0. Repaso Electrónica Digital

Tamaño: px
Comenzar la demostración a partir de la página:

Download "0. Repaso Electrónica Digital"

Transcripción

1 0. Repaso Electrónica Digital 3.1. Funciones lógicas básicas 3.2. Lógica y transistores 3.3. Minimización de funciones booleanas 3.4. Circuitos Combinacionales 3.5. Circuitos secuenciales

2 Funciones lógicas básicas x y AND x y OR x NOT x y XOR

3 Otras funciones lógicas NAND NOR XNOR

4 Reglas del álgebra de Boole OR( + ) AND() XOR( ) x+ 0= x x 0= 0 x+ 1= 1 x 1= x x+ x= x x x= x x+ x = 1 x x = 0 x+ y= y+ x x y= y x x+ ( y+ z) = ( x+ y) + z x ( y z) = ( x y) z x ( y+ z) = x y+ x z x+ y z= ( x+ y) ( x+ z) x+ x y= x+ y x y= x y+ x y x y= x y+ x y

5 Leyes de De Morgan Permiten expresar funcionar booleanas mediante operaciones NAND y NOR. x + x x = x x... x 1 2 n 1 2 x x... x = x + x x 1 2 n 1 2 n n

6 Ejemplo 1: sumador de un bit con carry S y Co en función de A, B y Ci: A B Ci S Co

7 Ejemplo 1: solución Solución Solución Como suma de minterms : S= ( 1247,,, ) = A B C + A B C + A B C + + ABC = A ( B C) + A ( B C) = A ( B C ) i i i i i i C = (,,,) 3567 = A B C + A B C + o i i + A B C + A B C = C ( A B) + A B i i i

8 Ejemplo 1: solución Solución Solución Como producto de maxterms : S= (,,,) 0356 = ( A+ B+ Ci)( A+ B+ Ci)( A+ B+ Ci) ( A+ B+ C ) = i = ( A+ B C + B C ) ( A+ B C + B C ) = i i i i = ( A+ ( B C )) ( A+ ( B C )) = i = A ( B C ) + A ( B C ) = A ( B C) i i Co = ( 0124,,, ) = ( A+ B+ Ci) ( A+ B+ Ci) ( A+ B+ Ci) ( A+ B+ Ci) = ( A+ B) ( A B+ A B+ Ci) = = A B+ A C + A B+ B C = A B+ C ( A+ B) i i i i

9 Ejemplo 1: esquema Esquemático Esquemático A B S C i C o

10 0. Repaso Electrónica Digital 3.1. Funciones lógicas básicas 3.2. Lógica y transistores 3.3. Minimización de funciones booleanas 3.4. Circuitos Combinacionales 3.5. Circuitos secuenciales

11 Lógica y transistores Hemos visto que podemos utilizar los transistores como conmutadores (switches) que podremos abrir o cerrar a voluntad con una puerta de control (la base en el transistor bipolar, gate en el transistor MOS). Mediante combinaciones de transistores obtendremos las funciones lógicas básicas. Nos centraremos en la tecnología CMOS. El transistor nmos es un buen conductor de voltajes bajos (0 lógico) y un mal conductor de voltajes altos (1 lógico). Esto es debido a la tensión umbral de los transistores MOS.

12 Lógica y transistores Por el contrario, el transistor pmos es un buen conductor de voltajes altos y un mal conductor de voltajes bajos. Inversor CMOS : V cc V cc Input Output Output

13 Lógica y transistores Se observa que los voltajes bajos en la salidas (0 lógico) se consiguen poniendo en conducción el transistor nmos (conducen bien 0 lógicos). Analogamente, voltajes altos (1 lógico) se logran cuando el pmos está en conducción (conducen bien los 1 lógicos). Para poner en conducción un transistor nmos el terminal de puerta debe estar a un voltaje alto (1 lógico). Un transistor pmos se pone en conducción cuando su terminal de puerta está a un voltaje bajo (0 lógico).

14 Lógica y transistores El resto de puertas lógicas se realizan mediante combinaciones de estos switches colocados en serie o paralelo, lo que dará lugar a diferentes funciones lógicas.

15 Lógica y transistores Switches Tipo N en serie S1 S2 S1 0 1 S2 0 1 off off off on Switches Tipo P en serie S1 S2 S1 0 1 S2 0 1 on off off off S2 Switches Tipo N en paralelo S1 S2 S off on on on Switches Tipo P en paralelo S1 S2 S1 0 1 S2 0 1 on on on off

16 Puerta NAND Una puerta NAND de dos entradas se construye con dos pmos en paralelo y dos nmos en serie. A B V cc Output=A B A B 1 1 0

17 Puerta NOR Una puerta NOR de dos entradas está formado por dos pmos en serie y dos nmos en paralelo. V cc A Output=A+B B A B 1 0 0

18 Construcción de puertas Puertas de más de 2 entradas pueden construirse sin más que añadir el correspondiente número de transistores nmos y pmos. Las puertas lógicas más sencillas (con menor número de transistores) originan un señal de salida negada. Para construir puertas no negadas: Se acude a las leyes de De Morgan. A+ B= A B AB = A+ B

19 Construcción de puertas A partir de la correspondiente no negada más un inversor. AB = AB A+ B= A+ B

20 0. Repaso Electrónica Digital 3.1. Funciones lógicas básicas 3.2. Lógica y transistores 3.3. Minimización de funciones booleanas 3.4. Circuitos Combinacionales 3.5. Circuitos secuenciales

21 Minimización de funciones booleanas Hemos visto que una tabla de verdad puede venir expresada por diferentes funciones booleanas. En electrónica, es de vital importancia poder encontrar la expresión más simple que cumpla una tabla de verdad dada.

22 Minimización de funciones booleanas Esto supondrá que el número de componentes necesarios será menor (menor área y consumo) y además será más rápido (tarda menos en producir el resultado). Generar una función booleana a partir de una tabla de verdad con varias variables de entrada (4 o más) es una tarea tediosa si utilizamos el método de suma de minterms, resultando además un circuito poco optimizado. El método más utilizado de simplificación de funciones booleanas es el método de los Mapas de Karnaugh.

23 Mapas de Karnaugh Los mapas de Karnaugh son unas tablas que contienen la misma información que una tabla de verdad, pero repre-sentada de forma distinta. Un mapa tiene una celda por cada combinación de entra-das. Por ejemplo, para una función de 3 entradas, el mapa de Karnaugh correspondiente tendría 8 celdas. En general, para n entradas tendremos 2 n celdas. Lo veremos con un ejemplo. Minimizaremos la función que vimos anteriormente por este método.

24 Mapas de Karnaugh BC F A AB BC F= A B+ B C

25 Mapas de Karnaugh Construcción del mapa: En el ejemplo se coloca en las filas el valor de la variable A, que puede tomar los valores 0 y 1. En las columnas están los posibles valores de las variables B y C. El orden en que se debe hacer esto es siempre 00, 01, 11 y 10. Observese que no es en orden creciente de números binarios. Ahora se colocan los 0s y 1s de la tabla de verdad en su correspondiente celda del mapa.

26 Mapas de Karnaugh Obtención de la expresión simplificada. Dos celdas de un mapa de Karnaugh son adyacentes si se diferencian en sólo una variable de entrada. 00 AB CD

27 Mapas de Karnaugh Agrupamos celdas adyacentes que contengan 1s. El número de celdas agrupadas debe ser potencia de 2 (1, 2, 4, 8, 16 etc). Todos los 1s del mapa deben ser agrupados. Los grupos de celdas deben ser rectangula-res. No valen diagonales. Cada grupo especifica un término de una operación OR. Para determinarlo se mira qué variables de entrada permancen constantes para todos los elementos del grupo y se hace una operación AND de esas variables. Dos criterios al hacer el agrupamiento de 1s : El número de grupos debe ser el menor posible. El tamaño de los grupos debe ser el mayor posible.

28 Mapas de Karnaugh Condiciones Don t Care Al realizar un diseño hay ocasiones en las que para una determinada combinación de variables de entrada, la salida puede tomar un valor que nos es indiferente porque : Es una combinación de entradas que no se va a dar nunca. El estado de la salida para esa combinación no va a afectar al buen funcionamiento del circuito. Las condiciones don t care se denotan mediante una X, donde X puede ser 0 o 1.

29 Mapas de Karnaugh Condiciones Don t Care Las condiciones de indiferencia se utilizan de forma que lleven a una máxima simplificación de la función lógica. BC F A X X X B C F= B C+ A A

30 Mapas de Karnaugh FABCD (,,, ) = (,,2,,,9, ) CD AB B C A C D F= B C+ A C D+ B D B D

31 0. Repaso Electrónica Digital 3.1. Funciones lógicas básicas 3.2. Lógica y transistores 3.3. Minimización de funciones booleanas 3.4. Circuitos Combinacionales 3.5. Circuitos secuenciales

32 Circuitos Combinacionales Son aquellos en los que los niveles lógicos de las salidas dependen únicamente de los niveles lógicos en las entra-das. Los circuitos que hemos visto hasta ahora (puertas AND, OR, XOR, NOT, etc) son circuitos combinatoriales. Construiremos algunos circuitos combinatoriales típicos a partir de las puertas lógicas. Para ello, especificaremos la lógica de estos circuitos me-diante tablas de verdad, obteniendo una función lógica de la que construiremos su esquemático.

33 Circuitos Combinacionales Multiplexores La figura muestra el símbolo del multiplexor más simple. Las entradas de un multiplexor se dividen en entradas de datos (D0 y D1) y entradas de selección (S). El multiplexor sólo tiene una salida (Y). El funcionamiento del multiplexor es muy simple: dependiendo del estado lógico de S, la salida será igual a D0 o D1. Es decir, cuando S=0, la entrada seleccionada es D0 (Y=D0), y cuando S=1 la entrada seleccionada es D1 (Y=D1). La tabla de verdad es la indicada en la figura. D0 D1 S S D0 S Y Y Y 0 D0 D1 1 D1

34 Circuitos Combinacionales Demultiplexores Los demultiplexores realizan la operación inversa al multiplexor. Tienen un único dato de entrada (D), varias salidas (Y0-Y3) y entradas para seleccionar la salida por donde debe aparecer el dato de entrada (S0,S1). La tabla de verdad y el símbolo son : D S0 S1 Y0 Y1 Y1 Y1 S1 S0 Y3 Y2 Y1 Y D D D D Y0= S1 S0 D= S0+ S1+ D Y1= S1 S0 D= S1+ S0+ D Y2= S1 S0 D= S1+ S0+ D Y3= S1 S0 D= S1+ S0+ D

35 Circuitos Combinacionales Decodificadores Funciona como un demultiplexor cuyo dato de entrada siempre fuera 1.

36 Ejemplo: sumador de 4 bits A partir de un sumador de 1 bit pueden construirse sumadores de más bits. Por ejemplo, un sumador de 4 bits es simplemente: A 3 A 2 A 1 B 3 B 2 B 1 B 0 A 0 B Full Adder C o A S C i B Full Adder C o A S C i B A Full Adder C o S C i B A Half Adder C o S B 3 B 2 B 1 B 0 A 3 A 2 A 1 A 0 C i Sumador 4 bits C o S 3 S 2 S 1 S 0 C S 3 S 2 S 1 S 0

37 0. Repaso Electrónica Digital 3.1. Funciones lógicas básicas 3.2. Lógica y transistores 3.3. Minimización de funciones booleanas 3.4. Circuitos Combinacionales 3.5. Circuitos secuenciales

38 Circuitos Secuenciales Circuitos secuenciales son aquellos en los que las salidas dependen no solo de las entradas sino también de los niveles lógicos previos en las salidas. Se dice que estos elementos tienen memoria de los estados previos en los que ha estado el circuito. Por lo tanto es necesario introducir en el circuito una componente temporal. Esta se realiza mediante la introducción en el circuito de lo que se denomina reloj (clock). El reloj de un circuito digital es un tren de pulsos de una frecuencia que el diseñador debe determinar basándose en el retraso máximo que se produce en el circuito. De esta forma el tiempo queda discretizado y todos los cambios de estado de las variables de un circuito ocurren al ritmo marcado por el reloj.

39 Circuitos Secuenciales Latch D Esquema de un latch D D -Q C C clk Q

40 Circuitos Secuenciales Latch D Funcionamiento de un latch D D -Q clk=1 Q Cuando clk=1 Q=D Q=-D clk D Q

41 Circuitos Secuenciales Latch D Funcionamiento de un latch D D -Q clk=0 Q Cuando clk=0 Q i+1 =Q i -Q i+1 =-Q i Se ignora la entrada D. clk D Q

42 Circuitos Secuenciales Flip Flop D Esquema de un flip-flop D D C -QM C Q C C clk Formado por dos latches: maestro-esclavo

43 Circuitos Secuenciales Flip Flop D Esquema de un flip-flop D D -QM Q clk=0 Cuando clk=0 -QM=-D Q i+1 =Q i clk D QM Q

44 Circuitos Secuenciales Flip Flop D Esquema de un flip-flop D D -QM Q Flanco de subida del reloj: -QM i+1 =QM i Q=-QM clk D QM Q

45 Circuitos Secuenciales Flip Flop D La tabla de verdad del Flip-Flop tipo D es la mostrada en la figura. Esta tabla puede también interpretarse en función del estado actual y el estado posterior del Flip-Flop. Se ha hecho la tabla de verdad para el caso del Flip-Flop disparado en el flanco de subida.. D CLK Q n+1 X 0 Q n X 1 Q n D Estado Actual Estado Posterior Q D Q X 0 0 X 1 1 Q Flip-Flop D CLK Q

46 Circuitos Secuenciales Flip Flop D CLK D Q Tal y como se observa en la tabla de verdad, el único instante en que la entrada D se hace transparente en la salida es en el flanco de subida. El resto del tiempo (CLK=0,CLK=1) el flip-flop guarda el dato obtenido en el flanco de subida. De esta forma los datos de salida del flip-flop están sincronizados con el reloj.

47 Circuitos Secuenciales Ejemplo: sumador de 4 bits en serie A S S B C in Co D Flip-Flop D Q CLK Q en CONTADOR clk

TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA

TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA TEMA 5.2 FUNCIONES LÓGICAS TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA 17 de febrero de 2015 TEMA 5.2 FUNCIONES LÓGICAS Puertas lógicas Simplificación de funciones lógicas 2 TEMA 5.2 FUNCIONES

Más detalles

TEMA 5.3 SISTEMAS DIGITALES

TEMA 5.3 SISTEMAS DIGITALES TEMA 5.3 SISTEMAS DIGITALES TEMA 5 SISTEMAS DIGITALES FUNDAMENTOS DE ELECTRÓNICA 08 de enero de 2015 TEMA 5.3 SISTEMAS DIGITALES Introducción Sistemas combinacionales Sistemas secuenciales TEMA 5.3 SISTEMAS

Más detalles

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Más detalles

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Dr. Marcelo Risk Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2017 Lógica

Más detalles

Tema 3. 2 Sistemas Combinacionales

Tema 3. 2 Sistemas Combinacionales Tema 3. 2 Sistemas Combinacionales Índice Circuitos combinacionales: concepto, análisis y síntesis. Métodos de simplificación de funciones lógicas. Estructuras combinacionales básicas Multiplexores Demultiplexores

Más detalles

Organización de Computadoras

Organización de Computadoras Organización de Computadoras SEMANA 1 UNIVERSIDAD NACIONAL DE QUILMES Qué vimos? Sistema Binario Interpretación Representación Aritmética Sistema Hexadecimal Hoy! Lógica proposicional Compuertas lógicas:

Más detalles

TEMA 3. Circuitos digitales básicos CMOS.

TEMA 3. Circuitos digitales básicos CMOS. Ingeniería Técnica de Telecomunicación SS. EE. Curso 3º Microelectrónica I 2010/11 Resumen TEMA 3. Circuitos digitales básicos CMOS. 3.2 Otros Circuitos digitales básicos. Diseño de puertas CMOS Puertas

Más detalles

TEMA 1. Sistemas Combinacionales.

TEMA 1. Sistemas Combinacionales. TEMA. Sistemas Combinacionales.. Introducción a los sistemas digitales. Familias lógicas (2-20) 2. Definición de circuito combinacional (2-25) 3. Funciones combinacionales. Simplificación e implementación

Más detalles

Tema 8. Circuitos electrónicos digitales

Tema 8. Circuitos electrónicos digitales Tema 8. Circuitos electrónicos digitales Sistemas digitales. Conmutación. Operaciones lógicas. Álgebra de Boole. Síntesis lógica. Mapas de Karnaugh. Fundamentos Físicos de la Ingeniería II. Tema 8: Electrónica

Más detalles

Organización n del Computador 1. Lógica Digital 1 Algebra de Boole y compuertas

Organización n del Computador 1. Lógica Digital 1 Algebra de Boole y compuertas Organización n del Computador 1 Lógica Digital 1 Algebra de Boole y compuertas Representación n de la Información La computadoras necesitan almacenar datos e instrucciones en memoria Sistema binario (solo

Más detalles

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas

ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I. TEMA 4 Algebra booleana y puertas lógicas ESTRUCTURA Y TECNOLOGÍA DE LOS COMPUTADORES I TEMA 4 Algebra booleana y puertas lógicas TEMA 4. Algebra booleana y puertas lógicas 4.1 Definición de álgebra de Boole 4.2 Teoremas del álgebra de Boole 4.3

Más detalles

TEMA 1. Sistemas Combinacionales.

TEMA 1. Sistemas Combinacionales. TEMA 1. Sistemas Combinacionales. 1. Introducción a los sistemas digitales. Familias lógicas (2-20) 2. Definición de circuito combinacional (21-25) 3. Funciones combinacionales. Simplificación e implementación

Más detalles

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y

Organización del Computador 1 Lógica Digital 1: álgebra de Boole y Introducción Circuitos Bloques Organización del Computador 1 Lógica Digital 1: álgebra de Boole y compuertas Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Más detalles

Operación de circuitos lógicos combinatorios.

Operación de circuitos lógicos combinatorios. Operación de circuitos lógicos combinatorios. 1.1 Analiza circuitos lógicos combinatorios, empleando sistemas y códigos numéricos. A. Identificación de las características de la electrónica digital. Orígenes

Más detalles

2. CONTROL DE CIRCUITOS ELECTRÓNICOS COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º ESO

2. CONTROL DE CIRCUITOS ELECTRÓNICOS COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º ESO 2. CONTROL DE CIRCUITO ELECTRÓNICO COLEGIO MALVAR DPTO. CCNN Y TECNOLOGÍA 3º EO INTRODUCCIÓN Las agujas de un reloj, que giran representando el avance del tiempo, lo hacen en forma aná- loga (análogo =

Más detalles

Álgebra de Boole. Diseño Lógico

Álgebra de Boole. Diseño Lógico Álgebra de Boole. Diseño Lógico Fundamentos de Computadores Escuela Politécnica Superior. UAM Alguna de las trasparencias utilizadas son traducción de las facilitadas con el libro Digital Design & Computer

Más detalles

Tema 5: Álgebra de Boole Funciones LógicasL

Tema 5: Álgebra de Boole Funciones LógicasL Tema 5: Álgebra de Boole Funciones LógicasL Ingeniería Informática Universidad Autónoma de Madrid 1 Álgebra de Boole.. Funciones LógicasL O B J E T I V O S Conocer el Álgebra de Boole, sus teoremas y las

Más detalles

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL

PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL PROBLEMAS TECNOLOGÍA INDUSTRIAL II. CONTROL DIGITAL 1. 2. 3. 4. 5. 6. a) Convierta el número (5B3) 16 al sistema decimal b) Convierta el número (3EA) 16 al sistema binario c) Convierta el número (235)

Más detalles

Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas.

Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas. Puertas lógicas. Técnicas de diseño y simplificación de funciones lógicas. Introducción La electrónica digital está basada en una teoría binaria cuya estructura matemática fue desarrollada por George Boole

Más detalles

Organización de computadoras. Clase 1. Universidad Nacional de Quilmes. Lic. Martínez Federico

Organización de computadoras. Clase 1. Universidad Nacional de Quilmes. Lic. Martínez Federico Organización de computadoras Clase 1 Universidad Nacional de Quilmes Lic. Martínez Federico Qué pasó? Qué pasó? Binario Qué pasó? Binario Interpretación Qué pasó? Binario Interpretación Representación

Más detalles

Codificación de la información y álgebra de conmutación EDIG

Codificación de la información y álgebra de conmutación EDIG Codificación de la información y álgebra de conmutación Analógico vs. digital Analógico: Las señales varían de forma continua en un rango dado de tensiones, corrientes, etc. Digital: Las señales varían

Más detalles

Figura 1. La puerta NAND

Figura 1. La puerta NAND Otras Compuertas Lógicas Los más complejos sistemas digitales, como, por ejemplo, las grandes computadoras, se construyen con puertas lógicas básicas. Las puertas NOT, OR y AND son las fundamentales. Cuatro

Más detalles

DEPARTAMENTO ACADEMICO ELECTROCIDAD Y ELETRONICA

DEPARTAMENTO ACADEMICO ELECTROCIDAD Y ELETRONICA UNIVERSIDAD NACIONAL SAN LUIS GONZAGA DE ICA FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA ELECTRÓNICA DEPARTAMENTO ACADEMICO ELECTROCIDAD Y ELETRONICA TEMA: CIRCUITOS

Más detalles

ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES.

ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. 1 ELECTRÓNICA DIGITAL 1. INTRODUCCIÓN. SEÑALES ANALÓGICAS Y DIGITALES. Podemos dividir la electrónica en dos grandes campos: la electrónica analógica y la electrónica digital, según el tipo de señales

Más detalles

ÍNDICE TEMÁTICO. 4 Características de las familias lógicas Circuitos lógicos combinacionales

ÍNDICE TEMÁTICO. 4 Características de las familias lógicas Circuitos lógicos combinacionales UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉICO FACULTAD DE ESTUDIOS SUPERIORES CUAUTITLÁN LICENCIATURA: INGENIERÍA EN TELECOMUNICACIONES, SISTEMAS Y ELECTRÓNICA DENOMINACIÓN DE LA ASIGNATURA: Sistemas Digitales

Más detalles

Presentación y objetivos

Presentación y objetivos Presentación y objetivos Decididamente estamos en un mundo tomado por la tecnología. El hombre se ve desplazado en muchos trabajos y situaciones por la máquina, más rentable y segura. Pero para que esto

Más detalles

Circuitos Lógicos Combinatorios. Ing. Jorge Manrique 2004 Sistemas Digitales 1

Circuitos Lógicos Combinatorios. Ing. Jorge Manrique 2004 Sistemas Digitales 1 Circuitos Lógicos Combinatorios Ing. Jorge Manrique 2004 Sistemas Digitales 1 Circuitos Combinatorios Un circuito combinatorio es un arreglo de compuertas lógicas con un conjunto de entradas y salidas.

Más detalles

Código: Titulación: ING. TÉCNICO IND. EN ELECTRÓNICA INDUSTRIAL Curso: 2

Código: Titulación: ING. TÉCNICO IND. EN ELECTRÓNICA INDUSTRIAL Curso: 2 ASIGNATURA: ELECTRÓNICA DIGITAL Código: 126212006 Titulación: ING. TÉCNICO IND. EN ELECTRÓNICA INDUSTRIAL Curso: 2 Profesor(es) responsable(s): JOSE ALFONSO VERA REPULLO - Departamento: TECNOLOGÍA ELECTRONICA

Más detalles

Elementos de Diseño de Sistemas Digitales

Elementos de Diseño de Sistemas Digitales Elementos de Diseño de Sistemas Digitales Elías Todorovich G. Bioul, M. Tosini Arquitectura I - Curso 2011 UNICEN Algebra de Boole Un álgebra de Boole es una estructura algebraica con los siguientes elementos:

Más detalles

Fundamentos lógicos. Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada

Fundamentos lógicos. Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada Fundamentos lógicos Dpto. Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada www.elai.upm.es Álgebra de Boole Buena parte de los automatismos responden a la lógica binaria Las variables binarias

Más detalles

TEMA 3 BLOQUES COMBINACIONALES.

TEMA 3 BLOQUES COMBINACIONALES. TEMA 3 BLOQUES COMBINACIONALES. Objetivos. Describir la diferencia entre circuitos combinacionales y secuenciales. Interpretar la función de un multiplexor, un demultiplexor, un codificador y un decodificador.

Más detalles

IRCUITOS LOGICOS SECUENCIALES

IRCUITOS LOGICOS SECUENCIALES C IRCUITOS LOGICOS SECUENCIALES A diferencia de los circuitos combinacionales, en los circuitos secuenciales se guarda memoria de estado. Las salidas no dependen tan solo del valor de las entradas en un

Más detalles

TEMA: ELECTRÓNICA DIGITAL

TEMA: ELECTRÓNICA DIGITAL TEMA: ELECTRÓNICA DIGITAL 1.- SISTEMAS DE NUMERACION 2.- PUERTAS LÓGICAS BÁSICAS 3.- OTRAS PUERTAS LÓGICAS 4.- CIRCUITOS SECUENCIALES 5.- OTROS CIRCUITOS SECUENCIALES 1 1.- SISTEMAS DE NUMERACIÓN La Humanidad

Más detalles

Circuitos Secuenciales

Circuitos Secuenciales EL - 337 Página Agenda EL - 337 Página 2 Introducción El biestable de flip flops de flip flops tipo D de flip flops tipo T de flip flops tipo S-R de flip flops tipo J-K de circuitos Conclusiones Introducción

Más detalles

IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES

IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES IMPLEMENTACIÓN DE CIRCUITOS COMBINACIONALES SIMPLIFICACIÓN DE FUNCIONES LÓGICAS Para implementar mediante un circuito digital formado por puertas lógicas una función lógica el primer paso consiste en realizar

Más detalles

Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores

Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Titulación: Grado en Ingeniería Informática Asignatura: Fundamentos de Computadores Bloque : Sistemas combinacionales Tema 4: Algebra de Boole y funciones lógicas Pablo Huerta Pellitero ÍNDICE Bibliografía

Más detalles

Fundamentos de Electrónica Sistemas Digitales

Fundamentos de Electrónica Sistemas Digitales Sistemas Digitales 1. Deducir si el sistema que se propone se trata de un sistema combinacional o secuencial a. Un circuito que indique el número de vueltas realizadas a un circuito b. Un circuito que

Más detalles

Electrónica Digital: Diseño y Lógica Secuencial

Electrónica Digital: Diseño y Lógica Secuencial Electrónica Digital: Diseño y Lógica Secuencial Profesor: Ing Andrés Felipe Suárez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: Andres.suarez@correounivalle.edu.co Tabla de Contenido

Más detalles

ÍNDICE CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN CAPÍTULO 2. ÁLGEBRA DE CONMUTACIÓN Y FUNCIONES LÓGICAS... 37

ÍNDICE CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN CAPÍTULO 2. ÁLGEBRA DE CONMUTACIÓN Y FUNCIONES LÓGICAS... 37 ÍNDICE LISTA DE FIGURAS... 7 LISTA DE TABLAS... 11 CAPÍTULO 1. CÓDIGOS DE NUMERACIÓN... 13 1.1. REPRESENTACIÓN DE LA INFORMACIÓN... 15 1.2. SISTEMAS DE NUMERACIÓN BINARIO NATURAL Y HEXADECIMAL... 18 1.3.

Más detalles

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh

Suma Resta Multiplica. División Alg. Boole Tbla Verdad Circuitos Karnaugh Funciones Lógicas II Sistemas de Numeración 1 Suma lógicos: La información en los computadores se representa mediante tensiones electricas: Señales analógicas: Las tensiones toman valores dentro de un

Más detalles

Octubre de Circuitos Logicos MARIA ALEJANDRA GUIO SAENZ ALEJANDRO SALAZAR ALEJANDRO BELTRAN CAMILO RIVERA SYGMA

Octubre de Circuitos Logicos MARIA ALEJANDRA GUIO SAENZ ALEJANDRO SALAZAR ALEJANDRO BELTRAN CAMILO RIVERA SYGMA Octubre de 2016 Circuitos Logicos MARIA ALEJANDRA GUIO SAENZ ALEJANDRO SALAZAR ALEJANDRO BELTRAN CAMILO RIVERA SYGMA CIRCUITOS LOGICOS 1) FUNCIONES DEL ÁLGEBRA BOOLEANA BINARIA Sea B = {0, 1} sea B n =

Más detalles

Bloques funcionales combinacionales. Bloques para el encaminamiento y/o transferencia de datos

Bloques funcionales combinacionales. Bloques para el encaminamiento y/o transferencia de datos Bloques para el encaminamiento y/o transferencia de datos Multiplexor Demultiplexor Decodificador Codificador Bloques para el procesamiento de datos Comparador Bloques para la generación de funciones booleanas

Más detalles

INDICE. XIII Introducción. XV 1. Introducción a la técnica digital 1.1. Introducción

INDICE. XIII Introducción. XV 1. Introducción a la técnica digital 1.1. Introducción INDICE Prologo XIII Introducción XV 1. Introducción a la técnica digital 1.1. Introducción 1 1.2. Señales analógicas y digitales 1.2.1. Señales analógicas 1.2.2. Señales digitales 2 1.3. Procesos digitales

Más detalles

ELECTRÓNICA. Unidad 1: Fundamentos de Electrónica Digital 2ª Parte

ELECTRÓNICA. Unidad 1: Fundamentos de Electrónica Digital 2ª Parte ELECTRÓNICA Unidad 1: Fundamentos de Electrónica Digital 2ª Parte Operaciones con binario Suma: Ejemplo: 5 + 4 + 0 1 0 1 0 1 0 0 1 0 0 1 Operaciones con binario Resta: Ejemplo: 5-2 - 0 1 0 1 0 0 1 0 0

Más detalles

Circuitos Lógicos Secuenciales. Figura 36. Circuito lógico secuencial. Actividad de apertura. Circuitos lógicos secuenciales.

Circuitos Lógicos Secuenciales. Figura 36. Circuito lógico secuencial. Actividad de apertura. Circuitos lógicos secuenciales. Circuitos Lógicos Secuenciales UNIDAD 3 Como recordaras en la unidad pasada vimos los circuitos combinacionales, en estos las salidas solo dependen del valor de las entradas. A diferencia de los circuitos

Más detalles

Programa del curso. Diseño de Circuitos Digitales. CI-1210.

Programa del curso. Diseño de Circuitos Digitales. CI-1210. Programa del curso. Diseño de Circuitos Digitales. CI-1210. Profesor: M. Sc. Sanders Pacheco Araya. Teléfono: 2511-5156 Oficina. 224 E-mail: spacheco@ice.co.cr Horario: L J 09:00 a 10:40 horas Aula: 305

Más detalles

ING. WILDER ENRIQUE ROMÁN MUNIVE

ING. WILDER ENRIQUE ROMÁN MUNIVE TEMA CURSO: CÓDIGO: ALUMNO: CIRCUITOS LOGICOS DIBUJO ELECTRÓNICO I 1J3025 LÉVANO PINTO CHRISTIAN ENRIQUE CÓDIGO U: 20112281 AÑO: CICLO: SECCIÓN: GRUPO: DOCENTE: PRIMERO SEGUNDO DOS A ING. WILDER ENRIQUE

Más detalles

circuitos digitales números binario.

circuitos digitales números binario. CIRCUITOS DIGITALES Vamos a volver a los circuitos digitales. Recordemos que son circuitos electrónicos que trabajan con números, y que con la tecnología con la que están realizados, estos números están

Más detalles

El número decimal 57, en formato binario es igual a:

El número decimal 57, en formato binario es igual a: CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA 1. NÚMEROS BINARIOS EJEMPLO En el cuadro anterior, está la representación de los números binarios en formato

Más detalles

Electrónica. Diseño lógico. Fundamentos en electrónica digital. Héctor Arturo Flórez Fernández

Electrónica. Diseño lógico. Fundamentos en electrónica digital. Héctor Arturo Flórez Fernández Electrónica Diseño lógico Fundamentos en electrónica digital Héctor Arturo Flórez Fernández Flórez Fernández, Héctor Arturo Diseño lógico: fundamentos de electrónica digital / Héctor Arturo Flórez Fernández.

Más detalles

Arquitecturas de Computadores. 4 Sistemas Combinacionales y Secuenciales Prof. Javier Cañas R.

Arquitecturas de Computadores. 4 Sistemas Combinacionales y Secuenciales Prof. Javier Cañas R. Arquitecturas de Computadores 4 Sistemas Combinacionales y Secuenciales Prof. Javier Cañas R. Temario 1. Introducción 2. Sistemas Combinacionales (SC) 3. Implantación de SC mediante PLA 4. Sistemas Secuenciales

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Arquitectura de Ordenadores Tutor: Antonio Rivero Cuesta Unidad Didáctica 1 Representación de la Información y Funciones Lógicas Tema 3 Algebra Booleana y Puertas Lógicas

Más detalles

APOYO PARA EL LOGRO DEL PRIMER APRENDIZAJE ESPERADO: CONCEPTOS PREVIOS

APOYO PARA EL LOGRO DEL PRIMER APRENDIZAJE ESPERADO: CONCEPTOS PREVIOS Profesor/a(s) Nivel o Curso/s 4º Ramon Flores Pino Unidad/Sub Unidad 2.- Circuitos de lógica Combinacional Contenidos 1 Compuertas lógicas 2. Enfoque de problemas, 3.- Codificadores y decodificadores GUÍA

Más detalles

INDICE Capitulo 1. Álgebra de variables lógicas Capitulo 2. Funciones lógicas

INDICE Capitulo 1. Álgebra de variables lógicas Capitulo 2. Funciones lógicas INDICE Prefacio XV Capitulo 1. Álgebra de variables lógicas 1 1.1. Variables y funciones 1 1.2. Variables lógicas 2 1.3. Valores de una variable lógica 2 1.4. Funciones de una variable lógica 3 1.5. Funciones

Más detalles

Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid. Circuitos combinacionales

Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid. Circuitos combinacionales Circuitos Electrónicos Digitales E.T.S.I. Telecomunicación Universidad Politécnica de Madrid Circuitos combinacionales Puertas lógicas simples y complejas. Multiplexores. Elementos varios: codificadores

Más detalles

Universidad Autónoma de Baja California

Universidad Autónoma de Baja California Universidad Autónoma de Baja California Facultad de Ingeniería, Arquitectura y Diseño Práctica de laboratorio Programa educativo Plan de estudio Clave asignatura Nombre de la asignatura Bioingeniería 2009-2

Más detalles

Curso Completo de Electrónica Digital

Curso Completo de Electrónica Digital CURSO Curso Completo de Electrónica Digital Departamento de Electronica y Comunicaciones Universidad Pontifica de Salamanca en Madrid Prof. Juan González Gómez 4.5. Análisis de circuitos combinacionales

Más detalles

Unidad 3: Circuitos digitales.

Unidad 3: Circuitos digitales. A-1 Appendix A - Digital Logic Unidad 3: Circuitos digitales. Diapositivas traducidas del libro Principles of Computer Architecture Miles Murdocca and Vincent Heuring Appendix A: Digital Logic A-2 Appendix

Más detalles

1ª evaluación: 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE

1ª evaluación: 1: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE Electrónica digital Página 1 1ª evaluación: 1: 2: 3: 4: INTRODUCCIÓN A LOS SISTEMAS DIGITALES SISTEMAS DE NUMERACIÓN BINARIO OCTAL Y HEXADECIMAL CAMBIOS DE BASE ALGEBRA DE BOOLE POSTULADOS Y TEOREMAS PUERTAS

Más detalles

Unidad Didáctica Electrónica Digital 4º ESO

Unidad Didáctica Electrónica Digital 4º ESO Unidad Didáctica Electrónica Digital 4º ESO ÍNDICE 1. INTRODUCCIÓN 2. SISTEMAS DE NUMERACIÓN 3. PUERTAS LÓGICAS 4. FUNCIONES LÓGICAS 1.- Introducción Señal analógica. Señal digital Una señal analógica

Más detalles

NOT. Ejemplo: Circuito C1

NOT. Ejemplo: Circuito C1 Métodos de diseño de circuitos digitales Sistemas combinacionales En un circuito combinacional los valores de las salidas dependen únicamente de los valores que tienen las entradas en el presente. Se construen

Más detalles

Introducción a la lógica digital

Introducción a la lógica digital Organización del Computador I Verano Introducción a la lógica digital Basado en el Apéndice B del libro de Patterson y Hennessy Verano 24 Profesora Borensztejn Señales Digitales Los transistores operan

Más detalles

FUNDAMENTOS DE COMPUTADORES Ejercicios U2: Circuitos Combinacionales

FUNDAMENTOS DE COMPUTADORES Ejercicios U2: Circuitos Combinacionales U_. Se desea transmitir las primeras cuatro letras del alfabeto de un ordenador ORD a otro ORD. En el primero las cuatro letras están codificadas en tres líneas X, X y X y en el segundo tan sólo en dos,

Más detalles

Unidad Didáctica 6 Electrónica Digital 4º ESO

Unidad Didáctica 6 Electrónica Digital 4º ESO Unidad Didáctica 6 Electrónica Digital 4º ESO ELECTRÓNICA DIGITAL SEÑALES ELECTRICAS LÓGICA BINARIA CIRCUITOS INTEGRADOS DIGITALES DISEÑO DE CTOS. COMBINACIONALES Y CTOS. IMPRESOS TIPOS SISTEMAS DE NUMERACIÓN

Más detalles

PRINCIPIOS DE ELECTRÓNICA DIGITAL

PRINCIPIOS DE ELECTRÓNICA DIGITAL PRINCIPIOS DE ELECTRÓNICA DIGITAL La electrónica digital es una herramienta muy importante en los sistemas de control industriales, procesos de datos e infinidad de equipos como son: calculadoras electrónicas,

Más detalles

01-Sistemas de numeración

01-Sistemas de numeración Tema 6: Electrónica digital pág. 1 01-Sistemas de numeración La Humanidad ha necesitado tener la cuenta de su ganado, pertenencias, etc. y para ello ha desarrollado distintos sistemas para contar. Lo más

Más detalles

INDICE 1. Operación del Computador 2. Sistemas Numéricos 3. Álgebra de Boole y Circuitos Lógicos

INDICE 1. Operación del Computador 2. Sistemas Numéricos 3. Álgebra de Boole y Circuitos Lógicos INDICE Prólogo XI 1. Operación del Computador 1 1.1. Calculadoras y Computadores 2 1.2. Computadores digitales electrónicos 5 1.3. Aplicación de los computadores a la solución de problemas 7 1.4. Aplicaciones

Más detalles

Electrónica Digital y Microprocesadores

Electrónica Digital y Microprocesadores Electrónica Digital y Microprocesadores Este libro ha sido concebido como texto de ayuda para la asignatura de Electrónica Digital, impartida en segundo curso del Grado en Ingeniería en Tecnologías y Servicios

Más detalles

Álgebra de Boole. Tema 5

Álgebra de Boole. Tema 5 Álgebra de Boole Tema 5 Qué sabrás al final del capítulo? Leyes y propiedades del Álgebra de Boole Simplificar funciones utilizando el Álgebra de Boole Analizar circuitos mediante Álgebra de Boole y simplificarlos

Más detalles

Electrónica Digital. Ing. Javier Soto Vargas Ph.D. ECI TDDA(M) - Javier Soto 1

Electrónica Digital. Ing. Javier Soto Vargas Ph.D. ECI TDDA(M) - Javier Soto 1 Electrónica Digital Ing. Javier Soto Vargas Ph.D. javier.soto@escuelaing.edu.co ECI TDDA(M) - Javier Soto 1 Sistema Digital Manejo de elementos discretos de información. Elementos discretos: Señales eléctricas.

Más detalles

Axiomas Básicos. ...Axiomas Básicos. Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole. Temario.

Axiomas Básicos. ...Axiomas Básicos. Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole. Temario. 27-4-2 Temario Arquitecturas de Computadores Prof. MAURICIO SOLAR 3 Algebra de Boole Introducción 2 Axiomas Básicos 3 Definiciones 4 Teoremas 5 Funciones 6 Compuertas Lógicas 7 Minimización de Funciones

Más detalles

Organización del Computador 1 Lógica Digital 2: circuitos y memor

Organización del Computador 1 Lógica Digital 2: circuitos y memor Organización del Computador 1 Lógica Digital 2: circuitos y memorias Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Septiembre 2009 Circuitos secuenciales

Más detalles

plicación de los circuitos SUMADOR DIBITAL S C

plicación de los circuitos SUMADOR DIBITAL S C plicación de los circuitos ógicos A B SUMADOR DIBITAL S C Aplicaciones de los circuitos lógicos Algunas aplicaciones elementales como los circuitos aritméticos digitales y los codificadores y decodificadores,

Más detalles

Figura Implementación de un latch a partir de un biestable asíncrono.

Figura Implementación de un latch a partir de un biestable asíncrono. 1.7. Implementaciones de biestables En muchas ocasiones no contamos con el circuito integrado del biestable necesario para una aplicación y por tal razón se hace necesario hacer implementaciones a partir

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 Bloque V. Control y programación de sistemas automáticos pág. 2 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN

Más detalles

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS

BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS Bloque V. Control y programación de sistemas automáticos pág. 1 BLOQUE V. CONTROL Y PROGRAMACIÓN DE SISTEMAS AUTOMÁTICOS 1. LA INFORMACIÓN BINARIA 1.1. Sistemas de numeración y códigos Def. Sistema de

Más detalles

Sistemas Digitales I

Sistemas Digitales I UNIVERSIDAD INDUSTRIAL DE SANTANDER Sistemas Digitales I Taller No1 Profesor: Carlos A. Fajardo Mayo de 2015 Temas: Representación digital de los Datos, Algebra de Boole, Funciones Lógicas, Introducción

Más detalles

Algebra de Boole. » a + a = 1» a a = 0

Algebra de Boole. » a + a = 1» a a = 0 Algebra de Boole Dos elementos: 0 y 1 Tres operaciones básicas: producto ( ) suma ( + ) y negación ( ` ) Propiedades. Siendo a, b, c números booleanos, se cumple: Conmutativa de la suma: a + b = b + a

Más detalles

Circuitos combinacionales. Tema 6

Circuitos combinacionales. Tema 6 Circuitos combinacionales Tema 6 Qué sabrás al final del tema? Conocer las formas canónicas de una función Implementar funciones con dos niveles de puertas lógicas AND / OR OR / AND Implementación con

Más detalles

TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS.

TEMA PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. PUERTAS LÓGICAS. TÉCNICAS DE DISEÑO Y SIMPLIFICACIÓN DE FUNCIONES LÓGICAS. ÍNDICE.- INTRODUCCIÓN... 2.- ELECTRÓNICA DIGITAL... 3.. SISTEMAS DE NUMERACIÓN... 3.2. SEÑAL DIGITAL BINARIA... 3.3. SISTEMAS

Más detalles

CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA

CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA CURSO: ELECTRÓNICA DIGITAL UNIDAD 1: COMPUERTAS LÓGICAS - TEORÍA PROFESOR: JORGE ANTONIO POLANÍA Las compuertas lógicas son bloques que realizan las operaciones básicas de la aritmética binaria del álgebra

Más detalles

ELECTRÓNICA DIGITAL. Ejercicios propuestos Tema 1

ELECTRÓNICA DIGITAL. Ejercicios propuestos Tema 1 ELECTRÓNICA DIGITAL Ejercicios propuestos Tema 1 Ejercicio 1. Simplificar las siguientes funciones lógicas utilizando los postulados y las propiedades del algebra de Boole. a) Y = A B C + A B C + A B C

Más detalles

PRÁCTICA 1: SISTEMAS COMBINACIONALES

PRÁCTICA 1: SISTEMAS COMBINACIONALES DEPARTAMENTO DE AUTOMÁTICA UAH GRADO fdsfdsdfsdfsdf EN INGENIERÍA INFORMÁTICA OBJETIVOS Iniciar y familiarizar al alumno con su puesto de trabajo en el laboratorio y con el manejo de la instrumentación

Más detalles

Tema 1: Circuitos Combinacionales

Tema 1: Circuitos Combinacionales Tema : Circuitos Combinacionales Contenidos. Introducción. Aritmética. Álgebra de Boole Señales Sistemas. Introducción Entrada Ecitación Sistema Salida Respuesta Un sistema es un conjunto de partes o elementos

Más detalles

PROGRAMA INSTRUCCIONAL CIRCUITOS DIGITALES

PROGRAMA INSTRUCCIONAL CIRCUITOS DIGITALES UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN PROGRAMA INSTRUCCIONAL CIRCUITOS DIGITALES CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A

Más detalles

Introducción Tipos de FF Ejercicios. Lógica Digital. Circuitos Secuenciales. Francisco García Eijó

Introducción Tipos de FF Ejercicios. Lógica Digital. Circuitos Secuenciales. Francisco García Eijó Circuitos Secuenciales Organización del Computador I Departamento de Computación - FCEyN UBA 13 de Abril del 2010 Agenda 1 Repaso 2 ué son los circuitos secuenciales? 3 Tipos de Flip-Flops 4 Ejercicios

Más detalles

Lógica Secuencial. Circuitos Digitales, 2º de Ingeniero de Telecomunicación ETSIT ULPGC

Lógica Secuencial. Circuitos Digitales, 2º de Ingeniero de Telecomunicación ETSIT ULPGC Lógica Secuencial Circuitos Digitales, 2º de Ingeniero de Telecomunicación ETSIT ULPGC Componentes secuenciales Contienen elementos de memoria Los valores de sus salidas dependen de los valores en sus

Más detalles

Electrónica Digital: Sistemas Numéricos y Algebra de Boole

Electrónica Digital: Sistemas Numéricos y Algebra de Boole Electrónica Digital: Sistemas Numéricos y Algebra de Boole Profesor: Ing. Andrés Felipe Suárez Sánchez Grupo de Investigación en Percepción y Sistemas Inteligentes. Email: andres.suarez@correounivalle.edu.co

Más detalles

ARQUITECTURAS ESPECIALES

ARQUITECTURAS ESPECIALES ARQUITECTURAS ESPECIALES EL - 337 Página Qué es un Multiplexor? EL - 337 Un multiplexor o MUX es un switch digital (interruptor digital) que conecta una de las entradas con su única salida. Desde el punto

Más detalles

Principales subsistemas digitales en CMOS-

Principales subsistemas digitales en CMOS- Ingeniería Técnica de Telecomunicación SS. EE. Curso 3º Microelectrónica I 2010/11 Resumen TEMA 4. VLSI Principales subsistemas digitales en CMOS- Lógica dinámica. Estructuras lógicas síncronas con señales

Más detalles

INDICE Capítulo 1. Introducción Capítulo 2. Circuitos lógicos básicos Capítulo 3. Sistemas numéricos Capítulo 4. Codificación

INDICE Capítulo 1. Introducción Capítulo 2. Circuitos lógicos básicos Capítulo 3. Sistemas numéricos Capítulo 4. Codificación INDICE Capítulo 1. Introducción 1.1. Cantidades analógicas y digitales 1.2. Sistemas electrónico digitales 16 1.3. Circuitos integrados 17 1.4. Disipación de potencia y velocidad de operación 1.5. Aplicación

Más detalles

Jorge Aliaga Verano Si No- Si Si- No

Jorge Aliaga Verano Si No- Si Si- No Si No- Si Si- No Parece raro que alguien se pudiera comunicar con solo dos palabras. Es lo que hacemos con todos los dispositivos digitales que usan el código binario ( 0 y 1 ) o dos estados lógicos (falso

Más detalles

CIRCUITOS BIESTABLES CIRCUITOS SECUENCIALES

CIRCUITOS BIESTABLES CIRCUITOS SECUENCIALES CIRCUITOS BIESTABLES Centro CFP/ES CIRCUITOS SECUENCIALES Un circuito secuencial es aquel tipo de circuito en el que las salidas en un instante dado no dependen única y exclusivamente de las entradas en

Más detalles

PRÁCTICA 1: SISTEMAS COMBINACIONALES

PRÁCTICA 1: SISTEMAS COMBINACIONALES DEPARTAMENTO DE AUTOMÁTICA UAH GRADO EN INGENIERÍA INFORMÁTICA OBJETIVOS PRÁCTICA : SISTEMAS COMBINACIONALES ü ü Iniciar y familiarizar al alumno con su puesto de trabajo en el laboratorio y con el manejo

Más detalles

Organización del Computador 1 Lógica Digital 2: circuitos y memor

Organización del Computador 1 Lógica Digital 2: circuitos y memor Organización del Computador 1 Lógica Digital 2: circuitos y memorias Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Circuitos secuenciales Circuitos combinatorios

Más detalles

Circuitos Secuenciales: concepto de estado

Circuitos Secuenciales: concepto de estado 1 Lógica Secuencial Circuitos Secuenciales: concepto de estado En los sistemas secuenciales la salida Z en un determinado instante de tiempo t i depende de X en ese mismo instante de tiempo t i y en todos

Más detalles