Heike Kamerlingh Onnes ( )

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Heike Kamerlingh Onnes ( )"

Transcripción

1 PRIMER EXAMEN FINAL COLEGIADO VIERNES 7 DE DICIEMBRE DE 007, 7:00 (h TURNO MATUTINO Heike Kamerlingh Onnes ( Instrucciones: lea cuidadosamente los problemas que se ofrecen. Resuelva cualesquiera cuatro en dos horas y en el orden que usted desee. Se permite la consulta de cualquier documento propio. a Se ensambla el equipo mostrado en la figura donde el único líquido utilizado es agua. La columna de aire Z mide 14. (cm y la altura de agua h mide 0.80 (m. Obtenga la altura en (m de la columna de agua L. Tome: ρ aire = 1.10 (kg/m 3, ρ Hg = (kg/m 3, ρ agua = 998 (kg/m 3, P atm = (kpa, g= 9.78 (m/s. b Un gas encerrado en un cilindro pistón sufre los procesos descritos en la figura de abajo. La masa del gas es de 0.75 (kg. El trabajo entregado al exterior por el dispositivo es de 10 (kj. Calcule la presión P 1 en (Pa. c Una caldera opera a una presión de 0 (MPa y trabaja con agua. En el punto 1, el líquido entra a la caldera a 0 (MPa y 80 (ºC. De acuerdo con lo mostrado en el diagrama v-t, y a la condición de que la potencia calorífica de 1- es la misma que de -4, calcule la temperatura en (K a la salida de la caldera, en el punto 4. d Se utiliza una parrilla eléctrica de 3 (kw para evaporar agua contenida en una olla abierta a la atmósfera. La cantidad de agua evaporada durante 30 minutos es de.03 (kg y se sabe que la eficiencia con la que se transmite el calor de la parrilla al agua es de 85 (%. Estime la presión atmosférica en (Pa. e A nivel del mar se introducen (kg/s de aire [R p = 0.87 (kj/kgk, k = 1.4] a un difusor reversible y adiabático a 450 (m/s y 60 (ºC. A la salida la velocidad es 100 veces menor. Calcule las condiciones a la salida: temperatura en (ºC y presión en (kpa. f Para mantener un cuarto a 0 (ºC su usa un acondicionador de aire que opera con R-134a según el ciclo ideal de refrigeración por compresión de un vapor, y debe retirar (kj/h. El clima externo está a 38 (ºC. Obtenga la potencia necesaria. g Si un inventor afirma que el compresor del refrigerador de la pregunta anterior puede recibir el fluido a x=1 y (K, y entregarlo a 1 (MPa y 40 (ºC, se viola la segunda ley de la termodinámica? Justifique. Problema b Problema c Problema a

2 PRIMER EXAMEN FINAL COLEGIADO VIERNES 7 DE DICIEMBRE DE 007, 16:00 (h TURNO VESPERTINO Alfred W. Porter Instrucciones: lea cuidadosamente los problemas que se ofrecen. Resuelva cualesquiera cuatro en dos horas y en el orden que usted desee. Se permite la consulta de cualquier documento propio. h Se ensambla el equipo mostrado en la figura donde el único líquido utilizado es agua. La columna de aire Z mide 0.15 (m y la altura de agua h mide 75 (cm. Obtenga la altura en (m de la columna de agua L. Tome: δ aire = 1.10, δ Hg = 13590, δ agua = 998, P atm = (kpa, g= 9.78 (m/s. i Un gas encerrado en un cilindro pistón sufre los procesos descritos en la figura de abajo. La masa del gas es de 800 (g. El trabajo entregado al exterior por el dispositivo es de 0.10 (MJ. Calcule la presión P 1 en (Pa. j Una caldera opera a una presión de 0 (MPa y trabaja con agua. En el punto 1, el líquido entra a la caldera a 0 (MPa y 80 (ºC. De acuerdo con lo mostrado en el diagrama v-t, y a la condición de que la potencia calorífica de 1- es la misma que de -4, calcule la temperatura en (K a la salida de la caldera, en el punto 4. k Se utiliza una parrilla eléctrica de 000 (W para evaporar agua contenida en una olla abierta a la atmósfera. La cantidad de agua evaporada durante un cuarto de hora es de 1.10 (kg y se sabe que la eficiencia con la que se transmite el calor de la parrilla al agua es de 85 (%. Estime la presión atmosférica en (Pa. l A nivel del mar se introducen 9000 (kg/h de aire [R p = 0.87 (kj/kgk, k = 1.4] a un difusor reversible y adiabático a 450 (m/s y 60 (ºC. A la salida la velocidad es 100 veces menor. Calcule las condiciones a la salida: temperatura en (ºC y presión en (kpa. m Para mantener un cuarto a 0 (ºC su usa un acondicionador de aire que opera con R-134a según el ciclo ideal de refrigeración por compresión de un vapor, y debe retirar 700 (J/s. El clima externo está a 38 (ºC. Obtenga la potencia necesaria. n Si un inventor afirma que el compresor del refrigerador de la pregunta anterior puede recibir el fluido a x=1 y (K, y entregarlo a 1 (MPa y 40 (ºC, se viola la segunda ley de la termodinámica? Justifique. Problema b Problema c Problema a

3 PRIMER EXAMEN FINAL COLEGIADO VIERNES 7 DE DICIEMBRE DE 007, 7:00 (h TURNO MATUTINO RESPUESTAS Heike Kamerlingh Onnes ( a Z aire = 14. (cm, h agua = 0.80 (m, ρ aire = 1.10 (kg/m 3, ρ Hg = (kg/m 3, ρ agua = 998 (kg/m 3, P atm = (kpa, g= 9.78 (m/s P a = P c = P e P b = P d = P f P a = ρ agua gl + P atm P f = ρ agua gh + P atm P a = P d + ρ agua gz P d = P a - ρ agua gz P d = ρ agua gl + P atm - ρ agua gz P d = P f ρ agua gl + P atm - ρ agua gz = ρ agua gh + P atm L = h + Z L = 0.94 (m a b c d e f b m gas = 0.75 (kg, {W} = 10 (kj, Para el segundo proceso se tiene: P 1 = a *b y 450 = a *b, Resolviendo: a = P *[(450 - P 1 /0.3] =.5*P 1 675, b = (450 - P 1 /0.3, Sustituyendo valores en la ecuación del trabajo: ν 3 10 kj = m* P*( ν ν + m* ( a+ b* ν dν + m* P *( ν ν ν 10 kj b = P1*( ν ν1 + a*( ν3 ν + *[( ν3 ( ν ] + P*( ν4 ν3 mkg P 1 = (Pa c Agua: P c = 0 (MPa. Punto 1: P 1 = 0 (MPa, t 1 = 80 (ºC, {Q} 1- = {Q} -4 Usando la condición dada se tiene: Q 1 = m ( h h1 = m ( h4 h ( h h1 = ( h4 h h = * h h 4 1 De tablas: a 0 (MPa y 80 (ºC el estado es líquido comprimido y h 1 = (kj/kg a 0 (MPa y x = 0, h =186.3 (kj/kg, Por lo que h 4 = (kj/kg, Como la presión es de 0 (MPa, se obtiene de las tablas de vapor sobrecalentado: T = (K

4 d Agua: {Q} = 3 (kw. t = 30 (min, m evap =.03 (kg, η = 85 (%, El calor proveniente de la parrilla es {Q} = {Q}t η El calor latente de evaporación es h fg = {Q}/m evap = (kj/kg En las tablas de vapor, por interpolación: P = (Pa e Aire: P ent = (Pa, m = (kg/s, R p = 0.87 (kj/kgk, k = 1.4, v ent = 450 (m/s, t ent = 60 (ºC, v sal = v ent /100, {Q} + {W} = m[(h sal -h ent + (1/ (v sal -v ent ] (h sal -h ent = -(1/ (v sal -v ent = c p (T sal -T ent T sal = -(1/ (v sal -v ent /c p + T ent T sal = -(1/c p (v ent /100 -v ent + T ent T sal = -(1/c p ((1/100-1v ent + T ent C p = R p k/(k-1 T sal = (ºC (P ent /P sal = (T ent /T sal (k/(k-1 P sal = P ent (T sal /T ent (k/(k-1 P sal = (Pa f ciclo ideal de refrigeración por compresión de un vapor con R-134a: t f = 0 (ºC, {Q ret } = (kj/h, P sat = 1.53 MPa, t c = 38 (ºC, {Q ret } = m{q ret } P m = {Q ret }/{Q ret } = {Q ret }/(h -h 1 {W} = m (h 3 -h h = (kj/kg s = (kj/kgk h 3 = (kj/kg 1 s 3 = (kj/kgk h 1 = h 4 = (kj/kg = 51.1 (kj/kg {W} = (W 4 3 h g R-134a: x ent =1, t ent = (K, P sal = 1 (MPa, t sal = 40 (ºC, Para que el proceso sea posible se requiere que se cumpla: s salida s entrada De tablas: s salida = (kj/kgk s entrada = (kj/kgk s salida < s entrada Para este proceso adiabático a regimen permanente la ª. Ley requiere que: s salida > s entrada Así, el proceso viola la segunda ley, y es imposible

5 PRIMER EXAMEN FINAL COLEGIADO VIERNES 7 DE DICIEMBRE DE 007, 7:00 (h TURNO MATUTINO RESPUESTAS Alfred W. Porter h Z aire = 0.15 (m, h agua = 75 (cm, δ aire = 1.10, δ Hg = ρ agua = 998 (kg/m 3, P atm = (kpa, g= 9.78 (m/s P a = P c = P e P b = P d = P f P a = ρ agua gl + P atm P f = ρ agua gh + P atm P a = P d + ρ agua gz P d = P a - ρ agua gz P d = ρ agua gl + P atm - ρ agua gz P d = P f ρ agua gl + P atm - ρ agua gz = ρ agua gh + P atm L = h + Z L = 0.90 (m a b c d e f i m gas = (g, {W} = 0.10 (MJ, Para el segundo proceso se tiene: P 1 = a *b y 450 = a *b, Resolviendo: a = P *[(450 - P 1 /0.3] =.5*P 1 675, b = (450 - P 1 /0.3, Sustituyendo valores en la ecuación del trabajo: ν kj = m* P*( ν ν + m* ( a+ b* ν dν + m* P *( ν ν ν 100 kj b = P1*( ν ν1 + a*( ν3 ν + *[( ν3 ( ν ] + P*( ν4 ν3 mkg P 1 = (Pa j Agua: P c = 0 (MPa. Punto 1: P 1 = 0 (MPa, t 1 = 80 (ºC, {Q} 1- = {Q} -4 Usando la condición dada se tiene: Q 1 = m ( h h1 = m ( h4 h ( h h1 = ( h4 h h = * h h 4 1 De tablas: a 0 (MPa y 80 (ºC el estado es líquido comprimido y h 1 = (kj/kg a 0 (MPa y x = 0, h =186.3 (kj/kg, Por lo que h 4 = (kj/kg, Como la presión es de 0 (MPa, se obtiene de las tablas de vapor sobrecalentado: T = (K

6 k Agua: {Q} = 000 (W. t = 15 (min, m evap = 1.10 (kg, η = 85 (%, El calor proveniente de la parrilla es {Q} = {Q}t η El calor latente de evaporación es h fg = {Q}/m evap = 1, (kj/kg En las tablas de vapor, por interpolación: P = (bar l Aire: P ent = (Pa, m = 9000 (kg/h, R p = 0.87 (kj/kgk, k = 1.4, v ent = 450 (m/s, t ent = 60 (ºC, v sal = v ent /100, {Q} + {W} = m[(h sal -h ent + (1/ (v sal -v ent ] (h sal -h ent = -(1/ (v sal -v ent = c p (T sal -T ent T sal = -(1/ (v sal -v ent /c p + T ent T sal = -(1/c p (v ent /100 -v ent + T ent T sal = -(1/c p (1/100-1v ent + T ent C p = R p k/(k-1 T sal = T sal = (ºC (P ent /P sal = (T ent /T sal (k/(k-1 P sal = P ent (T sal /T ent (k/(k-1 P sal = (Pa m ciclo ideal de refrigeración por compresión de un vapor con R-134a: t f = 0 (ºC, {Q ret } = 700 (kj/h, P sat = 1.53 MPa {Q ret } = m{q ret } P m = {Q ret }/{Q ret } = {Q ret }/(h -h 1 {W} = m (h 3 -h h = (kj/kg s = (kj/kgk h 3 = (kj/kg 1 s 3 = (kj/kgk h 1 = h 4 = (kj/kg = 51.1 (kj/kg {W} = (W 4 3 h n R-134a: x ent =1, t ent = (K, P sal = 1 (MPa, t sal = 40 (ºC, Para que el proceso sea posible se requiere que se cumpla: s salida s entrada De tablas: s salida = (kj/kgk s entrada = (kj/kgk s salida < s entrada Para este proceso adiabático a regimen permanente la ª. Ley requiere que: s salida > s entrada Así, el proceso viola la segunda ley, y es imposible

7

Examen Final. a) identifique qué partes del diagrama corresponden al compresor, al condensador y a la válvula, (1 pto.)

Examen Final. a) identifique qué partes del diagrama corresponden al compresor, al condensador y a la válvula, (1 pto.) Pontificia Universidad Católica de Chile Instituto de Física FIS1523 Termodinámica 30 de noviembre del 2016 Tiempo: 120 minutos Se puede usar calculadora. No se puede usar celular. No se puede prestar

Más detalles

EJERCICIOS DEL TEMA 4 (APLICACIONES DE LA PRIMERA LEY Y BALANCES DE ENERGÍA)

EJERCICIOS DEL TEMA 4 (APLICACIONES DE LA PRIMERA LEY Y BALANCES DE ENERGÍA) EJERCICIOS DEL TEMA 4 (APLICACIONES DE LA PRIMERA LEY Y BALANCES DE ENERGÍA) 1.- Una turbina adiabática recibe 39000(kg/h) de agua a 4.1(MPa). La turbina produce 9(MW) y expulsa al agua a 30(mm) de mercurio

Más detalles

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles.

Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 4: PRIMER PRINCIPIO Lo que se debe aprender a hacer se aprende haciéndolo. Aristóteles. 1) Se enfría a volumen

Más detalles

Julius Robert von Mayer ( )

Julius Robert von Mayer ( ) FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE FÍSICA GENERAL Y QUÍMICA DEPARTAMENTO DE TERMODINÁMICA SEGUNDO EXAMEN FINAL COLEGIADO 010-1 JUEVES 10 DE DICIEMBRE DE 009 Julius Robert

Más detalles

Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández. Ejercicios Tema III

Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández. Ejercicios Tema III Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Termodinámica Básica Prof. Ing. Isaac Hernández Ejercicios Tema III 1) Un cilindro provisto de un pistón, tiene un volumen de 0.1

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

JOHN ERICSSON ( )

JOHN ERICSSON ( ) FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE FÍSICA GENERAL Y QUÍMICA DEPARTAMENTO DE TERMODINÁMICA PRIMER EXAMEN FINAL COLEGIADO 2010-1 JUEVES 3 DE DICIEMBRE DE 2009, JOHN ERICSSON

Más detalles

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21* Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot

Más detalles

Enunciados Lista 6. Estado T(ºC)

Enunciados Lista 6. Estado T(ºC) 8.1 El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto se encuentra a 20 ºC, determine la transferencia de calor reversible y el trabajo

Más detalles

Nombre... Contestar TODAS las preguntas. Tienen el mismo valor. Tiempo máximo: 1 hora. Sea conciso.

Nombre... Contestar TODAS las preguntas. Tienen el mismo valor. Tiempo máximo: 1 hora. Sea conciso. Examen de TERMODINÁMICA I Curso 1998-99 Troncal - 4,5 créditos 1 de febrero de 1999 Nombre... NOTA Contestar TODAS las preguntas. Tienen el mismo valor. Tiempo máximo: 1 hora. Sea conciso. Teoría 1 (10

Más detalles

Carl Paul Gottfried von Linde ( )

Carl Paul Gottfried von Linde ( ) FACULTAD DE INGENIERÍA SEGUNDO EXAMEN FINAL COLEGIADO 2008-1 VIERNES 14 DE DICIEMBRE DE 2007, 16:00 (h) TURNO VESPERTINO Instrucciones: lea cuidadosamente los problemas que se ofrecen. Resuelva cualesquiera

Más detalles

Enunciados Lista 5. Nota: Realizar un diagrama T-s que sufre el agua.

Enunciados Lista 5. Nota: Realizar un diagrama T-s que sufre el agua. 7.2 Considere una máquina térmica con ciclo de Carnot donde el fluido del trabajo es el agua. La transferencia de calor al agua ocurre a 300 ºC, proceso durante el cual el agua cambia de líquido saturado

Más detalles

( C)

( C) FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS COORDINACIÓN DE FÍSICA Y QUÍMICA DEPARTAMENTO DE TERMODINÁMICA SEGUNDO EXAMEN COLEGIADO 2011-2 SÁBADO 7 DE MAYO DE 2011, 7:00 (h) William Rankine Instrucciones:

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

1. (a) Enunciar la Primera Ley de la Termodinámica.

1. (a) Enunciar la Primera Ley de la Termodinámica. ESCUELA SUPERIOR DE INGENIEROS Universidad de Navarra Examen de TERMODINÁMICA Curso 2000-2001 Troncal - 7,5 créditos 7 de febrero de 2001 Nombre y apellidos NOTA TEORÍA (30 % de la nota) Tiempo máximo:

Más detalles

Listas de comentarios, ejercicios y soluciones (para quienes tienen el Van Wylen)

Listas de comentarios, ejercicios y soluciones (para quienes tienen el Van Wylen) Ejer. Num. VW Comentarios Lista 4 - Ciclos 6.2 Bomba de calor. 2 6.3 er y 2 do principios. 3 6.6 Ciclo de refrigeración. Sería posible si el COP fuera 7.0? 4 6.8 Máximo trabajo. 5 6.22 Ciclo de Carnot.

Más detalles

Interrogación Nro. 2

Interrogación Nro. 2 Pontificia Universidad Católica de Chile Instituto de Física FIS1523 Termodinámica 14 de octubre del 2016 Tiempo: 120 minutos Se puede usar calculadora. No se puede usar celular. No se puede prestar nada.

Más detalles

PROBLEMARIO No. 3. Veinte problemas con respuesta sobre los Temas 5 y 6 [Segunda Ley de la Termodinámica. Entropía]

PROBLEMARIO No. 3. Veinte problemas con respuesta sobre los Temas 5 y 6 [Segunda Ley de la Termodinámica. Entropía] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia 7-Julio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas

Más detalles

Ejercicios complementarios a los del Van Wylen

Ejercicios complementarios a los del Van Wylen Lista 0 Ej.7 Ej.8 Ej.9 Una llanta de automóvil tiene un volumen de 988 in 3 y contiene aire (supuesto gas ideal) a una presión manométrica de 24 lb/in 2 cuando la temperatura es de -2.60 ºC. Halle la presión

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA

UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO UNIDAD CURRICULAR: TERMODINÁMICA APLICADA PROF: ELIER GARCIA GUIA DE CICLOS DE POTENCIA DE VAPOR Ejercicios resueltos

Más detalles

Nombre y apellidos...

Nombre y apellidos... Examen de TERMODINÁMICA I Curso 1999-2000 Troncal - 4,5 créditos 4 de septiembre de 2000 Nombre y apellidos... Tiempo: 45 minutos Nº... NOTA Teoría 1 (1,5 puntos) Marcar con un círculo. Respuesta correcta

Más detalles

Física Térmica - Práctico 5

Física Térmica - Práctico 5 - Práctico 5 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica

Más detalles

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos)

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos) Teoría (30 puntos) TIEMPO: 50 minutos 1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos) 1. La Primera Ley afirma

Más detalles

Ejemplos del temas VII

Ejemplos del temas VII 1. Metano líquido es comúnmente usado en varias aplicaciones criogénicas. La temperatura crítica del metano es de 191 K, y por lo tanto debe mantenerse por debajo de esta temperatura para que este en fase

Más detalles

3. Indique cuáles son las ecuaciones de estado térmica y energética que constituyen el modelo de sustancia incompresible.

3. Indique cuáles son las ecuaciones de estado térmica y energética que constituyen el modelo de sustancia incompresible. TEORÍA (35 % de la nota) Tiempo máximo: 40 minutos 1. Enuncie la Primera Ley de la Termodinámica. 2. Represente esquemáticamente el diagrama de fases (P T) del agua; indique la posición del punto crítico,

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

Listas de comentarios, ejercicios y soluciones (para quienes tienen el Van Wylen)

Listas de comentarios, ejercicios y soluciones (para quienes tienen el Van Wylen) Comentarios Lista 0 - Repaso de Conceptos Básicos 1 2.8 Volumen específico. 2 2.11 Barómetro. 3 2.12 Manómetro. 4 2.14 Pistón con resorte; Considere la figura sin los topes. 5 2.27 Presión y fuerza. 6

Más detalles

GUÍA DE RESUELTOS: SEGUNDA LEY DE LA TERMODINÁMICA Y ENTROPÍA

GUÍA DE RESUELTOS: SEGUNDA LEY DE LA TERMODINÁMICA Y ENTROPÍA Universidad Nacional Experimental Politécnica de la Fuerza Armada Bolivariana Núcleo Valencia Extensión La Isabelica Ingeniería Petroquímica IV semestre Período 1-2012 Termodinámica I Docente: Lcda. Yurbelys

Más detalles

1 m 3. 1 kg/min 2 atm 95 ºC. Tomando como volumen de control la cámara aislada, se realiza un balance de energía a esta

1 m 3. 1 kg/min 2 atm 95 ºC. Tomando como volumen de control la cámara aislada, se realiza un balance de energía a esta PROBLEMA 1 Una cámara bien aislada de 1 m 3 de volumen contiene inicialmente aire a 0,1 MPa y 40 ºC como se muestra en la figura. Dos válvulas colocadas en las tuberías de entrada y salida controlan el

Más detalles

INGENIERO EN ENERGÍAS RENOVABLES TERMODINÁMICA RESOLUCIÓN DE PROBLEMAS CURSO TEMA 6 LA ENTROPÍA Y SU UTILIZACIÓN. I. Resolución de problemas

INGENIERO EN ENERGÍAS RENOVABLES TERMODINÁMICA RESOLUCIÓN DE PROBLEMAS CURSO TEMA 6 LA ENTROPÍA Y SU UTILIZACIÓN. I. Resolución de problemas INGENIERO EN ENERGÍAS RENOABLES TERMOINÁMIA RESOLUIÓN E PROBLEMAS URSO 2017 TEMA 6 LA ENTROPÍA Y SU UTILIZAIÓN. I. Resolución de problemas a. Problemas de Nivel I 1. Un dispositivo cilindro pistón contiene

Más detalles

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo

República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo República Bolivariana de Venezuela Ministerio del Poder Popular para la Defensa UNEFA Núcleo Falcón Extensión Punto Fijo Guía de Ejercicios de Primera Ley de Termodinámica 1.- Entra agua a los tubos de

Más detalles

1. Qué es el punto triple. (3 puntos) 2. Qué es el título de un vapor. (3 puntos)

1. Qué es el punto triple. (3 puntos) 2. Qué es el título de un vapor. (3 puntos) Teoría (30 puntos) TIEMPO: 50 minutos (9:00-9:50). El examen continúa a las 10:10. UTILICE LA ÚLTIMA HOJA COMO BORRADOR. Conteste brevemente a las siguientes cuestiones. Justifique sus respuestas, si es

Más detalles

Tema 1: Instalaciones y máquinas hidráulicas y Térmicas. Bloque 3: Producción de frío Grupo 1. Fundamentos de la producción de.

Tema 1: Instalaciones y máquinas hidráulicas y Térmicas. Bloque 3: Producción de frío Grupo 1. Fundamentos de la producción de. Master en Ingeniería Industrial 2º cuatrimestre Bloue 3: Producción de frío Grupo Instalaciones y máuinas hidráulicas y Térmicas Tema : Fundamentos de la producción de frío por compresión Grupo de Termotecnia

Más detalles

Física Térmica - Práctico 7

Física Térmica - Práctico 7 Física érmica - ráctico 7 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

MANEJO DE TABLAS TERMODINÁMICAS AGUA SATURADA 100% Y VAPOR SATURADO 100%. PASO COMPLETO DE AGUA SATURADA 100% A VAPOR SATURADO 100%.

MANEJO DE TABLAS TERMODINÁMICAS AGUA SATURADA 100% Y VAPOR SATURADO 100%. PASO COMPLETO DE AGUA SATURADA 100% A VAPOR SATURADO 100%. MANEJO DE TABLAS TERMODINÁMICAS AGUA SATURADA 100% Y VAPOR SATURADO 100%. PASO COMPLETO DE AGUA SATURADA 100% A VAPOR SATURADO 100%. PROFESOR EFRÉN GIRALDO Contenido Repaso curva de calentamiento. T de

Más detalles

Nombre y apellidos... Teoría 1 (1,5 puntos) Marcar con un círculo. Respuesta correcta = +0,3; incorrecta = 0,1

Nombre y apellidos... Teoría 1 (1,5 puntos) Marcar con un círculo. Respuesta correcta = +0,3; incorrecta = 0,1 Examen de TERMODINÁMICA I Curso 1999-2000 Troncal - 4,5 créditos 14 de febrero de 2000 Nombre y apellidos... Tiempo: 45 minutos Nº... NOTA Teoría 1 (1,5 puntos) Marcar con un círculo. Respuesta correcta

Más detalles

1. La variación de entropía de un fluido que circula por un compresor irreversible refrigerado puede ser negativa.

1. La variación de entropía de un fluido que circula por un compresor irreversible refrigerado puede ser negativa. ASIGNAURA GAIA ermodinámica 2º CURSO KURSOA eoría (30 puntos) IEMPO: 45 minutos UILICE LA ÚLIMA CARA COMO BORRADOR eoría 1 (10 puntos) FECHA DAA + + = Lea las 10 cuestiones y escriba dentro de la casilla

Más detalles

Primer Parcial de Física Térmica 10 de mayo de 2005

Primer Parcial de Física Térmica 10 de mayo de 2005 Instituto de Física Facultad de Ingeniería rimer arcial de Física Térmica 10 de mayo de 2005 Entregue su trabajo correspondiente al problema, y la hoja de respuestas debidamente completada. En el problema,

Más detalles

Profesor: Julio Romero F. Ayudante: Francisca Luna F.

Profesor: Julio Romero F. Ayudante: Francisca Luna F. Guía de ejercicios N 1 Propiedades termodinámicas de sistemas ideales y reales Termodinámica de Ingeniería Civil Química Universidad de Santiago de Chile Profesor: Julio Romero F. Ayudante: Francisca Luna

Más detalles

Primera Ley Sistemas Abiertos

Primera Ley Sistemas Abiertos Cap. 10 Primera Ley Sistemas Abiertos INTRODUCCIÓN Este capìtulo complementa el anterior de Sistemas Cerrados para tener toda la gama de màquinas termodinàmicas; tambièn contiene teorìa de las válvulas

Más detalles

1. La variación de entropía de un fluido que circula por un compresor irreversible refrigerado puede ser negativa.

1. La variación de entropía de un fluido que circula por un compresor irreversible refrigerado puede ser negativa. ASIGNAURA GAIA ermodinámica 2º CURSO KURSOA eoría (30 puntos) IEMPO: 45 minutos UILICE LA ÚLIMA CARA COMO BORRADOR eoría 1 (10 puntos) FECHA DAA + + = Lea las 10 cuestiones y escriba dentro de la casilla

Más detalles

TABLAS Y GRÁFICOS DE PROPIEDADES TERMODINÁMICAS

TABLAS Y GRÁFICOS DE PROPIEDADES TERMODINÁMICAS Departamento de Física Aplicada I INGENIERÍA ENERGÉTICA TABLAS Y GRÁFICOS DE PROPIEDADES TERMODINÁMICAS Tabla 1. Masas atómicas o moleculares y propiedades críticas de elementos y compuestos frecuentes.

Más detalles

Maquinas térmicas. Nota el aire se comporta como gas ideal con calores específicos variables con la temperatura

Maquinas térmicas. Nota el aire se comporta como gas ideal con calores específicos variables con la temperatura Nota el aire se comporta como gas ideal con calores específicos variables con la temperatura 19) El arreglo cilindro pistón aislado térmicamente que se muestra en la figura contiene inicialmente aire a

Más detalles

Ejercicios propuestos para las asignaturas SISTEMAS TERMODINÁMICOS Y ELECTROMAGNETISMO FUNDAMENTOS DE TERMODINÁMICA Y ELECTROMAGNETISMO

Ejercicios propuestos para las asignaturas SISTEMAS TERMODINÁMICOS Y ELECTROMAGNETISMO FUNDAMENTOS DE TERMODINÁMICA Y ELECTROMAGNETISMO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS Ejercicios propuestos para las asignaturas SISTEMAS TERMODINÁMICOS Y ELECTROMAGNETISMO FUNDAMENTOS DE TERMODINÁMICA

Más detalles

1. (a) Enunciar la Primera Ley de la Termodinámica.

1. (a) Enunciar la Primera Ley de la Termodinámica. ESCUELA SUPERIOR DE INGENIEROS Universidad de Navarra Examen de TERMODINÁMICA II Curso 2000-200 Troncal - 7,5 créditos 7 de febrero de 200 Nombre y apellidos NOTA TEORÍA (30 % de la nota) Tiempo máximo:

Más detalles

Problemas de examen de opción múltiple Capítulo 6: Entropía Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición

Problemas de examen de opción múltiple Capítulo 6: Entropía Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición Problemas de examen de opción múltiple Capítulo 6: Entropía Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición (Los valores numéricos de las soluciones se pueden obtener si se copian las

Más detalles

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios.

El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. TERMODINÁMICA (0068) PROFR. RIGEL GÁMEZ LEAL El balance de energía. Aplicaciones de la primera ley de la termodinámica. Ejercicios. 1. Suponga una máquina térmica que opera con el ciclo reversible de Carnot

Más detalles

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos

Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Propiedades de una sustancia pura Profesor: Joaquín Zueco Jordán Área de Máquinas y Motores Térmicos Principio de estado Objetivo de la Termodinámica es relacionar las variables termodinámicas de un sistema,

Más detalles

Serie Nº 4 Segundo Principio de la Termodinámica Entropía Problemas con resolución guiada

Serie Nº 4 Segundo Principio de la Termodinámica Entropía Problemas con resolución guiada CATEDRA DE TERMODINAMICA AÑO 2013 INGENIERIA QUÍMICA Serie Nº 4 Segundo Principio de la Termodinámica Entropía Problemas con resolución guiada 1. Una resistencia eléctrica entrega 473 kj a un sistema constituido

Más detalles

COMPARATIVA CICLOS TEÓRICOS TERMODINÁMICOS MEP, MEC Y MEC LENTO. Capítulo 1. Ciclo Termodinámico Teórico de un MEP

COMPARATIVA CICLOS TEÓRICOS TERMODINÁMICOS MEP, MEC Y MEC LENTO. Capítulo 1. Ciclo Termodinámico Teórico de un MEP COMARATIVA CICLOS TEÓRICOS TERMODINÁMICOS ME, MEC Y MEC LENTO Capítulo. Ciclo Termodinámico Teórico de un ME En el presente trabajo, se pone de manifiesto el estudio de los ciclos termodinámicos, de los

Más detalles

Enunciados Lista 3. Nota: Realizar diagrama P-v del proceso.

Enunciados Lista 3. Nota: Realizar diagrama P-v del proceso. 5.9 El agua en un depósito rígido cerrado de 150 lt se encuentra a 100 ºC con 90% de calidad. El depósito se enfría a -10 ºC. Calcule la transferencia de calor durante el proceso. 5.14 Considere un Dewar

Más detalles

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro.

Enunciados Lista 3. FIGURA P5.14 Nota: Se modificaron los porcentajes respecto al ejercicio del libro. 5.9 * El agua en un depósito rígido cerrado de 50 lt se encuentra a 00 ºC con 90% de calidad. El depósito se enfría a -0 ºC. Calcule la transferencia de calor durante el proceso. 5.4 * Considere un Dewar

Más detalles

Propiedades del agua saturada (líquido-vapor): Tabla de presiones

Propiedades del agua saturada (líquido-vapor): Tabla de presiones Propiedades del agua saturada (líquido-vapor): Tabla de presiones Volumen especifico Energía interna Entalpía Entropía m 3 / kg kj / kg kj / kg kj / kg, K Liquido Vapor Liquido Vapor Liquido Vapor Vapor

Más detalles

SISTEMAS ABIERTOS. a) La transferencia de calor del compresor b) Flujo de agua de enfriamiento en el condensador

SISTEMAS ABIERTOS. a) La transferencia de calor del compresor b) Flujo de agua de enfriamiento en el condensador Procesos en estado estable En un sistema de refrigeración donde el refrigerante es R-134a entra al compresor a 200 kpa y -10ºC y sale a 1 Mpa y 70ºC entra a un flujo másico de 0,015 kg/s y la entrada de

Más detalles

Escuela de Ingenieros School of Engineering

Escuela de Ingenieros School of Engineering TIEMPO: 45 minutos. TEORÍA (0 puntos) Lea las 0 cuestiones y escriba dentro de la casilla a la derecha de cada cuestión V si considera que la afirmación es verdadera, o F si considera que es falsa. Las

Más detalles

Cuestión 1. (10 puntos)

Cuestión 1. (10 puntos) ASIGNAURA GAIA CURSO KURSOA ERMODINÁMICA 2º eoría (30 puntos) IEMPO: 45 minutos FECHA DAA + + = Cuestión 1. (10 puntos) Lea las 15 cuestiones y escriba dentro de la casilla a la derecha de cada cuestión

Más detalles

1. (a) En una sustancia pura, diga claramente qué se entiende por punto triple y por punto crítico.

1. (a) En una sustancia pura, diga claramente qué se entiende por punto triple y por punto crítico. Teoría (30 puntos) TIEMPO: 9:00-9:45 1. (a) En una sustancia pura, diga claramente qué se entiende por punto triple y por punto crítico. (b) Fusión y vaporización isobara de una sustancia pura. Represente

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

Problemas de examen de opción múltiple Capítulo 10: Ciclos de refrigeración Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición

Problemas de examen de opción múltiple Capítulo 10: Ciclos de refrigeración Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición Problemas de examen de opción múltiple Capítulo 10: Ciclos de refrigeración Cengel/Boles-Termodinámica: un enfoque de ingeniería, 4 a edición (Los valores numéricos de las soluciones se pueden obtener

Más detalles

ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES Universidad de Navarra

ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES Universidad de Navarra ESCUEL SUPERIOR DE INGENIEROS INDUSTRILES Universidad de Navarra Examen de TERMODINÁMIC I Curso 1997-98 Troncal - 4,5 créditos 11 de septiembre de 1998 Instrucciones para el examen de TEST: Cada pregunta

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 04. Funciones de Estado Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica

Más detalles

(f) Si la velocidad de transferencia de calor con ambos focos es [ ] [ ]

(f) Si la velocidad de transferencia de calor con ambos focos es [ ] [ ] ESCUELA SUPERIOR DE INGENIEROS INDUSRIALES Universidad de Navarra Examen de ERMODINÁMICA I Curso 996-97 roncal - 4,5 créditos 7 de enero de 997 PROBLEMAS RESUELOS Problema (obligatorio; puntos) Para el

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN

UNIVERSIDAD NACIONAL DE TUCUMÁN UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 3 CENTRALES TÉRMICAS DE VAPOR CICLO DE RANKINE ALUMNO: AÑO 2016 Temperatura T [ºC] º Ciclo

Más detalles

Ciclo de Otto (de cuatro tiempos)

Ciclo de Otto (de cuatro tiempos) Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos)

1. Señale como verdadero (V) o falso (F) cada una de las siguientes afirmaciones. (Cada acierto = +1 punto; fallo = 1 punto; blanco = 0 puntos) Universidad de Navarra Nafarroako Unibertsitatea Escuela Superior de Ingenieros Ingeniarien Goi Mailako Eskola ASIGNATURA GAIA CURSO KURTSOA TERMODINÁMICA 2º NOMBRE IZENA FECHA DATA 15/09/07 Teoría (40

Más detalles

Facultad de Ingeniería División de Ciencias Básicas. Ciclo de Diesel. Martín Bárcenas

Facultad de Ingeniería División de Ciencias Básicas. Ciclo de Diesel. Martín Bárcenas Admisión Inicio compresión Fin de compresión Combustión Expansión Escape de gases 0 Admisión (Proceso Isobárico): Se supone que la circulación de los gases desde la atmósfera al interior del cilindro se

Más detalles

Ejemplos de temas V, VI, y VII

Ejemplos de temas V, VI, y VII 1. Un sistema de aire acondicionado que emplea refrigerante R-134a como fluido de trabajo es usado para mantener una habitación a 23 C al intercambiar calor con aire exterior a 34 C. La habitación gana

Más detalles

UNIDAD II: CICLOS DE POTENCIA DE VAPOR

UNIDAD II: CICLOS DE POTENCIA DE VAPOR UNIDAD II: CICLOS DE POTENCIA DE VAPOR 1. Expansion isotermica. Expansion adiabatica 3. Compresion isotermica 4. Compresión adiabatica ETAPAS DEL CICLO DE CARNOT 1. Expansión isotérmica. Expansión adiabática

Más detalles

Ejemplos de temas I, II, III y IV

Ejemplos de temas I, II, III y IV 1. Una línea de gasolina es conectada a un dispositivo de medición de presión por medio de un doble manómetro en U (vea la siguiente figura). Si la lectura de la presión manométrica en el dispositivo es

Más detalles

Facultad de Ciencias Naturales y Ambientales

Facultad de Ciencias Naturales y Ambientales Facultad de Ciencias Naturales y Ambientales Diseño y construcción de un equipo generador de CO 2 que utiliza GLP para la producción de biomasa para su posterior uso en la industria energética. Marco Tapia

Más detalles

= = 0.40 (40%) 500 Por el teorema de Carnot, no es posible que lo que afirma el inventor sea posible.

= = 0.40 (40%) 500 Por el teorema de Carnot, no es posible que lo que afirma el inventor sea posible. TEMA 5 EL SEGUNDO PRINCIPIO DE LA TERMODINÁMICA. I. Resolución de problemas a. Problemas de Nivel I 1. Un inventor sostiene que ha desarrollado un ciclo de potencia capaz de producir un trabajo neto de

Más detalles

CONVERSIONES DENSIDAD Y PRESIÓN

CONVERSIONES DENSIDAD Y PRESIÓN CONVERSIONES 1.- REALICE LAS SIGUIENTES CONVERSIONES DE UNIDADES: a) 500 psia convertir a: bar, mmhg, m.c.a, N/m2, Pasc, Torr, inhg, lb/ft2, kg/cm2. b) 150 bar convertir a: psi, mmhg, m.c.a, N/m2, Pasc,

Más detalles

4. ECUACIONES DE CONSERVACION

4. ECUACIONES DE CONSERVACION 4. ECUACIONES DE CONSERVACION 4.1 ECUACIONES DE CONSERVACION PARA UN SISTEMA CERRADO 4.1.a Masa de Control Termodinámicamente, un sistema cerrado queda definido mediante la masa de control y es la superficie

Más detalles

Física Térmica - Práctico 3

Física Térmica - Práctico 3 - Práctico 3 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica

Más detalles

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( )

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) a = aceleración (m/s 2 ) Peso P= peso (newton) ( ) g = gravedad (9.087 m/s 2 ) Trabajo ( ) 1 Joule = 1( N * m) W = trabajo (newton

Más detalles

CONVERSIONES DENSIDAD Y PRESIÓN

CONVERSIONES DENSIDAD Y PRESIÓN APLICACIONES DE PROPIEDADES DE LA MATERIA CONVERSIONES 1.- REALICE LAS SIGUIENTES CONVERSIONES DE UNIDADES: a) 500 psia convertir a: bar, mmhg, m.c.a, N/m2, Pasc, Torr, inhg, lb/ft2, kg/cm2. b) 150 bar

Más detalles

ESCUELA DE INGENIERÍA QUÍMICA (FIUCV) TERMODINÁMICA PARA INGENIEROS QUÍMICOS (5310) GUIA DE PROBLEMAS TEMA 4 SEGUNDA LEY DE LA TERMODINAMICA

ESCUELA DE INGENIERÍA QUÍMICA (FIUCV) TERMODINÁMICA PARA INGENIEROS QUÍMICOS (5310) GUIA DE PROBLEMAS TEMA 4 SEGUNDA LEY DE LA TERMODINAMICA ESCUELA DE INGENIERÍA QUÍMICA (FIUCV) TERMODINÁMICA PARA INGENIEROS QUÍMICOS (5310) GUIA DE PROBLEMAS TEMA 4 SEGUNDA LEY DE LA TERMODINAMICA 1. Un ingeniero mecánico asegura haber desarrollado un motor

Más detalles

GUIA DE EJERCICIOS (Segunda Ley, Máquinas térmicas y Ciclo de Carnot)

GUIA DE EJERCICIOS (Segunda Ley, Máquinas térmicas y Ciclo de Carnot) Universidad de Santiago de Chile Departamento de Ingeniería Química GUIA DE EJERCICIOS (Segunda Ley, Máquinas térmicas y Ciclo de Carnot) 1) Identificar en un diagrama P-V y P-T, la forma que adoptan los

Más detalles

Ejemplo. pie. lbf. pie = pie. Ejemplo

Ejemplo. pie. lbf. pie = pie. Ejemplo Calcular la densidad, peso específico, masa, y el peso de un cuerpo que ocupa un volumen de 00 (pie ) y su volumen específico es de 10 (pie /lb) La masa es: la densidad es: V 00 m = = = 0 v 10 ( lb) 1

Más detalles

TEMA 9. CICLOS DE POTENCIA DE VAPOR

TEMA 9. CICLOS DE POTENCIA DE VAPOR Termodinámica Aplicada Ingeniería Química TEMA 9. CICLOS DE POTENCIA DE VAPOR TEMA 9: CICLOS DE POTENCIA DE VAPOR BLOQUE II. Análisis termodinámico de procesos industriales ANÁLISIS PROCESOS CALOR GENERALIDADES

Más detalles

1 V (m 3 ) EXAMEN TERMODINÁMICA / FÍSICA FORESTALES /

1 V (m 3 ) EXAMEN TERMODINÁMICA / FÍSICA FORESTALES / EXAMEN TERMODINÁMICA / FÍSICA FORESTALES / 26-02-2013 TEORÍA (3 p) La gráfica adjunta es la representación en coordenadas presión-volumen de un ciclo frigorífico de Carnot 1 2 3 4, siendo reversibles todas

Más detalles

NOMBRE: COD: EXAMEN FINAL FISICA CALOR-ONDAS NRC:

NOMBRE: COD: EXAMEN FINAL FISICA CALOR-ONDAS NRC: EXAMEN FINAL FISICA CALOR-ONDAS 3.05.017. NRC: NOMBRE: COD: B Nota importante: Use el recuadro sombreado para anotar su respuesta, todas las respuestas deben ser debidamente justificadas, en caso contrario,

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA

PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA PRÁCTICA 10. TORRE DE REFRIGERACIÓN POR AGUA OBJETIVO GENERAL: Familiarizar al alumno con los sistemas de torres de refrigeración para evacuar el calor excedente del agua. OBJETIVOS ESPECÍFICOS: Investigar

Más detalles

TERMODINAMICA I 2011 II

TERMODINAMICA I 2011 II TERMODINAMICA I 2011 II UNIDAD Nº 1 SESION Nº 2 I.- LEY CERO DE LA TERMODINAMICA.- DOS CUERPOS ESTAN EN EQUILIBRIO TERMICO SI AMBOS TIENEN LA MISMA LECTURA DE TEMPERATURA INCLUSO SI NO ESTAN EN CONTACTO

Más detalles

COSTOS DE MANUFACTURA ESTIMACIÓN

COSTOS DE MANUFACTURA ESTIMACIÓN COSTOS DE MANUFACTURA ESTIMACIÓN COSTOS DE MANUFACTURA Los costos asociados con la operación diaria de una planta química deben estimarse antes de valorar la rentabillidad de un proceso propuesto. Al estimar

Más detalles

DIFUSIÓN DE VAPOR A TRAVÉS DE UN GAS ESTACIONARIO: FLUJO DE STEFAN CONTRA DIFUSIÓN EQUIMOLAR

DIFUSIÓN DE VAPOR A TRAVÉS DE UN GAS ESTACIONARIO: FLUJO DE STEFAN CONTRA DIFUSIÓN EQUIMOLAR http://louyauns.blogspot.com/ E-mail: williamsscm@hotmail.com louyauns@yahoo.es DIFUSIÓN DE VAPOR A TRAVÉS DE UN GAS : FLUJO DE STEFAN CONTRA DIFUSIÓN EQUIMOLAR CASO ESPECIAL: MEZCLA DE GASES A PRESIÓN

Más detalles

Apellidos y nombre. Grupo (A ó B) Número de carnet. Conteste todas las preguntas. Use la última hoja como borrador. Tiempo máximo: 1 hora.

Apellidos y nombre. Grupo (A ó B) Número de carnet. Conteste todas las preguntas. Use la última hoja como borrador. Tiempo máximo: 1 hora. ESCUELA SUPERIOR DE INGENIEROS INDUSTRIALES Universidad de Navarra Examen de TERMODINÁMICA II Curso 1999-2000 Obligatoria centro - 3 créditos 12 de junio de 2000 Apellidos y nombre NOTA Grupo (A ó B) Número

Más detalles

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término.

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término. PROBLEMA 1. Fórmulas para el calor específico Deduzca una expresión para el como función de y evalúela para: (a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada

Más detalles

FISICOQUÍMICA Y BIOFÍSICA UNLA

FISICOQUÍMICA Y BIOFÍSICA UNLA FISICOQUÍMICA Y BIOFÍSICA UNLA 1º CUATRIMESTRE Profesor: Ing. Juan Montesano. Instructor: Ing. Diego García. PRÁCTICA 5 Primer Principio Sistemas Abiertos PRÁCTICA 5: Primer Principio Sistemas abiertos.

Más detalles

Capítulo 18: Temperatura, Calor y la Primera Ley de Termodinámica

Capítulo 18: Temperatura, Calor y la Primera Ley de Termodinámica Capítulo 18: Temperatura, Calor y la Primera Ley de Termodinámica Propiedad termométrica ~ propiedad física que varía con la temperatura. Algunos ejemplos son: el volumen de un sólido o un líquido, la

Más detalles

TIEMPO: 45 minutos. UTILICE LA ÚLTIMA CARA COMO BORRADOR. NO SE PUEDE USAR CALCULADOR NI EL CUADERNO DE TABLAS.

TIEMPO: 45 minutos. UTILICE LA ÚLTIMA CARA COMO BORRADOR. NO SE PUEDE USAR CALCULADOR NI EL CUADERNO DE TABLAS. TIEMPO: 45 minutos. UTILICE LA ÚLTIMA CARA COMO BORRADOR. NO SE PUEDE USAR CALCULADOR NI EL CUADERNO DE TABLAS. TEORÍA 1 (20 puntos) Lea las 20 cuestiones y escriba dentro de la casilla al pie: V si considera

Más detalles

PROBLEMAS. Segundo Principio. Problema 1

PROBLEMAS. Segundo Principio. Problema 1 PROBLEMAS Segundo Principio Problema 1 La figura muestra un sistema que capta radiación solar y la utiliza para producir electricidad mediante un ciclo de potencia. El colector solar recibe 0,315 kw de

Más detalles

PROBLEMAS DE TERMODINAMICA /TECNIA

PROBLEMAS DE TERMODINAMICA /TECNIA TEMA 1 1. Calcular el exponente de una politrópica que pasa por dos estados cuya relación de volúmenes es (v 2 /v 1 = 10), y cuyas presiones son de (p 1 = 16bar, p 2 = 1bar) 2. Se comprime aire adiabáticamente

Más detalles

Tecnología Frigorífica (Grado en Ingeniería en Tecnologías Industriales) Primer parcial. 23 de noviembre de Nombre:

Tecnología Frigorífica (Grado en Ingeniería en Tecnologías Industriales) Primer parcial. 23 de noviembre de Nombre: Primer parcial. 23 de noviembre de 2016 Teoría 1. Complete las siguientes afirmaciones: El valor del COP de una bomba de calor de Carnot puede valer como máximo y como mínimo. En los evaporadores alimentados

Más detalles

O bien, aplicando el segundo principio: proceso adiabático reversible es isoentrópico:

O bien, aplicando el segundo principio: proceso adiabático reversible es isoentrópico: ASIGNATURA GAIA CURSO KURTSOA TERMODINÁMICA (Troncal, 7,5 cr.) º NOMBRE IZENA FECHA DATA 9/09/0 TEORÍA (33 % de la nota) Tiempo máximo: 60 minutos. (a) Entalpía: deinición. Signiicado ísico de la variación

Más detalles