Departamento de Física Aplicada III

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Departamento de Física Aplicada III"

Transcripción

1 Primer Parcial, Enero de 2008 Óptica O.1. (1.0 puntos) Sobre la propagación de la luz en una fibra óptica, explique (a) definición y características de la dispersión modal y el ensanchamiento de pulso, (b) características de la propagación monomodo y multimodo y (c) retardo por unidad de longitud y frecuencia máxima de transmisión. O.2. (0.5 puntos) Defina los siguientes conceptos (a) Rango óptico del espectro electromagnético. (b) Apertura numérica. (c) Aberración cromática. (d) Número de diafragma. (e) Hipermetropía. O.3. (0.5 puntos) Obtenga el ángulo crítico para una interfaz aire-hielo (n =1.309). A qué distancia (profundidad) se vería un objeto situado en el interior de un bloque de hielo, a 10 cm de la superficie? Trace el diagrama de rayos correspondiente. O.4. (0.5 puntos) Construimos una lente biconvexa de vidrio (n =1.49) cuyas caras tienen radios de curvatura 10 cm y 20 cm. (a) Cuál es su distancia focal? (b) Determinar la posición y aumento de un objeto de 3 cm de altura situado a 30 cm de ella. (c) Trazar el diagrama de rayos correspondiente. Teoría (0.5 puntos) Explique desarrolladamente los siguientes enunciados T.1. Relación entre el potencial eléctrico y la energía potencial electrostática. T.2. Consecuencias del equilibrio electrostático de un conductor.

2 Primer Parcial, Enero de 2008 Problemas P.1. (2.5 puntos) Una esfera conductora de radio R tiene un hueco, también esférico, de radio R/2, nosiendo el hueco concéntrico con la esfera (sea a la distancia entre centros). Inicialmente la esfera se encuentra aislada y descargada. (a) Obtenga las expresiones del campo eléctrico y del potencial en todos los puntos del espacio cuando en el hueco se introduce una carga Q 0 distribuida uniformemente en el volumen del hueco. (b) Manteniendo esta carga en el hueco, la superficie de la esfera conductora se conecta a una fuente de potencial de valor V 0. Cuánto valen el campo y el potencial en todo el espacio una vez que se alcanza el equilibrio electrostático. (c) Cuánta carga aporta el generador en el paso anterior? P.2. (2.5 puntos) Cuatro placas cuadradas de lado L =2cm, conductoras, se encuentran en la disposición cuadrada indicada en la figura. Entre las cuatro placas, centrado, se encuentra un cubo conductor, de arista L =2cm, situado a una distancia a =1mmdecada placa. El cubo está descargado en todo momento. Si las cuatro placas se conectan a sendos generadores que fijan tensiones V 1 = 10 V, V 2 = 20V, V 3 =30V, V 4 =40V (a) Halle la carga almacenada en cada una de las placas cuadradas. (b) Calcule la energía electrostática del sistema. (c) Calcule el valor del campo en cada uno de los condensadores que se forman. (d) Halle la presión electrostáticaencadacaradelcuboenfrentadaaunaplaca,asícomolafuerza electrostática total sobre el cubo. Despréciense los efectos de borde y los debidos a las caras del cubo no enfrentadas a una placa. V 3 R Q 0 Q=0 a=1mm V 2 V 0 R/2 V 4 L=20mm V 1 Problema P.1 Problema P.2

3 . Primer Parcial, Enero de Nombre:. Este test se recogerá una hora después de ser repartido. La puntuación total del test es de 2 puntos. Cada respuesta correcta puntúa 0.2 puntos. Las respuestas erróneas restarán puntos. Las respuestas en blanco no contribuyen a la nota del test. Caso de que la nota total resulte negativa, la puntuación final será cero. En cada pregunta, solo una de las respuestas es correcta. Marque la respuesta correcta con un aspa (2 ). Si desea modificar una respuesta, tache la ya escrita (2) y escriba una cruz sobre la nueva. T.1 Dado un campo, en ciĺındricas, F = Au ρ + Bu ϕ,cona y B constantes, la condición para que sea irrotacional es que... 2 A. A =0. 2 B. B =0. 2 C. Siempre es irrotacional. 2 D. Nunca puede ser irrotacional. T.2 Dado el campo escalar, expresado en esféricas, φ = A sen θ/(4 cos θ), cómo son sus superficies equipotenciales? 2 A. Esferas concéntricas. 2 B. Conos con vértice el origen. 2 C. Cilindros concéntricos. 2 D. Planos paralelos. T.3 Se tiene un campo electrostático que para r>aes nulo, y para r<avale E = Aru ϕ. Cuánto vale la densidad de carga superficial que crea este campo? 2 A. Es nula. 2 B. ε 0 Aa 2 C. ε 0 Ar 2 D. La pregunta no tiene sentido, pues no se trata de un campo electrostático. T.4 Una carga de 2nCse encuentra distribuida uniformemente en una superficie esférica deradio 2cm. Cuánto vale el flujo del campo eléctrico en una esfera de radio 3cm concéntrica con esta? 2 A. 226 V m. 2 B. 2.0nV m. 2 C V m. 2 D. 0V m. T.5 Una carga está a una distancia a de un dipolo p. Si la carga se acerca a una distancia a/2, Por cuánto se multiplica la fuerza sobre la carga?

4 2 A. Por 2. 2 B. Por C. Por 4. 2 D. Por 8. T.6 Un protón puede suponerse como una esfera cargada en su superficie, de radio a =10 15 m. Cuánto vale aproximadamente la energía electrostática de un protón? 2 A. 0.1pJ. 2 B. 1MJ. 2 C. 200 J 2 D. 0.2pJ. T.7 Dos conductores se encuentran a una cierta distancia el uno de l otro. El 1 almacena una carga Q 1 < 0 y el 2 está a tierra. En este sistema... 2 A. V 1 < 0, Q 2 =0. 2 B. V 1 > 0, Q 2 =0. 2 C. V 1 < 0, Q 2 > 0. 2 D. V 1 > 0, Q 2 < 0. T.8 Un condensador plano es cargado aplicando una diferencia de potencial V 0. Una vez cargado, se desconectan los electrodos de la fuente, y se acercan las dos placas. Cómo cambia la energía almacenada en el condensador? 2 A. Aumenta. 2 B. Disminuye. 2 C. No cambia. 2 D. Depende del signo de V 0 T.9 Se tiene un sistema formado por un conductor hueco aislado y descargado. En el interior del hueco hay dos conductores, uno de los cuales está a tensión V 0 y el otro está descargado. El circuito equivalente a este sistema se compone de 2 A. Cuatro condensadores y una fuente de tensión. 2 B. Tres condensadores y una fuente de tensión. 2 C. Seis condensadores y tres fuentes de tensión. 2 D. Tres condensadores y tres fuentes de tensión. T.10 Se hace un condensador con dos hojas tamaño A4 de papel de aluminio entre las cuales se coloca un folio como los del examen. Suponiendo el papel equivalente a un vacío, cuánto vale aproximadamente la capacidad de este condensador? 2 A. 1pF. 2 B. 1nF. 2 C. 1 μf. 2 D. 1mF.

5 3 a Convocatoria Ordinaria, Enero de 2008 Óptica O.1. (1.0 puntos) En una cámara fotográfica, explique la relación entre la exposición, apertura de diafragma y velocidad de obturación y la escala de valores del número de diafragma. O.2. (0.5 puntos) Defina el disco de Airy y el ĺımite (poder) de resolución de un sistema óptico según el criterio de Rayleigh. O.3. (0.5 puntos) Se desea montar un enlace de transmisión de datos por fibra óptica utilizando una fibra de índices n 1 =1.58 y n 2 =1.49. Cuáles son su ángulo de aceptación y apertura numérica? Si la longitud es de 3 km, cuál es la frecuencia máxima de transmisión? O.4. (0.5 puntos) Una bombilla emite un flujo radiante de P =60Wde luz monocromática (λ = 600 nm). Asumiendo la isotropía de la emisión, cuál es la irradiancia sobre una superficie situada a d =3m? Escriba la expresión escalar del campo eléctrico a esa distancia. Teoría (1 puntos) Describa matemáticamente y explique los siguientes conceptos: T.1. Ley de Gauss. T.2. Presión electrostática sobre un conductor. T.3. Intensidad y densidades de corriente. T.4. Ley de Faraday.

6 3 a Convocatoria Ordinaria, Enero de 2008 Problemas P.1. (2.25 puntos) Se tiene un sistema de dos conductores formado cada uno de ellos por una esfera de radio a y una corteza esférica de radio 2a, de espesor despreciable, unidas por un cable muy largo. Cada corteza recubre concéntricamente a la esfera del otro conductor. Los dos subsistemas están muy alejados, de forma que el campo de cada uno de ellos produce una influencia despreciable en el otro. (a) Determine la matriz de coeficientes de capacidad del sistema, así como las capacidades y autocapacidades del circuito equivalente. (b) Si el conductor 1 se encuentra a potencial V 0 y el 2 está aislado pero almacena una carga Q 0, qué carga almacena el conductor 1? A qué potencial se encuentra el conductor 2? (c) Determine la energía almacenada en el sistema para el caso anterior. (d) Suponga que el conductor 2 se conecta a tierra, cómo cambian las cargas y potenciales de los dos conductores? Cuánto varía la energía almacenada en el sistema? En qué casolaenergía no cambia? P.2. (2.25 puntos) Se tiene un hilo rectiĺıneo infinito por el que circula una corriente constante en el tiempo I 0. A una distancia x del hilo se encuentra una pequeña esfera (de radio a x) de material magnetizable de permeabilidad relativa μ r =2. (a) Calcule el momento magnético total de la esfera debido al campo magnético producido por el hilo. (b) Calcule la fuerza ejercida por el hilo sobre la esfera. (c) De qué tipo es el material, paramagnético o diamagnético? Qué ocurre si el material es del otro tipo? (d) Calcule el valor numérico de la fuerza y de la aceleración de la esfera para los valores I =10A, x =10cm, a =5mm, M =10g(siendo M la masa de la esfera). Q 0 V 0 Problema P.1

7 . 3 a Convocatoria Ordinaria, Enero de Nombre:. Este test se recogerá una hora después de ser repartido. La puntuación total del test es de 2 puntos. Cada respuesta correcta puntúa 0.2 puntos. Las respuestas erróneas restarán puntos. Las respuestas en blanco no contribuyen a la nota del test. Caso de que la nota total resulte negativa, la puntuación final será cero. En cada pregunta, solo una de las respuestas es correcta. Marque la respuesta correcta con un aspa (2 ). Si desea modificar una respuesta, tache la ya escrita (2) y escriba una cruz sobre la nueva. T.1 En una región del espacio está definido un campo vectorial irrotacional. Para este campo, la circulación entre dos puntos... 2 A. depende sólo de la distancia entre los puntos. 2 B. no depende de los puntos. 2 C. no depende del valor del campo. 2 D. no depende del camino entre los dos puntos. T.2 Se tienen dos cargas puntuales 2q y q separadas una distancia a. En el punto medio entre las dos cargas 2 A. El campo y el potencial eléctrico son nulos. 2 B. El campo eléctrico es nulo pero el potencial no. 2 C. El potencial es nulo, pero el campo no. 2 D. Ni el campo ni el potencial son nulos. T.3 Se tiene una distribución de una carga total Q distribuida uniformemente en la superficie de una esfera de radio R, cuánto vale el potencial en el centro de la esfera? 2 A. Q/(4πε 0 R 2 ) 2 B. Q/(4πε 0 R) 2 C. Infinito. 2 D. Cero. T.4 Una esfera conductora ideal de radio R está aislada y cargada eléctricamente con una carga Q 0 ; posteriormente, se conecta a una fuente de potencial de valor V 0.Laenergía electrostática final del sistema es: 2 A. U e =2πε 0 RV B. U e = Q 0 V 0 2 C. U e = Q 0 V 0 /2 2 D. U e = Q 2 0 /8πε 0R

8 T.5 Sobre una partícula de un material dieléctrico lineal se aplica un campo eléctrico uniforme. Cómo es el campo en el interior de la partícula comparado con el aplicado? 2 A. Mayor que el aplicado. 2 B. Menor que el aplicado. 2 C. Igual al aplicado. 2 D. Mayor o menor, dependiendo de qué está hecha la partícula. T.6 El espacio entre dos placas planas y paralelas (perpendiculares al eje z) separadas una distancia a se llena de un material de permitividad ε(r) y conductividad σ(r). Se aplica una tensión V0 entre las placas. En el estado estacionario, siempre... 2 A. E =(V 0 /a)u z. 2 B. J =0. 2 C. D =0. 2 D. Todas las respuestas son ciertas. T.7 Por una hilo rectiĺıneo circula una corriente de de 100 ma. Elcampomagnético a 5 cm del hilo es aproximadamente... 2 A. 1.3 μt 2 B. 0.2 μt 2 C. 2.8pT 2 D. 0.4 μt T.8 Cuál de las siguientes ecuaciones relativas al campo magnético H es incorrecta? 2 A. H = B/μ 0 M 2 B. H = J m 2 C. H = ρ m 2 D. n [H] =σ m T.9 Se tiene un circuito de resistencia R y autoinducción L conectado a una fuente de corriente continua. Si se cortocircuita esta última, qué ocurre con la corriente a partir de ese momento? 2 A. Se anula instantáneamente. 2 B. Permanece constante. 2 C. Decae exponencialmente con el tiempo. 2 D. Decae linealmente con el tiempo T.10 Cuál de las siguientes no es una de las ecuaciones de Maxwell en la materia? 2 A. D = ρ 2 B. E = B t 2 C. B =0 2 D. H = J + E t

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Este test se recogerá 1h 45m después de ser repartido. El test se calificará sobre 5 puntos. Las respuestas correctas puntúan positivamente y las incorrectas negativamente, resultando la calificación N

Más detalles

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que

Más detalles

Campo eléctrico. Fig. 1. Problema número 1.

Campo eléctrico. Fig. 1. Problema número 1. Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión Versión 2013 1 TRABAJO PRÁCTICO N 0: Modelo Electromagnético 0.1 - Cuáles son las cuatro unidades SI fundamentales del electromagnetismo? 0.2 - Cuáles son las cuatro unidades de campo fundamentales del

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 4192 Sevilla Física II Grupos 2 y 3 Bien Mal Nulo El test se calificará sobre 1 puntos, repartidos equitativamente

Más detalles

Medios materiales y desarrollo multipolar.

Medios materiales y desarrollo multipolar. Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad

Más detalles

ENERGÍA ELECTROSTÁTICA

ENERGÍA ELECTROSTÁTICA ENERGÍA ELECTROSTÁTICA PREGUNTAS. Qué significado físico tiene la energía electrostática de una distribución de carga?. La energía contenida en una distribución de carga, puede ser considerada según dos

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 41092 Sevilla Física II Grupos 2 y 3 Materia correspondiente al Primer Parcial. Junio 2013 Bien Mal

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá

I. T. Telecomunicaciones Universidad de Alcalá I. T. Telecomunicaciones Universidad de Alcalá Soluciones al Examen de Física Septiembre 2006 Departamento de Física P1) La figura muestra una región limitada por los planos x = 0, y = 0, x = 10 cm, y

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 3.- ELECTROSTÁTICA DEL VACÍO 3 Electrostática

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO I Hoja 1. función vectorial con componentes cuyas derivadas segundas sean también continuas.

PROBLEMAS DE ELECTROMAGNETISMO I Hoja 1. función vectorial con componentes cuyas derivadas segundas sean también continuas. PROBLEMAS DE ELECTROMAGNETISMO I Hoja 1 r 1. Para un vector a arbitrario y constante, demostrar que ( a r ) = a, donde es el vector de posición.. Sea φ una función espacial escalar con derivadas segundas

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Este test se recogerá una hora y media después de ser repartido. El test se calificará sobre10 puntos. Las respuestas correctas puntúan positivamente y las incorrectas negativamente, resultando la calificación

Más detalles

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D.

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D. Página 1 de 14 Al índice de exámenes EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE 1994. GRUPOS C Y D. E1. Deducir la ecuación de dimensiones de las siguientes magnitudes: 1- velocidad; 2-

Más detalles

PROBLEMAS ELECTROESTÁTICA

PROBLEMAS ELECTROESTÁTICA POBLEMAS DE ELETOESTÁTIA III ampo electrostático en los conductores Prof. J. Martín ONDUTOES AGADOS EN EL AI O Pr obl e ma alcular : a) la capacidad de una superficie esférica de radio ; b) la capacidad

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II

ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA AERONÁUTICA Y DEL ESPACIO FÍSICA II PROBLEMAS PROPUESTOS José Carlos JIMÉNEZ SÁEZ Santiago RAMÍREZ DE LA PISCINA MILLÁN 5.- ELECTROSTÁTICA DE DIELÉCTRICOS 5 Electrostática

Más detalles

E 4.0. EJERCICIOS DE EXAMEN

E 4.0. EJERCICIOS DE EXAMEN E 4.0. EJERCICIOS DE EXAMEN E 4.0.01. El campo eléctrico producido por un anillo circular uniformemente cargado, en un punto cualquiera sobre su eje es (ver figura 1 Qz izquierda) E = k [N/C]. A 2 2 3

Más detalles

Boletín Temas 1 y 2 P 1

Boletín Temas 1 y 2 P 1 Boletín Temas 1 y 2 Cargas puntuales: fuerza, campo, energía potencial y potencial electrostático 1. La expresión F = 1 πε 0 q 1 q 2 r 1 r 2 2 r 1 r 2 r 1 r 2 representa: a) La fuerza electrostática que

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

E 1.3. LA LEY DE GAUSS

E 1.3. LA LEY DE GAUSS E 1.3. LA LEY DE GAUSS E 1.3.1. Calcule el flujo del campo eléctrico producido por un disco circular de radio R [m], uniformemente cargado con una densidad σ [C/m 2 ], a través de la superficie de una

Más detalles

Primer examen parcial del curso Física II, M

Primer examen parcial del curso Física II, M Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El

Más detalles

Problemas de Electromagnetismo. Tercero de Física. Boletín 6.

Problemas de Electromagnetismo. Tercero de Física. Boletín 6. c Rafael R. Boix y Francisco Medina 1 Problemas de Electromagnetismo. Tercero de Física. Boletín 6. 115.- Considere un hilo conductor rectilíneo innito y una espira rectangular de dimensiones a b. Suponga

Más detalles

Tema 3: Electrostática en presencia de conductores. Parte 4/7 Condensadores y circuitos equivalentes

Tema 3: Electrostática en presencia de conductores. Parte 4/7 Condensadores y circuitos equivalentes Tema 3: Electrostática en presencia de conductores Antonio González Fernández Departamento de Física Aplicada III Universidad de Sevilla Parte 4/7 Condensadores y circuitos equivalentes Definición de condensador:

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

El Campo Eléctrico. Distribuciones discretas de carga

El Campo Eléctrico. Distribuciones discretas de carga El Campo Eléctrico. Distribuciones discretas de carga 1. A qué distancia deben encontrarse dos cargas de 1 nc para que la fuerza de repulsión entre ellas sea de 0 1 N? DATO: K = 9 10 9 N m 2 /C 2 2. Dos

Más detalles

Física 3. Segundo Cuatrimestre 6 de septiembre de 2017

Física 3. Segundo Cuatrimestre 6 de septiembre de 2017 Si la aplicación de electricidad a una momia cuya antigüedad se remontaba por lo menos a tres o cuatro mil años no era demasiado sensata, resultaba en cambio lo bastante original como para que todos aprobáramos

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE TEORÍA ( R 1. y R 2 = 2 R 2

EXAMEN DE FÍSICA. 5 DE FEBRERO DE TEORÍA ( R 1. y R 2 = 2 R 2 Página 1 de 11 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1998. TEORÍA T1. Dos esferas conductoras de radios R 1 y R 2 ( R 1 = 2 R 2 ) están suficientemente alejadas una de otra como para suponer

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

Física II. Grado en Ingeniería Química Industrial. Curso 16/17 Boletín 1. Electricidad

Física II. Grado en Ingeniería Química Industrial. Curso 16/17 Boletín 1. Electricidad Física II. Grado en Ingeniería Química Industrial. Curso 16/17 Boletín 1. Electricidad 1. Dos pequeñas esferas de masa m están suspendidas de un punto común mediante sendas cuerdas de longitud L. Se aplica

Más detalles

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas:

Física 2º Bach. Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas: Física 2º ach. Campos electrostático y magnético 16/03/05 DEPARTAMENTO DE FÍSCA E QUÍMCA Problemas Nombre: [2 PUNTOS /UNO] 1. Calcula: a) la intensidad del campo eléctrico en el centro del lado derecho

Más detalles

Guía 1: Campo Eléctrico y Diferencia de potencial

Guía 1: Campo Eléctrico y Diferencia de potencial Segundo uatrimestre 2006 Guía 1: ampo Eléctrico y Diferencia de potencial Ley de oulomb 1. a) Hallar la fuerza eléctrica entre dos cargas puntuales q 1 =+1.5 μ y q 2 =+4 μ, separadas en 10 cm.(plicando

Más detalles

1999. Señala brevemente qué analogías y diferencias existen entre los campos eléctricos y magnéticos.

1999. Señala brevemente qué analogías y diferencias existen entre los campos eléctricos y magnéticos. 1999. Un protón con una energía cinética de 1 ev se mueve perpendicularmente a un campo magnético de 1,5 T. a) Calcula la fuerza que actúa sobre esta partícula, sabiendo que su masa es de 1,67.10-27 kg.

Más detalles

se indica en la figura. Calcule la fuerza sobre una carga puntual el punto P situado en la mitad de la distancia d entre las varillas.

se indica en la figura. Calcule la fuerza sobre una carga puntual el punto P situado en la mitad de la distancia d entre las varillas. ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMATICAS DEPARTAMENTO DE FISICA PRIMERA EVALUACION DE FISICA C JULIO 2 DEL 2014 1. Dos varillas de una longitud L= 0.60m se

Más detalles

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Problema 1 Dos imanes permanentes iguales A y B, cuyo momento magnético es P m están situados como indica la figura. La distancia

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática 1(7) Ejercicio nº 1 Supongamos dos esferas de 10 Kg y 10 C separadas una distancia de 1 metro. Determina la fuerza gravitatoria y la fuerza eléctrica entre las esferas. Compara ambas fuerzas. Ejercicio

Más detalles

CAMPO ELÉCTRICO Nm 2

CAMPO ELÉCTRICO Nm 2 CAMPO ELÉCTRICO 1. Dos cargas eléctricas positivas e iguales de valor 3x10-6 C están situadas en los puntos A(0,2) y B(0,-2) del plano XY. Otras dos cargas iguales Q están localizadas en los puntos C(4,2)

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Escuela Superior de Ingenieros Ingenieros de Telecomunicación Campos Electromagnéticos Campos Electromagnéticos. Primer Parcial, Enero de 2007. Nombre:. Este test se recogerá una hora después de ser repartido.

Más detalles

Aislante dieléctrico. (permitividad ε) Aluminio. polietileno, con lo que el radio exterior del cable es R4.

Aislante dieléctrico. (permitividad ε) Aluminio. polietileno, con lo que el radio exterior del cable es R4. Electricidad y Electrometría º Electrónicos Convocatoria de Junio. Primer parcial. 5 de junio de 004.- Disponemos de dos cargas puntuales, Q y Q, situadas como se representa en la figura. y y Y a) Si tomamos

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016 2016-Modelo A. Pregunta 3.- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente en

Más detalles

Método de Separación de Variables.

Método de Separación de Variables. FISICA TEORICA 1-2do. Cuatrimestre 2007 Método de Separación de Variables. 1. Se tiene un cubo conductor de lado a conectado a tierra. Calcular el potencial electrostático en todo punto del espacio dividiendo

Más detalles

4.3 Almacenamiento de energía eléctrica.

4.3 Almacenamiento de energía eléctrica. CAPÍTULO 4 Energía electrostática y capacidad Índice del capítulo 4 4 4. Energía potencial electrostática. 4. Capacidad. 4.3 Almacenamiento de energía eléctrica. 4.4 Asociación de condensadores. 4.5 Dieléctricos.

Más detalles

Dpto de Física UNS Electromagnetismo, Física B y Física II Prof. C Carletti

Dpto de Física UNS Electromagnetismo, Física B y Física II Prof. C Carletti Problema 1. Un voltaje de corriente continua de 6[V], aplicado a los extremos de un alambre conductor de 1[Km] de longitud y 0.5 [mm] de radio, produce una corriente de 1/6A. Determine: a) La conductividad

Más detalles

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por CY 01. Dos partículas de masa 10 g se encuentran suspendidas desde un mismo punto por dos hilos de 30 cm de longitud. Se suministra a ambas partículas la misma carga, separándose de modo que los hilos

Más detalles

Problemas de Electromagnetismo

Problemas de Electromagnetismo Problemas de Electromagnetismo 1.- El potencial medio temporal de un átomo de H2 neutro, en el estado fundamental viene dado por e Φ (r) = ( a + 1) exp ( -2r/a) 4πε 0a r siendo e la carga del electrón,

Más detalles

Conductores, capacidad, condensadores, medios dieléctricos.

Conductores, capacidad, condensadores, medios dieléctricos. Física 3 Guia 2 - Conductores y dieléctricos Verano 2016 Conductores, capacidad, condensadores, medios dieléctricos. 1. Dentro de un conductor hueco de forma arbitraria, se encuentra alojado un segundo

Más detalles

PROBLEMAS DE FUNDAMENTOS DE FÍSICA II

PROBLEMAS DE FUNDAMENTOS DE FÍSICA II PROBLEMAS DE FUNDAMENTOS DE FÍSICA II Grupo 511. CURSO 2016/2017. Vectores. Vectores y Campo Eléctrico V.1.-Dados los vectores A = 3u x + 4 u y 5 u z; y B = u x + u y + 2 u z. Encontrar módulo, dirección

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com. 1- a) Explique en qué consiste la doble naturaleza corpuscular y ondulatoria de la luz.

Más ejercicios y soluciones en fisicaymat.wordpress.com. 1- a) Explique en qué consiste la doble naturaleza corpuscular y ondulatoria de la luz. REFLEXIÓN Y REFRACCIÓN 1- a) Explique en qué consiste la doble naturaleza corpuscular y ondulatoria de la luz. b) Un rayo de luz monocromática incide con un ángulo de incidencia de 30º sobre una lámina

Más detalles

GUÍA DE EJERCICIOS DE FÍSICA 5 AÑO

GUÍA DE EJERCICIOS DE FÍSICA 5 AÑO República Bolivariana De Venezuela Ministerio Del Poder Popular Para La Educación U. E. Dr. José María Vargas GUÍA DE EJERCICIOS DE FÍSICA 5 AÑO Docente: Carlos Alberto Serrada Pérez Año escolar 2014/2015

Más detalles

Problemas de electricidad y magnetismo

Problemas de electricidad y magnetismo Problemas de electricidad y magnetismo J.L. Font 27 de abril de 2005 1. FUERZA Y CAMPO ELÉCTRICOS 1.1 Un triángulo isósceles tiene una base de longitud b=0.5 m y los lados iguales de longitud l = 1,5 m.

Más detalles

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático.

Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. Lección 3. El campo de las corrientes estacionarias. El campo magnetostático. 81. Un campo vectorial está definido por B = B 0 u x (r < a) B r = A cos ϕ ; B r 2 ϕ = C sin ϕ (r > a) r 2 donde r y ϕ son

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2012-2013 FÍSICA C Primera evaluación SOLUCIÓN Ejercicio 1 (4 puntos) Un par de cargas eléctricas de igual magnitud q y

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 13 junio 2018 2018-Junio-coincidentes A. Pregunta 3.- Dos cargas Q 1= -4 nc y Q 2= 4 nc están situadas en los puntos P 1(3, 4) y P 2(-3, 4), respectivamente, del plano xy (coordenadas expresadas en metros). Determine:

Más detalles

ELECTRICIDAD Y MAGNETISMO FIZ 0221, FIS 1532 INTERROGACIÓN 1 23/09/2006

ELECTRICIDAD Y MAGNETISMO FIZ 0221, FIS 1532 INTERROGACIÓN 1 23/09/2006 PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE FÍSICA ELECTRICIDAD Y MAGNETISMO FIZ 221, FIS 1532 INTERROGACIÓN 1 23/9/26 TIEMPO: 2 HORAS NO USAR CALCULADORA NI APUNTES SI USTED USA LÁPIZ GRAFITO

Más detalles

Campo eléctrico Cuestiones

Campo eléctrico Cuestiones Campo eléctrico Cuestiones C-1 (Junio - 97) Puede existir diferencia de potencial eléctrico entre dos puntos de una región en la cual la intensidad del campo eléctrico es nula? Qué relación general existe

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

Relación 2 idénticas conductor 6a. 6b. 7.

Relación 2 idénticas conductor 6a. 6b. 7. Relación 2 1. Tenemos tres esferas idénticas, hechas de un material conductor. La esfera 1 tiene una carga 1.0 C, la 2 tiene una carga 2.0 C y la 3 es neutra. Se encuentran muy alejadas entre sí. La esfera

Más detalles

Física 2º Bach. Campo eléctrico 11/02/09

Física 2º Bach. Campo eléctrico 11/02/09 Física 2º ach ampo eléctrico 11/02/09 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTO /UNO] 1 Una partícula de 2,00 µg y 5,00 p entra perpendicularmente a un campo eléctrico constante producido por

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO.

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO. UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS OFICIALES DE GRADO MATERIA: FÍSICA Curso 2009-2010 FASE GENERAL INSTRUCCIONES Y CRITERIOS GENERALES DE

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 41092 Sevilla Física II Grupos 2 y 3 Materia correspondiente al segundo parcialito. Noviembre 2012 Bien

Más detalles

E en los puntos a y b de la línea

E en los puntos a y b de la línea Electricidad y Electrometría 1º Electrónicos Convocatoria de Julio. Primer parcial. 28 de junio de 2004 1.- El explosor de esferas es un condensador formado por dos electrodos metálicos esféricos del mismo

Más detalles

E.U.I.T.I.Z. (1º Electrónicos) Curso Electricidad y Electrometría. P. resueltos Tema 3 1/27

E.U.I.T.I.Z. (1º Electrónicos) Curso Electricidad y Electrometría. P. resueltos Tema 3 1/27 E.U.I.T.I.Z. (1º Electrónicos) Curso 2006-07 Electricidad y Electrometría. P. resueltos Tema 3 1/27 Tema 3. Problemas resueltos 4. Un condensador de montaje superficial para placas de circuito impreso

Más detalles

FIS1533. Interrogación N o 2. Miércoles 1 de Octubre, 18:30 a 21:00 hs. Buenas Malas Blancas Nota

FIS1533. Interrogación N o 2. Miércoles 1 de Octubre, 18:30 a 21:00 hs. Buenas Malas Blancas Nota FIS1533 Interrogación N o 2 Miércoles 1 de Octubre, 18:30 a 21:00 hs Nombre completo: Sección: Buenas Malas Blancas Nota Instrucciones para la primera parte - Marque con X el casillero correspondiente

Más detalles

CAMPO Y POTENCIAL ELÉCTRICO

CAMPO Y POTENCIAL ELÉCTRICO CAMPO Y POTENCIAL ELÉCTRICO PREGUNTAS 1. Cómo se aplica el principio de superposición para las fuerzas entre cargas eléctricas?. Qué le ocurre a una placa sólida, conductora, cuando se coloca en un campo

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 2: Electrostática 2da parte TEMAS: Potencial eléctrico Capacitancia

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 2: Electrostática 2da parte TEMAS: Potencial eléctrico Capacitancia FACULTAD REGIONAL ROSARIO UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 2: Electrostática 2da parte TEMAS: Potencial eléctrico Capacitancia Recopilación, revisión y edición: Ing. J. Santa Cruz, Ing.

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero.

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero. Unidad Nº 4 Electrostática Ley de Coulomb Campo eléctrico 4.1 - En las esquinas de un triángulo equilátero existen tres cargas puntuales, fijas, como se ve en la figura, cuyos valores son: q1=2µc, q2=-4µc

Más detalles

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética 70 Los puntos A, B y C son los vértices de un triángulo equilátero de 2 m de lado. Dos cargas iguales, positivas de 2 μc están en A y B. a) Cuál es el campo eléctrico en el punto C?. b) Cuál es el potencial

Más detalles

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss FACULTAD REGIONAL ROSARIO UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss Recopilación, revisión y edición: Ing. J. Santa Cruz, Ing.

Más detalles

j, E c = 5, J, E P = J)

j, E c = 5, J, E P = J) CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.

Más detalles

Inducción, cuasi-estacionario y leyes de conservación.

Inducción, cuasi-estacionario y leyes de conservación. Física Teórica 1 Guia 4 - Inducción y teoremas de conservación 1 cuat. 2014 Inducción, cuasi-estacionario y leyes de conservación. Aproximación cuasi-estacionaria. 1. Se tiene una espira circular de radio

Más detalles

Capacitores y dieléctricos

Capacitores y dieléctricos Capacitores y dieléctricos Ejercicio 1: los capacitores del circuito de la figura valen C1=4 F; C2=6 F; C3=12,6 F; C4=2 F; C5=8 F. En régimen estacionario, calcule: a) la capacidad equivalente de la configuración;

Más detalles

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA

FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA Departamento de Ingeniería Eléctrica, Electrónica y de Control PRUEBAS DE EVALUACIÓN A DISTANCIA CURSO 2008/09 FUNDAMENTOS FÍSICOS DE LA INFORMÁTICA NOMBRE: CENTRO ASOCIADO: FECHA DE ENTREGA: (Espacio

Más detalles

CONTENIDOS. Contenidos. Presentación. xiii

CONTENIDOS. Contenidos. Presentación. xiii CONTENIDOS Contenidos Presentación v xiii 1. Campo eléctrico y propiedades eléctricas de la materia 1 1.1. Introducción histórica............................... 2 1.2. Estructura interna de la materia.........................

Más detalles

Física 2º Bach. Campo eléctrico 19/02/10

Física 2º Bach. Campo eléctrico 19/02/10 Física 2º ach. ampo eléctrico 19/02/10 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTOS /UNO] 1. Una esfera conductora hueca tiene de radio r 1 = 10,00 cm y carga Q 1 = 70,0 n. a) alcula el potencial

Más detalles

Trabajo Practico 2 - a: Potencial

Trabajo Practico 2 - a: Potencial 1 Universidad Nacional del Nordeste Facultad de Ingeniería Cátedra: Física III Profesor Adjunto: Ing. Arturo Castaño Jefe de Trabajos Prácticos: Ing. Cesar Rey Auxiliares: Ing. Andrés Mendivil, Ing. José

Más detalles

E 2.1. EL POTENCIAL ELÉCTRICO DE DISTRIBUCIONES LINEALES

E 2.1. EL POTENCIAL ELÉCTRICO DE DISTRIBUCIONES LINEALES E 2.1. EL POTENCIAL ELÉCTRICO DE DISTRIBUCIONES LINEALES E 2.1.01. El alambre rectilíneo de longitud L [m] que muestra la figura, se encuentra uniformemente cargado con una densidad λ [C/m]. Con qué rapidez

Más detalles

Guía de Ejercicios N o 2 FI2A2

Guía de Ejercicios N o 2 FI2A2 Guía de Ejercicios N o 2 FI2A2 Prof. Auxiliar: Felipe L. Benavides Problema 1 Continuidad de la Corriente y Evolución Temporal de Cargas Libres Considere un sistema formado por dos placas conductoras conectadas

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

1- Una carga puntual de 8,0 C se coloca a una distancia de 6,0 cm de una segunda carga puntual de -4,0 C. Qué fuerza se ejerce sobre cada carga?

1- Una carga puntual de 8,0 C se coloca a una distancia de 6,0 cm de una segunda carga puntual de -4,0 C. Qué fuerza se ejerce sobre cada carga? Repartido de Ejercicios Electrostática Física 6º Medicina Segundo Semestre 2018 Masa del electrón=9,31 x 10-31 kg; Carga elemental=1,6 x 10-19 C; Masa del protón = 1,67 x 10-27 kg; e 0 = 8,85 x 10-12 C

Más detalles

FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad.

FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad. FÍSICA GENERAL III - CURSO 2015 Práctica 5: Electrostática con conductores. Capacidad. 1- Las siguientes cuestiones ayudan a comprender el proceso de descarga a tierra. a) Por qué un cuerpo metálico esférico

Más detalles

Problemas de Electromagnetismo. Tercero de Física. Boletín 1.

Problemas de Electromagnetismo. Tercero de Física. Boletín 1. c Rafael R. Boix y Francisco Medina 1 Problemas de Electromagnetismo. Tercero de Física. Boletín 1. 17.- Dos pequeñas esferas conductoras iguales, cada una de masa m, están suspendidas de los extremos

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingeniería Camino de los Descubrimientos s/n 41092 Sevilla Física II Grupos 2 y 3 Materia correspondiente al segundo parcialito. Junio 2012 Bien

Más detalles

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA

PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA PROBLEMAS INTERACCIÓN ELECTROMAGNÉTICA 1) Dadas dos cargas eléctricas positivas, iguales, situadas a una distancia r, calcula el valor que ha de tener una carga negativa situada en el punto medio del segmento

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos

Física 3 - Turno : Mañana. Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos Física 3 - Turno : Mañana Guía N 4 - Segundo cuatrimestre de 2011 Magnetostática, Momento magnético y ley de Ampère, Medios Magnéticos 1. Estudie la trayectoria de una partícula de carga q y masa m que

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com ELECTROSTÁTICA 1- a) Explique el concepto de potencial eléctrico. Qué potencial eléctrico crea una carga puntual? Dibuje las superficies equipotenciales en el espacio alrededor de la carga. b) Dos partículas

Más detalles

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física. Examen Final - Fisi 3162/3172 Nombre: jueves 8 de mayo de 2008

Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física. Examen Final - Fisi 3162/3172 Nombre: jueves 8 de mayo de 2008 Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de Física Examen Final - Fisi 3162/3172 Nombre: jueves 8 de mayo de 2008 Sección: Prof.: Lea cuidadosamente las instrucciones.

Más detalles