempre normal en M a la pareja de perfiles conjugados en su punto de contacto. Por composición de movimientos se tiene: 1 2 v M 21 = v M 2 + v M 1 De las propiedades de los movimientos se concluye que: v 21 M t S M 1 v 2 M t S M t S M 1 = t S M t M (Envolvente e Involuta) vm 1 t M MN v 1 M = ω 1 IM IM { MN IM M común I,M,N alineados Con dos parejas de perfiles conjugados cuyas normales no sean paralelas se determina la posición del centro instantáneo de rotación. Por inspección de los lugares geométricos (geometría métrica) que recorre dicho punto en las referencias fija y móvil se determinan la base y la ruleta respectivamente. El ejemplo final ilustrará este procedimiento.

5 3. Campo de aceleraciones 3.1. Fórmula del campo de aceleraciones Dada la fórmula de campo de velocidades: v M 1 = ω 1 IM vamos a obtener por derivación la fórmula para el campo de aceleraciones. Recordemos que IM ω 1. γ 1 M = d vm 1 = d ω 1 IM + ω 1 d dt 1 dt 1 dt (O 1M O 1 I) = 1 = ᾱ 1 IM + ω 1 ( v 1 M vi ) = = ᾱ 1 IM + ω 1 ( ω 1 IM) ω 1 v I = = ᾱ 1 IM + ( ω 1 IM) ω 1 ω 1 2 IM ω 1 v I = = ᾱ 1 IM ω 1 2 IM ω 1 v I γ M 1 = ᾱ 1 IM ω 1 2 IM ω 1 v I (CAMP/1) 3.2. Centro de aceleraciones Se denomina centro de aceleraciones al punto H del plano que tiene aceleración nula. Vamos a demostrar que es único y cómo situarlo en cada instante. γ M 1 = ᾱ 1 IM ω 1 2 IM ω 1 v I H S γ H 1 = = ᾱ 1 IH ω 1 2 IH ω 1 v I (Restando) : γ M 1 = ᾱ 1 HM ω 1 2 HM (CAMP/2) El campo de aceleraciones se comporta en cada instante como el de una rotación alrededor del centro instantáneo de aceleraciones H (el campo de velocidades se comportaba en cada instante como el de una rotación alrededor del centro instantáneo de rotación I). La localización del centro instantáneo de aceleraciones H respecto al punto M de aceleración conocida (y en función de la velocidad y la aceleración angulares del movimiento plano), está dada por la fórmula resultante del siguiente desarrollo: γ M 1 = ᾱ 1 HM ω 1 2 HM ᾱ 1 HM = γ M 1 + ω 1 2 HM (4) ᾱ 1 (CAMP/2) : ᾱ 1 γ M 1 = ᾱ 1 (ᾱ 1 HM) ω 1 2 (ᾱ 1 HM) = = (ᾱ 1 HM)ᾱ 1 ᾱ 1 2 HM ω 1 2 (ᾱ 1 HM) = (4) = ᾱ 1 2 HM ω 1 2 ( γ M 1 + ω 1 2 HM) MH = ω 1 2 γ M 1 +ᾱ 1 γ M 1 ω ᾱ 1 2 (5)

6 4. Ejemplo del disco que rueda sin deslizar sobre una recta Sistema de referencia ligado al disco: y 1 O C Ox y Oy origen en el centro del disco diámetros ortogonales del disco Posicionamiento y Cinemática: O 1 C = ξ ı 1 +R j 1 v 1 C = do 1C dt 1 = ξ ı 1 ang( ı 1, ı) = θ ω 1 = k 1 Condición de no deslizamiento: v I 1 = = v C 1 + ω 1 CI = ( ξ R) ı 1 ξ = R C O R O 1 θ ξ I x 1 x Curvas de rodadura: La determinación del CIR en este caso es más sencilla por consideraciones geométricas que por analíticas. Una pareja de perfiles conjugados puede ser la circunferencia del disco y el eje O 1 x 1, por ser curva del plano móvil y su envolvente en el plano fijo. Una segunda pareja de perfiles conjugados sería el punto M del la periferia del disco que coincide con I en el instante en cuestión y su trayectoria en el plano fijo (la cicloide). Las normales a ambas parejas serían respectivamente IC y O 1 I. I IC O 1 I. La determinación geométrica de las curvas de rodadura es sencilla una vez conocida la posición del CIR y sus lugares geométricos en ambos planos. base: El punto I describe en el plano π 1 el eje O 1 x 1. ruleta: El punto I describe en el plano π la periferia del disco. Determinación analítica de la base: x I 1 = ξ y I 1 = R ξ = R R = (Ecuación explícita del eje O 1x 1 ) Determinación analítica de la ruleta: x I = Rsinθ y I = Rcosθ (Ecuaciones paramétricas de una circunferencia con centro en C y radio R) Además se tiene que: γ 1 C = d vc 1 = dt ξ ı 1 = R θ ı 1 1 ᾱ 1 = θ k 1 ᾱ 1 = θ Centro de aceleraciones: CH = 2 R θ ı 1 + θ k 1 R θ ı θ = R 2 θ ı1 + θ 2 j θ 2 y

5 CINEMATICA DEL CUERPO RIGIDO EN MOVIMIENTO PLANO. Dr A A C. y(o ) x(o ) 5.1 INTRODUCCION

5 CINEMATICA DEL CUERPO RIGIDO EN MOVIMIENTO PLANO. Dr A A C. y(o ) x(o ) 5.1 INTRODUCCION 5 CINEMTIC DEL CUERPO RIGIDO EN MOVIMIENTO PLNO 5.1 INTRODUCCION Cuerpo Rígido Sistema dinámico que no presenta deformaciones entre sus partes ante la acción de fuerzas. Matemáticamente, se define como

Más detalles

Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos.

Introducción. Cuerpo Rígido. Mecánica Racional 20 TEMA 4: Cinemática de los Cuerpos Rígidos. Introducción. La cinemática de cuerpos rígidos estudia las relaciones existentes entre el tiempo, las posiciones, las velocidades y las aceleraciones de las diferentes partículas que forman un cuerpo rígido.

Más detalles

Colegio Internacional Torrequebrada. Departamento de Matemáticas

Colegio Internacional Torrequebrada. Departamento de Matemáticas Geometría. Problema 1: Calcula la distancia del punto P(1, 1, 1) a la recta Problema 2: Dadas las rectas, se pide: a) Analiza su posición relativa. b) Halla la ecuación general del plano π que contiene

Más detalles

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante

Resumen de Física. Cinemática. Juan C. Moreno-Marín, Antonio Hernandez Escuela Politécnica - Universidad de Alicante Resumen de Física Cinemática, Antonio Hernandez D.F.I.S.T.S. La Mecánica se ocupa de las relaciones entre los movimientos de los sistemas materiales y las causas que los producen. Se divide en tres partes:

Más detalles

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS

CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS CINEMÁTICA: MOVIMIENTO CIRCULAR, CONCEPTOS BÁSICOS Y GRÁFICAS Un volante cuyo diámetro es de 3 m está girando a 120 r.p.m. Calcular: a) su frecuencia, b) el periodo, c) la velocidad angular, d) la velocidad

Más detalles

Composición de movimientos

Composición de movimientos Capítulo 3 Composición de movimientos 3.1. Composición de movimientos Además de los problemas y ejercicios de este capítulo, es conveniente resolver los del anterior con las técnicas de composición de

Más detalles

B5 Lugares geométricos

B5 Lugares geométricos Geometría plana B5 Lugares geométricos Lugar geométrico Se llama así a la figura que forman todos los puntos que tienen una misma propiedad. Los lugares geométricos pueden ser del plano o del espacio,

Más detalles

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen

CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CINEMÁTICA CONCEPTO DE CINEMÁTICA: es el estudio del movimiento sin atender a las causas que lo producen CONCEPTO DE MOVIMIENTO: el movimiento es el cambio de posición, de un cuerpo, con el tiempo (este

Más detalles

1. El movimiento circular uniforme (MCU)

1. El movimiento circular uniforme (MCU) FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

1 Curvas planas. Solución de los ejercicios propuestos.

1 Curvas planas. Solución de los ejercicios propuestos. 1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)

Más detalles

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales

Describe el movimiento sin atender a las causas que lo producen. Utilizaremos partículas puntuales 3. Cinemática Cinemática Describe el movimiento sin atender a las causas que lo producen Utilizaremos partículas puntuales Una partícula puntual es un objeto con masa, pero con dimensiones infinitesimales

Más detalles

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV

MOVIMIENTO CIRCULAR - MCU - MCUV MOVIMIENTO CIRCULAR - MCU - MCUV FISICA PREUNIERSITARIA MOIMIENTO CIRCULAR - MCU - MCU MOIMIENTO CIRCULAR - MCU - MCU CONCEPTO Es el movimiento de trayectoria circular en donde el valor de la velocidad del móvil se mantiene constante

Más detalles

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada

( ) m normal. UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada UNIDAD III. DERIVACIÓN Y APLICACIONES FÍSICAS Y GEOMÉTRICAS 3.8. Aplicaciones geométricas de la derivada Dirección de una curva Dado que la derivada de f (x) se define como la pendiente de la recta tangente

Más detalles

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites

INDICE 1. Desigualdades 2. Relaciones, Funciones, Graficas 3. La Línea Recta 4. Introducción al Cálculo. Límites INDICE 1. Desigualdades 1 1. Desigualdades 1 2. Valor absoluto 8 3. Valor absoluto y desigualdades 11 2. Relaciones, Funciones, Graficas 16 1. Conjunto. Notación de conjuntos 16 2. El plano coordenado.

Más detalles

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación

CONTENIDO SÓLIDO RÍGIDO I. CINEMÁTICA. Definición de sólido rígido. Cálculo de la posición del centro de masas. Movimiento de rotación y de traslación CONTENIDO Definición de sólido rígido Cálculo de la posición del centro de masas Movimiento de rotación y de traslación Movimiento del sólido rígido en el plano Momento de inercia Teorema de Steiner Tema

Más detalles

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica.

Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. æ Mecánica CLásica Guia N 6 - Primer cuatrimestre de 2007 Sólidos rígidos planos. Energía potencial y mecánica. Problema 1: Dos barras delgadas uniformes de longitudes iguales, l=0.5 m, una de 4 kg y la

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

MECÁNICA II CURSO 2004/05

MECÁNICA II CURSO 2004/05 1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor

Más detalles

Docente: Angel Arrieta Jiménez

Docente: Angel Arrieta Jiménez CINEMÁTICA DE UNA PARTÍCULA EN DOS DIMENSIONES EJERCICIOS DE MOVIMIENTO CIRCULAR 1. En el ciclo de centrifugado de una maquina lavadora, el tubo de 0.3m de radio gira a una tasa constante de 630 r.p.m.

Más detalles

Javier Junquera. Movimiento de rotación

Javier Junquera. Movimiento de rotación Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS. Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.2008 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS AERONÁUTICOS APELLIDOS, NOMBRE: n o Examen: Mecánica I (Probl. de Cinemática) Curso: 08/09 Fecha: 14.11.008 Sea Oxyz un sistema de referencia ligado a un sólido S

Más detalles

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA

EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA EJERCICIOS DE SELECTIVIDAD DE GEOMETRIA 2003 (4) Ejercicio 1. Considera los vectores u = (1,1,1), v = (2,2,a) y w = (2,0,0), (a) [1'25 puntos] Halla los valores de a para que los vectores u, v y w sean

Más detalles

Dibujo Técnico Curvas cónicas-parábola

Dibujo Técnico Curvas cónicas-parábola 22. CURVAS CÓNICAS-PARÁBOLAS 22.1. Características generales. Las curvas cónicas son las secciones planas de un cono de revolución. El cono de revolución es la superficie que genera una recta r al girar

Más detalles

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje.

LA CIRCUNFERENCIA. La circunferencia es la sección producida por un plano perpendicular al eje. LA CIRCUNFERENCIA La circunferencia es la sección producida por un plano perpendicular al eje. β = 90º La circunferencia es un caso particular de elipse. Se llama circunferencia al lugar geométrico de

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

ESTUDIO GRÁFICO DE LA ELIPSE.

ESTUDIO GRÁFICO DE LA ELIPSE. Curvas Cónicas para Dibujo y Matemáticas. Aplicación web Dibujo Técnico para ESO y Bachillerato Matemáticas para Bachillerato Educación Plástica y Visual Autor: José Antonio Cuadrado Vicente. ESTUDIO GRÁFICO

Más detalles

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07.

Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander. Monday, November 5, 2007 at 8:44 am (FA07. Julio C. Carrillo E. Profesor Escuela de Matemáticas Universidad Industrial de Santander Monday, November 5, 2007 at 8:44 am (FA07.01,02) Para uso exclusivo en el salón de clase. 2007 c Julio C. Carrillo

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Se dan los siguientes puntos por sus coordenadas: A(3, 0), B(, 0), C(0, ) y sea P un punto variable sobre el eje. i) Hallar la ecuación de la recta (AC) y de la recta (r) perpendicular

Más detalles

I. Objetivo. II. Introducción.

I. Objetivo. II. Introducción. Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Física Laboratorio de Mecánica II Práctica #1: Cinemática Rotacional: MCU y MCUA I. Objetivo. Estudiar el movimiento rotacional

Más detalles

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES

2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES 2. CURVAS PLANAS, ECUACIONES PARAMÉTRICAS Y COORDENADAS POLARES INDICE 2.1. Curvas planas y ecuaciones paramétricas...2 2.2. Ecuaciones paramétricas de algunas curvas y su representación grafica 3 2.3.

Más detalles

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO)

1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) 1RA PRÁCTICA CALIFICADA (CINEMÁTICA DE UNA PARTÍCULA Y CUERPO RÍGIDO) DINÁMICA (IC 244) ALUMNOS : CARITAS BARRIENTOS, Ronald ROBLES ROCHA, Hamilton TORRES PÉREZ, Walter A. TORO VELARDE, William DOCENTE

Más detalles

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2

Cinética. 1. Introducción Cantidad de movimiento Teorema del centro de masas... 2 Índice Cinética 1. Introducción. Cantidad de movimiento.1. Teorema del centro de masas................................ 3. Momento cinético 3 3.1. Teorema de König relativo al momento cinético.....................

Más detalles

Resumen TEMA 3: Cinemática del movimiento plano

Resumen TEMA 3: Cinemática del movimiento plano TEM 3: Cinemática del movimiento plano Resumen TEM 3: Cinemática del movimiento plano 1. Condiciones del movimiento plano Definición: un sólido rígido se mueve con un movimiento plano si todos sus puntos

Más detalles

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano

ELEMENTOS DE GEOMETRÍA. Eduardo P. Serrano ELEMENTOS DE GEOMETRÍA Eduardo P. Serrano Este Apunte de Clase está dirigido a los alumnos de la materia Elementos de Cálculo Numérico para Biólogos. Tiene por objeto exponer algunos conceptos básicos

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

CAPÍTULO 2. RESISTENCIAS PASIVAS

CAPÍTULO 2. RESISTENCIAS PASIVAS CAÍTULO 2. RESISTENCIAS ASIVAS 2.1. Introducción Son aquellas internas o externas a los elementos que constituyen un mecanismo, que de una forma u otra, se oponen al movimiento relativo de los mismos.

Más detalles

EJERCICIOS DE GEOMETRÍA

EJERCICIOS DE GEOMETRÍA 1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando

Más detalles

TEMA 8. GEOMETRÍA ANALÍTICA.

TEMA 8. GEOMETRÍA ANALÍTICA. TEMA 8. GEOMETRÍA ANALÍTICA. 8..- El plano. Definimos el plano euclideo como el conjunto de puntos ( x, y) R. Así, cada punto del plano posee dos coordenadas. Para representar puntos del plano utilizaremos

Más detalles

Forma polar de números complejos (repaso breve)

Forma polar de números complejos (repaso breve) Forma polar de números complejos (repaso breve) Objetivos. pasar la forma polar de números complejos. quisitos. Números complejos, funciones trigonométricas, valor absoluto de números complejos, circunferencia

Más detalles

CINEMATICA DE MAQUINAS

CINEMATICA DE MAQUINAS CINEMATICA DE MAQUINAS 4.1.- CAMPO DE VELOCIDADES EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.2.- ACELERACION DE UN PUNTO EN EL MOVIMIENTO GENERAL DE UN SISTEMA INDEFORMABLE 4.3.- EJE INSTANTANEO

Más detalles

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r

Solución: a) Módulo: en cualquier instante, el módulo del vector de posición es igual al radio de la trayectoria: r IES Menéndez Tolosa (La Línea) Física y Química - º Bach - Movimientos Calcula la velocidad de un móvil a partir de la siguiente gráfica: El móvil tiene un movimiento uniforme. Pasa de la posición x 4

Más detalles

TEMA 5. CURVAS CÓNICAS.

TEMA 5. CURVAS CÓNICAS. 5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Unidades 5, 6 y 7:Cinemática

Unidades 5, 6 y 7:Cinemática Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidades 5, 6 y 7:Cinemática Universidad Politécnica de Madrid 28 de junio de 2010 2 5.1. Planificación

Más detalles

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3

LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3 Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los

Más detalles

EJERCICIO. Dadas las rectas y

EJERCICIO. Dadas las rectas y EJERCICIO Dadas las rectas x4 y1 z y z 8 r : y s: x1 1 3 se pide: a) Comprueba que las rectas r y s se cruzan. b) Determina la ecuación de la perpendicular común. c) Calcula la distancia entre ambas. Perpendicular

Más detalles

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 Capitulo IV INDICE Geometría Analítica Plana Capitulo Primero Artículo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5 5. Carácter de la geografía

Más detalles

Capitulo VI. VI.1 Introducción a los engranajes. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica

Capitulo VI. VI.1 Introducción a los engranajes. Universidad de Cantabria Departamento de Ing. Estructural y Mecánica Capitulo VI VI.1 Introducción a los engranajes 1 Capítulo VI Engranajes VI.1 Introducción n a los engranajes. Introducción. n. Axoides. Clasificación de los engranajes. Ruedas de fricción. Nomenclatura

Más detalles

Parcial I Cálculo Vectorial

Parcial I Cálculo Vectorial Parcial I Cálculo Vectorial Febrero 8 de 1 ( Puntos) I. Responda falso o verdadero justificando matematicamente su respuesta. (i) La gráfica de la ecuación cos ϕ = 1, en coordenadas esféricas en R3, es

Más detalles

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3

Universidad Nacional de Colombia Departamento de Matemáticas Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Universidad Nacional de Colombia Departamento de Matemáticas 1000003-5 Álgebra Lineal - Grupo 1 Resumen Unidad n 3 Vectores en R n Definición. El conjunto de las n-tuplas ordenadas de números reales se

Más detalles

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,

Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

PRINCIPIOS DE LA DINÁMICA

PRINCIPIOS DE LA DINÁMICA Capítulo 3 PRINCIPIOS DE LA DINÁMICA CLÁSICA 3.1 Introducción En el desarrollo de este tema, cuyo objeto de estudio son los principios de la dinámica, comenzaremos describiendo las causas del movimiento

Más detalles

Ejercicios Resueltos de Cálculo III.

Ejercicios Resueltos de Cálculo III. Ejercicios Resueltos de Cálculo III. 1.- Considere y. a) Demuestre que las rectas dadas se cortan. Encuentre el punto de intersección. b) Encuentre una ecuación del plano que contiene a esas rectas. Como

Más detalles

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA

GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas

Más detalles

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio

Fundamentos matemáticos. Tema 3 Geometría del plano y del espacio Fundamentos matemáticos Grado en Ingeniería agrícola y del medio rural Tema 3 Geometría del plano y del espacio José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es

Más detalles

Rectas y Planos en el Espacio

Rectas y Planos en el Espacio Rectas y Planos en el Espacio Rectas y Planos en el Espacio Verónica Briceño V. septiembre 2012 Verónica Briceño V. () Rectas y Planos en el Espacio septiembre 2012 1 / 20 En esta Presentación... En esta

Más detalles

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96

INDICE. 88 determinante 36. Familias de líneas rectas Resumen de resultados 96 INDICE Geometría Analítica Plana Capitulo Primero Sistema de Coordenadas Articulo 1. Introducción 1 2. Segmento rectilíneo dirigido 1 3. Sistema coordenado lineal 3 4. Sistema coordenado en el plano 5

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

Movimiento y Dinámica circular

Movimiento y Dinámica circular SECTOR CIENCIAS - FÍSICA TERCERO MEDIO 2011 Trabajo de Fábrica III MEDIO APREDIZAJES ESPERADOS - Aplicar las nociones físicas fundamentales para explicar y describir el movimiento circular; utilizar las

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene

Si se incrementa el número de elementos en los cuales se ha dividido la placa y simultáneamente se disminuye el tamaño de cada elemento se obtiene Capítulo 5 Fuerzas distribuidas. Centroides y centros de gravedad Introducción La acción de la Tierra sobre un cuerpo rígido debe representarse por un gran número de pequeñas fuerzas distribuidas sobre

Más detalles

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r.

a) La ecuación del plano que pasa por el punto ( 1, 1, 0 ). (3 puntos) b) La ecuación del plano que es paralelo a la recta r. PROBLEMAS DE SELECTIVIDAD. BLOQUE GEOMETRÍA 1. En el espacio se dan las rectas Obtener a) El valor de para el que las rectas r y s están contenidas en un plano. (4 puntos) b) La ecuación del plano que

Más detalles

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta

Proyecto. Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas. Geometría Analítica. Isidro Huesca Zavaleta Geometría Analítica Tema 6 sesión 2: Generación de Rectas, Circunferencias y Curvas Isidro Huesca Zavaleta La Integración de dos Ciencias La Geometría Analítica nació de la integración de dos ciencias

Más detalles

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA VIII: Geometría 3D (IV)

DIBUJO TÉCNICO. UNIDAD DIDÁCTICA VIII: Geometría 3D (IV) UNIDAD DIDÁCTICA VIII: Geometría 3D (IV) ÍNDICE Página: 1 SUPERFICIES DE REVOLUCIÓN 2 2 SUPERFICIE CILÍNDRICA 2 21 CILINDROS 2 22 PROYECCIONES DE UN CILINDRO 3 23 SECCIONES PLANAS 4 3 SUPERFICIES CÓNICAS

Más detalles

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA

REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos

Más detalles

TEMA II: CINEMÁTICA I

TEMA II: CINEMÁTICA I 1 TEMA II: CINEMÁTICA I 1- LA MECÁNICA La Mecánica es la parte de la física que estudia el movimiento de los cuerpos. Puede subdividirse en dos bloques: Cinemática: trata el movimiento sin ocuparse de

Más detalles

TALLER DE OSCILACIONES Y ONDAS

TALLER DE OSCILACIONES Y ONDAS TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia

Más detalles

Sistemas de coordenadas

Sistemas de coordenadas Sistemas de coordenadas. Introducción En un sistema de coordenadas un punto se representa como la intersección de tres superficies ortogonales llamadas superficies coordenadas del sistema: u u u = cte

Más detalles

PCPI Ámbito Científico-Tecnológico EL MOVIMIENTO

PCPI Ámbito Científico-Tecnológico EL MOVIMIENTO EL MOVIMIENTO 1. MOVIMIENTO Y REPOSO. NECESIDAD DE UN SISTEMA DE REFERENCIA: El movimiento es un fenómeno físico que se define como todo cambio de lugar o posición en el espacio que experimentan los cuerpos

Más detalles

Problemas métricos. 1. Problemas afines y problemas métricos

Problemas métricos. 1. Problemas afines y problemas métricos . Problemas afines y problemas métricos Al trabajar en el espacio (o análogamente en el plano) se nos pueden presentar dos tipos de problemas con los elementos habituales (puntos, rectas y planos): Problemas

Más detalles

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación)

1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2. VECTOR DE POSICIÓN. VELOCIDAD Y ACELERACIÓN (continuación) 1.2.29.* Dado el vector de posición de un punto material, r=(t 2 +2)i-(t-1) 2 j (Unidades S.I.), se podrá decir que la aceleración a los

Más detalles

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS.

Dibujo Técnico Sistema diédrico.- Cambios de plano, giros y ángulos. ÁNGULOS. 30. SISTEMA DIÉDRICO.- CAMBIOS DE PLANO, GIROS Y ÁNGULOS. 30.1. Cambios de plano. Los cambios de planos de proyección consisten en tomar o elegir otros planos de proyección de forma que los elementos que

Más detalles

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector

EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es

Más detalles

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO.

PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. PROBLEMARIO DE GEOMETRIA ANALITICA EN EL PLANO. FACULTAD DE MATEMATICAS UNIVERSIDAD VERACRUZANA 2010 Xalapa, Ver. México 1 1. La distancia entre dos puntos en la recta real es 5. Si uno de los puntos

Más detalles

Cinemática de Sistemas

Cinemática de Sistemas Capítulo 4 Cinemática de Sistemas Rígidos Antes de comenzar con el estudio de la dinámica de sistemas, conviene profundizar en la descripción geométrica del movimiento o cinemática. Podríamos definir la

Más detalles

Geodesia Matemática. E. Calero Versión Madrid Parte II Geometría del elipsoide de revolución II-1

Geodesia Matemática. E. Calero Versión Madrid Parte II Geometría del elipsoide de revolución II-1 Geodesia Matemática. E. Calero Versión 1.0 31-01-2005 Madrid Parte II Geometría del elipsoide de revolución II-1 2.- GEOMETRÍA DEL ELIPSOIDE DE REVOLUCIÓN. ECUACIONES 2.1 Ecuaciones paramétricas 2.2 Ecuación

Más detalles

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6

Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto

Más detalles

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos.

CINEMÁTICA: ESTUDIO DEL MOVIMIENTO. Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. CINEMÁTICA: ESTUDIO DEL MOVIMIENTO Cinemática es la parte de la Física que estudia la descripción del movimiento de los cuerpos. 1. Cuándo un cuerpo está en movimiento? Para hablar de reposo o movimiento

Más detalles

3.1 El espacio afín R n

3.1 El espacio afín R n 3. Geometría analítica 3.1 El espacio afín R n Consideremos el conjunto R n, formado por las listas ordenadas (x 1,...,x n ) de números reales. Convengamos en llamar puntos a los elementos de R n. Pero

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p

3. Si la diferencia de volúmenes de los cilindros A) 2 3 B) En el gráfico se tiene un tronco de cilindro. A) 196p B) 200p C) 250p ilindro y tronco de cilindro 1. En el gráfico se muestra un cilindro recto de base circular, además, T es punto de contacto de la recta PT en la superficie cilíndrica. Si PT=15 y P=8, calcule la distancia

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS MATEMÁTICAS III CICLO ESCOLAR TERCER SEMESTRE GEOMETRÍA G E O M É T R Í A GUÍA ANALÍTICA A N A L Í T I C A G U

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector.

VECTORES. también con letras sobre las cuales se coloca una flechita ( a ). A = módulo de A. modulo o magnitud, dirección y sentido. vector. VECTORES Según su naturaleza las cantidades físicas se clasifican en magnitudes escalares y magnitudes vectoriales Las magnitudes como el tiempo, la temperatura, la masa y otras, son magnitudes escalares

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

A veces se le da el nombre del problema de Pappus. Viete lo menciona como fundamental para la subdivisión de ángulos.

A veces se le da el nombre del problema de Pappus. Viete lo menciona como fundamental para la subdivisión de ángulos. 1 Antecedentes Los Griegos fueron los primeros en utilizar la regla y el compás como instrumentos de trazo en las construcciones geométricas, aunque fueron rápidamente detenidos por problemas de construcción

Más detalles

Cinemática. Marco A. Merma Jara Versión:

Cinemática. Marco A. Merma Jara  Versión: Cinemática Marco A. Merma Jara http://mjfisica.net Versión: 08.2013 Contenido Cinemática Movimiento Unidimensional Movimiento Unidimensional con aceleración constante Movimiento Bidimensional Movimiento

Más detalles

1. Cinemática: Elementos del movimiento

1. Cinemática: Elementos del movimiento 1. Cinemática: Elementos del movimiento 1. Una partícula con velocidad cero, puede tener aceleración distinta de cero? Y si su aceleración es cero, puede cambiar el módulo de la velocidad? 2. La ecuación

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA

NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS

Más detalles

TEORÍA DE MÁQUINAS 2.- CINEMÁTICA DE MECANISMOS. Universidad Carlos III de Madrid Departamento de Ingeniería Mecánica

TEORÍA DE MÁQUINAS 2.- CINEMÁTICA DE MECANISMOS. Universidad Carlos III de Madrid Departamento de Ingeniería Mecánica TEORÍ DE MÁQUINS 2.- CINEMÁTIC DE MECNISMOS Cinemática de máquinas Capítulo II: CINEMÁTIC Y DINÁMIC DE LOS MECNISMOS Y MÁQUINS Tema 2.- Cinemática de los mecanismos Lección 2.- Estudio cinemático de mecanismos

Más detalles

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016

Universidad de Sonora Departamento de Física. Mecánica II. Dr. Roberto Pedro Duarte Zamorano 2016 Universidad de Sonora Departamento de Física Mecánica II Dr. Roberto Pedro Duarte Zamorano 2016 Temario 1. Cinemática rotacional. 2. Dinámica rotacional. 3. Las leyes de Newton en sistemas de referencia

Más detalles

Funciones reales. Números complejos

Funciones reales. Números complejos Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica

Más detalles

3 Curvas alabeadas. Solución de los ejercicios propuestos.

3 Curvas alabeadas. Solución de los ejercicios propuestos. 3 Curvas alabeadas. Solución de los ejercicios propuestos.. Se considera el conjunto C = {(x, y, z R 3 : x y + z = x 3 y + z = }. Encontrar los puntos singulares de la curva C. Solución: Llamemos f (x,

Más detalles

Geometría Analítica Agosto 2016

Geometría Analítica Agosto 2016 Laboratorio #1 Distancia entre dos puntos I.- Demostrar que los puntos dados no son colineales. 1) A (0, 5), B(3, 1), C( 11, 27) 2) A (1, 4), B( 2, 10), C(5, 5) II.- Demostrar que los puntos dados forman

Más detalles

6 DINAMICA DEL CUERPO RIGIDO

6 DINAMICA DEL CUERPO RIGIDO 6 DINAMICA DEL CUERPO RIGIDO 6. CINEMATICA 6.. Configuracion de un Cuerpo Rígido: Angulos de Euler Un cuerpo rígido se puede entender como una distribución continua de materia que se subdivide en pequeños

Más detalles