Física 2º Bach. Campo eléctrico 19/02/10

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Física 2º Bach. Campo eléctrico 19/02/10"

Transcripción

1 Física 2º ach. ampo eléctrico 19/02/10 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTOS /UNO] 1. Una esfera conductora hueca tiene de radio r 1 = 10,00 cm y carga Q 1 = 70,0 n. a) alcula el potencial eléctrico en un punto P interior de la esfera a una distancia d = 6,00 cm de su centro. b) Se coge una esfera conductora maciza descargada de radio r 2 = 4,00 cm y se pone en contacto eléctrico con la esfera anterior a una distancia suficientemente grande. alcula las cargas eléctricas de ambas esferas después de la conexión c) Se desenrosca la esfera hueca y se sitúa la esfera maciza en su interior, de forma que ambas sean concéntricas, aisladas entre sí por una material de permitividad dieléctrica relativa ε' = 3,00. alcula ahora el potencial eléctrico en el punto P a una distancia d = 6,00 cm del centro común. atos: La constante eléctrica del vacío es: K = 9, N m2 2. alcula: +3 n a) La intensidad del campo eléctrico en el centro del lado pequeño derecho de un rectángulo de 80,0 cm 60,0 cm, con la distribución de cargas de la figura. b) El trabajo para mover la carga de +2,00 n desde el punto donde se encuentra hasta el centro del rectángulo. 3 n (argas con 3 cifras significativas.) TOS: K = 1/(4πε 0 ) = 9, N m 2-2 g = 9,81 m s -2 uestiones 1. Se dispone de cuatro cargas puntuales en los vértices,, y de un cuadrado. ómo deben ser los valores relativos de las cargas para que el campo eléctrico en el centro del cuadrado sea el que representa la figura? a) :1; :-1; : 1; : -1; b) : 2; :1; : 1; : 2; c) : 1; : 1; : -1; : -1; d) Todas iguales 2. El potencial en un punto interior de una esfera conductora hueca, cargada, es: a) nulo b) constante c) disminuye con la distancia al centro d) disminuye con el cuadrado de la distancia al centro. +2 n G 2 n [1 PUNTO /UNO] 3. El campo electrostático creado por un plano infinito con una distribución uniforme de carga en un punto a una distancia r del plano es: a) nulo b) constante c) disminuye con la distancia al plano d) disminuye con el cuadrado de la distancia al plano. 4. En una región del espacio existe un campo eléctrico uniforme de intensidad E = 5 N -1. La diferencia de potencial V V valdrá a) -50 V b) 50 V c) 50 2 V d) V E = 5 N/

2 Soluciones Problemas 1. Una esfera conductora hueca tiene de radio r 1 = 10,00 cm y carga Q 1 = 70,0 n. a) alcula el potencial eléctrico en un punto P interior de la esfera a una distancia d = 6,00 cm de su centro. b) Se coge una esfera conductora maciza descargada de radio r 2 = 4,00 cm y se pone en contacto eléctrico con la esfera anterior a una distancia suficientemente grande. alcula las cargas eléctricas de ambas esferas después de la conexión c) Se desenrosca la esfera hueca y se sitúa la esfera maciza en su interior, de forma que ambas sean concéntricas, aisladas entre sí por una material de permitividad dieléctrica relativa ε' = 3,00. alcula ahora el potencial eléctrico en el punto P a una distancia d = 6,00 cm del centro común. atos: La constante eléctrica del vacío es: K = 9, N m2 Examen Probl.1 Probl.2 uest.1 uest.2 uest.3 uest.4 Rta.: a) V 6 = 6, V b) Q' 2 = 20,0 n c) σ 2 = 9, m -2. : a) El potencial eléctrico en el interior de una esfera hueca es constante, y vale lo mismo que en su superficie: V = K Q R donde K es la constante electrostática, Q la carga de la esfera y R su radio. V =9, [ N m 2 2 ] 70, [] =6, V=6,30 kv 0,1000[ m] b) La carga fluye desde la esfera a mayor potencial hacia la de menor potencial hasta que los potenciales de ambas esferas se igualen. V' 1 = V' 2 K Q' 1 / R 1 = K Q' 2 / R 2 La carga total se conserva (Principio de conservación de la carga eléctrica). Q = Q' 1 + Q' 2 Q' 1 / 0,1000 = Q' 2 / 0,0400 Q' 1 = 2,50 Q' 2 70,0 n= Q' 1 + Q' 2 3,50 Q' 2 = 70,0 Q' 1 = 50,0 n Q' 2 = 20,0 n c) hora las cargas están distribuidas como en la figura. El potencial en el punto P es la suma de los potenciales creados por cada una de las esferas. Teniendo en cuenta que la permitividad relativa del medio es 3, el potencial en el punto P es: V P = K ' Q ' 1 R 1 K ' Q' 2 R 2 = K ' Q ' 1 R 1 Q ' 2 R 2 ε' = 3 20 n 50 n P

3 V P = 9, [ N m 2 2 ] 3,00 50, [] 20, [ ] 0,1000[ m] 0,0600[m] =2, V 2. alcula: +3 n a) La intensidad del campo eléctrico en el centro del lado pequeño +2 n derecho de un rectángulo de 80,0 cm 60,0 cm, con la distribución de cargas de la figura. b) El trabajo para mover la carga de +2,00 n desde el punto G donde se encuentra hasta el centro del rectángulo. (argas con 3 cifras significativas.) TOS: K = 1/(4πε 0 ) = 9, N m2 3 n 2 n Examen Probl.1 Probl.2 uest.1 uest.2 uest.3 uest.4 Rta.: a) E G = -426 j N -1 b) W EXT ( H) = 2, J : a) La intensidad de campo eléctrico en un punto debido a una distribución de cargas puntuales se calcula por el principio de superposición. E = E i La intensidad de campo eléctrico en un punto a una distancia r de una carga puntual Q viene dado por la expresión: E= K Q r 2 u r +3 n H+ +2 n G Se dibuja el vector intensidad de campo eléctrico en el punto G debido a cada una de las cargas y el vector intensidad de campo 3 n eléctrico resultante. Se calculan primero las distancias entre los puntos: E E 2 n E E r G = r G = 0,300 m r G = 0,800[ m] 2 0,300[ m] 2 = 0,730[ m 2 ]=0,854m r G = r G = 0,854 m E G Se calcula la intensidad de campo eléctrico en el punto G debido a cada una de las cargas: Por simetría Para las otras dos cargas E G =K Q u 2 r =9, [N m 2 2 ] 3, [ ] 0,800 i 0,300 j r G 0,73[ m 2 ] 0,854 E G = ( 34,6 i 13,0 j) N -1 E G = (34,6 i 13,0 j) N -1 E G = 9, [N m 2-2 ] (-2, []) / (0,300 [m]) 2 ( j) = 200 j N -1 El campo resultante en el punto G vale: E G = E G = 200 j N -1 E G = E G + E G + E G + E G = -426 j N -1 b) El trabajo de la fuerza eléctrica (conservativa) cuando se traslada una carga q entre dos puntos y es

4 igual a la variación de energía potencial: W = q (V V ) El potencial eléctrico V en un punto a una distancia r de una carga Q es: V = K Q / r Se calcula el potencial eléctrico en los puntos inicial () y final (H) debidos a las cargas que quedan fijas. V =9, [N m 2 ] V H =9, [ N m 2 ] V =V V V =K Q K Q K Q r r r 3, ,00[m] 3, ,500[ m] El trabajo de la fuerza del campo eléctrico es: 2, , ,600[ m] 0,800[ m] = 23,2 V 2, , ,500[ m] 0,500 [m] = 36,0 V W MPO( H) = q (V V H ) = 2, [] ( 23,3 ( 36,0) ) [V] = 2, J El trabajo de la fuerza exterior para que la carga se desplace sin variación de energía cinética: W EXT ( H) = W MPO( H) = 2, J uestiones 1. Se dispone de cuatro cargas puntuales en los vértices,, y de un cuadrado. ómo deben ser los valores relativos de las cargas para que el campo eléctri - co en el centro del cuadrado sea el que representa la figura? a) :1; :-1; : 1; : -1; b) : 2; :1; : 1; : 2; c) : 1; : 1; : -1; : -1; d) Todas iguales Examen Probl.1 Probl.2 uest.1 uest.2 uest.3 uest.4 : b) Las disposiciones que corresponden a los tres casos son: a) :1; :-1; : 1; : -1; b) : 2; :1; : 1; : 2; c) : 1; : 1; : -1; : -1; La resultante es: nula. horizontal, hacia la derecha vertical hacia arriba. 2. El potencial en un punto interior de una esfera conductora hueca, cargada, es: a) nulo b) constante c) disminuye con la distancia al centro d) disminuye con el cuadrado de la distancia al centro. Examen Probl.1 Probl.2 uest.1 uest.2 uest.3 uest.4 :

5 El campo eléctrico en el interior de un conductor cargado en equilibrio es nulo. omo el potencial eléctrico viene de: V = Ed r si el campo eléctrico es nulo, la diferencia de potencial es nula, V = 0, y el potencial eléctrico es constante V V = 0 V = V 3. El campo electrostático creado por un plano infinito con una distribución uniforme de carga en un punto a una distancia r del plano es: a) nulo b) constante c) disminuye con la distancia al plano d) disminuye con el cuadrado de la distancia al plano. Examen Probl.1 Probl.2 uest.1 uest.2 uest.3 uest.4 : El teorema de Gauss dice que el flujo del campo eléctrico a través de una superficie cerrada es igual al cociente entre la carga encerrada por dicha superficie dividido entre ε 0. = E d S= Q ENERR 0 Se dibuja un fragmento del plano infinito y el punto P donde se va a determinar el vector intensidad de campo eléctrico. 1. partir de la simetría de la distribución de carga en el plano, se ve que la dirección del campo eléctrico en el punto P es perpendicular al plano. 2. Se toma como superficie cerrada, un cilindro de radio arbitrario con una de sus bases que pase por el punto P y la otra colocada simétricamente con respecto al plano. d S E S P 3. Se calcula el flujo a través de la superficie cerrada del cilindro, sumando las contribuciones de cada parte: - Flujo a través de cada una de las bases del cilindro: el campo E y el vector superficie S son paralelos, por lo que: E ds = E ds = E ds El campo eléctrico E es constante en todos los puntos de la base: S E = E d S= E d S= E S para cada una de las bases. - Flujo a través de la superficie lateral del cilindro: el campo E es perpendicular al vector superficie ds superficie lateral, por lo que el producto escalar es nulo: y el flujo a través de la superficie lateral es nulo. - El flujo total es: E ds = 0 Φ = 2 E S 4. La carga que hay en el interior de la superficie cerrada es la que hay en una superficie S del plano igual al area de las bases. Si hay una densidad de carga σ = Q / S constante, Q ENERR = σ S

6 5. plicando el teorema de Gauss Φ = Q ENERR / ε 0 igualando al flujo obtenido antes y despejando el módulo del campo eléctrico E = σ / (2 ε 0 ) que es independiente de la distancia d del punto al plano. 4. En una región del espacio existe un campo eléctrico uniforme de intensidad E = 5 N -1. La diferencia de potencial V V valdrá a) -50 V b) 50 V c) 50 2 V d) V Examen Probl.1 Probl.2 uest.1 uest.2 uest.3 uest.4 : a E = 5 N/ Las líneas de campo son perpendiculares a las superficies equipotenciales, que en este caso son planos paralelos. Los puntos y tienen el mismo potencial puesto que se encuentran en el mismo plano equipotencial. omo el potencial eléctrico viene de: V = Ed r si el campo eléctrico es constante, la diferencia de potencial es V = E d en la que d es la distancia entre los planos equipotenciales. V V = 5 10 = 50 V El campo eléctrico está dirigido hacia los potenciales decrecientes por lo que el potencial de es menor que el de, así que V V = -50 V

Física 2º Bach. Campo eléctrico 11/02/09

Física 2º Bach. Campo eléctrico 11/02/09 Física 2º ach ampo eléctrico 11/02/09 EPRTMENTO E FÍSI E QUÍMI Problemas Nombre: [3 PUNTO /UNO] 1 Una partícula de 2,00 µg y 5,00 p entra perpendicularmente a un campo eléctrico constante producido por

Más detalles

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo

Física 2º Bach. Campo eléctrico 19/02/ Calcula: a) La intensidad del campo eléctrico en el centro M de la base de un triángulo Física 2º Bach. Campo eléctrico 19/02/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [3 PUNTOS /UNO] 1. Dos conductores esféricos concéntricos huecos, de radios 6,00 y 10,0 cm, están cargados con

Más detalles

Física 2º Bacharelato

Física 2º Bacharelato Física 2º Bacharelato DPARTAMNTO D FÍSICA QUÍMICA lectrostática 11/02/08 Nombre: Problemas 1. n la región comprendida entre dos placas cargadas, x véase la figura, existe un campo eléctrico uniforme de

Más detalles

Temario 4.Campo Eléctrico

Temario 4.Campo Eléctrico Campo Eléctrico 1 1 Temario 4.Campo Eléctrico 4.1 Concepto y definición de campo eléctrico 4.2 Campo eléctrico producido por una y varias cargas puntuales. 4.3 Lineas de Campo 4.4 Un conductor eléctrico

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

CAMPO ELÉCTRICO CARGAS PUNTUALES

CAMPO ELÉCTRICO CARGAS PUNTUALES CARGAS PUNTUALES Ejercicio 1. Junio 2.007 Dos partículas con cargas de +1 μc y de -1 μc están situadas en los puntos del plano XY de coordenadas (- 1,0) y (1,0) respectivamente. Sabiendo que las coordenadas

Más detalles

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C

Magnitud. E Intensidad de campo eléctrico N/C Q Carga que crea el campo eléctrico C Fuerza entre dos Cargas (Ley de Coulomb) Fuerza total sobre una determinada carga Intensidad de campo eléctrico creado por una carga puntual en un punto F= K Q. q /r 2. Ko = 1/(4πε o )= = 9. 10 9 N. m

Más detalles

Bárbara Cánovas Conesa

Bárbara Cánovas Conesa Bárbara Cánovas Conesa 637 70 3 Carga eléctrica www.clasesalacarta.com Campo léctrico La carga eléctrica es un exceso (carga -) o defecto (carga ) de electrones que posee un cuerpo respecto al estado neutro.

Más detalles

TEMA 2. CAMPO ELECTROSTÁTICO

TEMA 2. CAMPO ELECTROSTÁTICO TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación

Más detalles

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera.

A. No existe. B. Es una elipse. C. Es una circunferencia. D. Es una hipérbola equilátera. CUESTIONES SOBRE CAMPO ELECTROSTÁTICO 1.- En un campo electrostático, el corte de dos superficies equiescalares con forma de elipsoide, con sus centros separados y un mismo eje mayor: No existe. B. Es

Más detalles

CAMPO ELÉCTRICO MODELO 2016

CAMPO ELÉCTRICO MODELO 2016 CAMPO ELÉCTRICO MODELO 2016 1- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente

Más detalles

CAMPO ELÉCTRICO ÍNDICE

CAMPO ELÉCTRICO ÍNDICE CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial

Más detalles

FÍSICA 2ºBach CURSO 2014/2015

FÍSICA 2ºBach CURSO 2014/2015 PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una

Más detalles

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en

CAMPO ELÉCTRICO Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en CAMPO ELÉCTRICO 1.- 2015-Modelo A. Pregunta 3.- Tres cargas puntuales, q 1 = 3 μc, q 2 = 1 μc y una tercera carga desconocida q 3, se encuentran en el vacío colocadas en los puntos A (0,0), B(3,0) y C(0,4),

Más detalles

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 22 enero 2016 2016-Modelo A. Pregunta 3.- Una carga puntual, q = 3 μc, se encuentra situada en el origen de coordenadas, tal y como se muestra en la figura. Una segunda carga q 1 = 1 μc se encuentra inicialmente en

Más detalles

Campo eléctrico Cuestiones

Campo eléctrico Cuestiones Campo eléctrico Cuestiones C-1 (Junio - 97) Puede existir diferencia de potencial eléctrico entre dos puntos de una región en la cual la intensidad del campo eléctrico es nula? Qué relación general existe

Más detalles

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general.

1. INTRODUCCIÓN HISTÓRICA. Gilbert ( ) descubrió que la electrificación era un fenómeno de carácter general. ELECTROSTÁTICA 1 Introducción. 2 Carga eléctrica. 3 Ley de Coulomb. 4 Campo eléctrico y principio de superposición. 5 Líneas de campo eléctrico. 6 Flujo eléctrico. 7 Teorema de Gauss. Aplicaciones.. 1.

Más detalles

j, E c = 5, J, E P = J)

j, E c = 5, J, E P = J) CAMPO ELÉCTRICO 2 1. Una carga positiva de 2 µc se encuentra situada inmóvil en el origen de coordenadas. Un protón moviéndose por el semieje positivo de las X se dirige hacia el origen de coordenadas.

Más detalles

CAPÍTULO III Electrostática

CAPÍTULO III Electrostática CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector

Más detalles

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.

Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. 1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la

Más detalles

Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA

Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA 1) Energía potencial eléctrica 2) Potencial eléctrico 3) Diferencia de potencial 4) Relación entre campo y potencial 5) Superficies equipotenciales

Más detalles

q 1 q 3 r12 r13 q Energía potencial electrostática

q 1 q 3 r12 r13 q Energía potencial electrostática 3.4 nergía potencial electrostática q q r 3 r r q q q q 3 r 3 Primero colocamos una carga q en el punto. No hay más cargas, no cuesta energía Traemos del infinito una carga q al punto. llo cuesta una igual

Más detalles

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por

Campo Eléctrico PAU. eléctrico no uniforme, que viene dado por CY 01. Dos partículas de masa 10 g se encuentran suspendidas desde un mismo punto por dos hilos de 30 cm de longitud. Se suministra a ambas partículas la misma carga, separándose de modo que los hilos

Más detalles

8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1).

8 Se tienen tres cargas situadas en los vértices de un triángulo equilátero cuyas coordenadas (expresadas en cm) son: A (0,2) ; B ( 3, 1) ; C ( 3, 1). 1 Se tienen dos cargas puntuales sobre el eje X: 1 = 0,2 μc está situada a la derecha del origen y dista de él 1 m; 2 = +0,4 μc está a la izuierda del origen y dista de él 2 m. a) En ué puntos del eje

Más detalles

FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO

FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO FÍSICA de 2º de BACHILLERATO CAMPO ELÉCTRICO PROBLEMAS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID (1996 2010) DOMINGO

Más detalles

Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA. Francisco Fernández

Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA. Francisco Fernández Fundamentos Físicos de las Comunicaciones TEMA 6 ELECTROSTÁTICA Francisco Fernández La duda es la escuela de la inteligencia. Curso 2012-2013 F. Bacon 1 Ley de Coulomb Ley de Coulomb: La magnitud de la

Más detalles

Interacción electromagnética I. Campo eléctrico

Interacción electromagnética I. Campo eléctrico Interacción electromagnética I. Campo eléctrico Cuestiones y problemas 1. Si entre las dos placas de un condensador plano separadas 3 cm entre sí, existe un campo eléctrico uniforme de 7.10 4 N/C: a) Qué

Más detalles

El Campo Eléctrico. Distribuciones discretas de carga

El Campo Eléctrico. Distribuciones discretas de carga El Campo Eléctrico. Distribuciones discretas de carga 1. A qué distancia deben encontrarse dos cargas de 1 nc para que la fuerza de repulsión entre ellas sea de 0 1 N? DATO: K = 9 10 9 N m 2 /C 2 2. Dos

Más detalles

FISICA 2º BACHILLERATO CAMPO ELECTRICO

FISICA 2º BACHILLERATO CAMPO ELECTRICO ) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará

Más detalles

El campo de las cargas en reposo. El campo electrostático.

El campo de las cargas en reposo. El campo electrostático. El campo de las cargas en reposo. El campo electrostático. Introducción. Propiedades diferenciales del campo electrostático. Propiedades integrales del campo electromagnético. Teorema de Gauss. El potencial

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com ELECTROSTÁTICA 1- a) Explique el concepto de potencial eléctrico. Qué potencial eléctrico crea una carga puntual? Dibuje las superficies equipotenciales en el espacio alrededor de la carga. b) Dos partículas

Más detalles

ds = ds = 4πr2 Kq r 2 φ = q ε

ds = ds = 4πr2 Kq r 2 φ = q ε 1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S

Más detalles

Campo Eléctrico en el vacío

Campo Eléctrico en el vacío Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción

Más detalles

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

GUIA DE FÍSICA Campo Eléctrico. Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica GUIA DE FÍSICA Campo Eléctrico Nombre: Curso. 4º Medio: Profesor: Mario Meneses Señor CAMPO ELECTRICO Es el espacio que rodea a una carga eléctrica y en el cual una carga eléctrica soporta una fuerza eléctrica

Más detalles

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss

UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss FACULTAD REGIONAL ROSARIO UDB BASICAS- Física Física II GUÍA DE PROBLEMAS 1: Electrostática TEMAS: Ley de Coulomb Campo eléctrico Ley de Gauss Recopilación, revisión y edición: Ing. J. Santa Cruz, Ing.

Más detalles

PROBLEMAS CAMPO ELÉCTRICO

PROBLEMAS CAMPO ELÉCTRICO PROBLEMAS CAMPO ELÉCTRICO 1. Explica las semejanzas y las diferencias entre los campos gravitatorio y eléctrico 2. En una región del espacio, la intensidad del campo eléctrico es nula. Debe ser nulo también

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Indica si dos protones separados por 10-18 m tenderán a acercarse por efecto de la gravedad o a repelerse por efecto electrostático. Datos: G = 6,6 10-11 N m 2 / 2, m p = 1,6 10-27, q p =

Más detalles

BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA 3. CAMPO ELÉCTRICO R. Artacho Dpto. de Física y Química Índice CONTENIDOS 1. Interacción electrostática 2. Campo eléctrico 3. Enfoque dinámico 4. Enfoque energético 5. Movimiento de

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico

FÍSICA 2º Bachillerato Ejercicios: Campo eléctrico 1(10) Ejercicio nº 1 Dos cargas eléctricas iguales, situadas en el vacío a 0,2 milímetros de distancia, se repelen con una fuerza de 0,01 N. Calcula el valor de estas cargas. Ejercicio nº 2 Hallar a qué

Más detalles

III A - CAMPO ELÉCTRICO

III A - CAMPO ELÉCTRICO 1.- Una carga puntual de 4 µc se encuentra localizada en el origen de coordenadas y otra, de 2 µc en el punto (0,4) m. Suponiendo que se encuentren en el vacío, calcula la intensidad de campo eléctrico

Más detalles

RELACIÓN DE PROBLEMAS CAMPO ELÉCTRICO 1. Se tienen dos cargas puntuales; q1= 0,2 μc está situada a la derecha del origen de coordenadas y dista de él 3 m y q2= +0,4 μc está a la izquierda del origen y

Más detalles

4. Cuanta energía se necesita para traer un electrón desde el infinito hasta una distancia de 2, m, de una carga de 1, C?

4. Cuanta energía se necesita para traer un electrón desde el infinito hasta una distancia de 2, m, de una carga de 1, C? Capítulo 1 SEMINARIO CAMPO ELÉCTRICO 1. Una esfera metálica de masa 10 g con carga +2 µc, se cuelga de un hilo y se le aproxima otra esfera con carga del mismo signo. Cuando ambas están separadas 10 cm

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com. 1- a) Explique en qué consiste la doble naturaleza corpuscular y ondulatoria de la luz.

Más ejercicios y soluciones en fisicaymat.wordpress.com. 1- a) Explique en qué consiste la doble naturaleza corpuscular y ondulatoria de la luz. REFLEXIÓN Y REFRACCIÓN 1- a) Explique en qué consiste la doble naturaleza corpuscular y ondulatoria de la luz. b) Un rayo de luz monocromática incide con un ángulo de incidencia de 30º sobre una lámina

Más detalles

El flujo de un campo vectorial

El flujo de un campo vectorial Ley de Gauss Ley de Gauss Hasta ahora todo lo que hemos hecho en electrostática se basa en la ley de Coulomb. A partir de esa ley hemos definido el campo eléctrico de una carga puntual. Al generalizar

Más detalles

Unidad I: Electrostática (2da parte)

Unidad I: Electrostática (2da parte) Unidad I: Electrostática (2da parte) Potencial electrostático. a) Trabajo de la fuerza electrostática. Considere el sistema de dos cargas formado por las cargas puntuales Q y q, mostrado en la Figura 2.1.

Más detalles

Principios de Termodinámica y Electromagnetismo

Principios de Termodinámica y Electromagnetismo Facultad de Ingeniería Principios de Termodinámica y Electromagnetismo Proyecto de Investigación Alumnos: CAMPO ELÉCTRICO. Arias Vázquez Margarita Isabel Arroyo Ramírez Rogelio Beltrán Gómez Selvin Eduardo

Más detalles

Medios materiales y desarrollo multipolar.

Medios materiales y desarrollo multipolar. Física Teórica 1 Guia 3 - Medios materiales y multipolos 1 cuat. 2014 Medios materiales y desarrollo multipolar. Medios materiales. 1. Una esfera de radio a está uniformemente magnetizada con densidad

Más detalles

PROBLEMAS ELECTROESTÁTICA

PROBLEMAS ELECTROESTÁTICA POBLEMAS DE ELETOESTÁTIA III ampo electrostático en los conductores Prof. J. Martín ONDUTOES AGADOS EN EL AI O Pr obl e ma alcular : a) la capacidad de una superficie esférica de radio ; b) la capacidad

Más detalles

E en los puntos a y b de la línea

E en los puntos a y b de la línea Electricidad y Electrometría 1º Electrónicos Convocatoria de Julio. Primer parcial. 28 de junio de 2004 1.- El explosor de esferas es un condensador formado por dos electrodos metálicos esféricos del mismo

Más detalles

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1

ELECTROESTÁTICA. Física 1º bachillerato Electroestática 1 ELECTROESTÁTICA 1. Naturaleza eléctrica. 2. Interacción electroestática. 3. Campo eléctrico. 4. Energía potencial eléctrica. 5. Potencial eléctrico. 6. Corriente eléctrica continua. 7. Ley de Ohm. 8. Asociación

Más detalles

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura

Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que

Más detalles

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES.

POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. POTENCIAL ELÉCTRICO. FUNDAMENTOS DE CONDENSADORES. P1.- P2.- P3.- P4.- P5.- P6.- P7.- P8.- Una batería de 12 V está conectada a dos placas paralelas. La separación entre las dos placas es de 0.30 cm, y

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE TEORÍA ( R 1. y R 2 = 2 R 2

EXAMEN DE FÍSICA. 5 DE FEBRERO DE TEORÍA ( R 1. y R 2 = 2 R 2 Página 1 de 11 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1998. TEORÍA T1. Dos esferas conductoras de radios R 1 y R 2 ( R 1 = 2 R 2 ) están suficientemente alejadas una de otra como para suponer

Más detalles

CAMPO ELÉCTRICO Nm 2

CAMPO ELÉCTRICO Nm 2 CAMPO ELÉCTRICO 1. Dos cargas eléctricas positivas e iguales de valor 3x10-6 C están situadas en los puntos A(0,2) y B(0,-2) del plano XY. Otras dos cargas iguales Q están localizadas en los puntos C(4,2)

Más detalles

Departamento de Física Aplicada III

Departamento de Física Aplicada III Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011

Más detalles

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas.

CAMPO ELÉCTRICO. Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. CAMPO LÉCTRICO 1. INTRODUCCIÓN Un campo eléctrico es una región en la cual se manifiestan fuerzas de atracción o repulsión entre cargas. Una carga de prueba es una carga considerada siempre positiva, ue

Más detalles

AYUDANTÍA N o 3 FÍSICA GENERAL II SEGUNDO SEMESTRE 2014

AYUDANTÍA N o 3 FÍSICA GENERAL II SEGUNDO SEMESTRE 2014 AYUDANTÍA N o 3 FÍSICA GENERAL II SEGUNDO SEMESTRE 2014 1. Dos largas placas paralelas conductoras están separadas por una distancia d y cargadas de modo que sus tensiones son +V 0 y V 0. Una pequeña esfera

Más detalles

Tema 1 electricidad. 1 Carga eléctrica

Tema 1 electricidad. 1 Carga eléctrica Tema electricidad El campo eléctrico Contenidos:. Carga eléctrica 2. Campo eléctrico 3. Distribuciones continuas: hilo, plano, teorema de Gauss 4. Potencial eléctrico 5. Chuleta de fórmulas Aviso: esto

Más detalles

Ley de GAUSS y Aplicaciones

Ley de GAUSS y Aplicaciones Fisica III -9 Cátedra de Física Experimental II Fisica III Ley de GAUSS y Aplicaciones Prof. Dr. Victor H. Rios 9 Fisica III -9 Contenidos - Fundamentos básicos - Flujo de campo eléctrico. - Ley de Gauss.

Más detalles

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D.

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D. Página 1 de 14 Al índice de exámenes EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE 1994. GRUPOS C Y D. E1. Deducir la ecuación de dimensiones de las siguientes magnitudes: 1- velocidad; 2-

Más detalles

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO

EXAMEN FÍSICA 2º BACHILLERATO TEMA 2: CAMPO ELECTROMAGNÉTICO INSTRUCCIONES GENERALES Y VALORACIÓN La prueba consiste de dos opciones, A y B, y el alumno deberá optar por una de las opciones y resolver las tres cuestiones y los dos problemas planteados en ella, sin

Más detalles

I. T. Telecomunicaciones Universidad de Alcalá

I. T. Telecomunicaciones Universidad de Alcalá I. T. Telecomunicaciones Universidad de Alcalá Soluciones al Examen de Física Septiembre 2006 Departamento de Física P1) La figura muestra una región limitada por los planos x = 0, y = 0, x = 10 cm, y

Más detalles

Ley de Gauss. Ley de Gauss

Ley de Gauss. Ley de Gauss Objetivo: Ley de Gauss Hasta ahora, hemos considerado cargas puntuales Cómo podemos tratar distribuciones más complicadas, por ejemplo, el campo de un alambre cargado, una esfera cargada, o un anillo cargado?

Más detalles

1999. Señala brevemente qué analogías y diferencias existen entre los campos eléctricos y magnéticos.

1999. Señala brevemente qué analogías y diferencias existen entre los campos eléctricos y magnéticos. 1999. Un protón con una energía cinética de 1 ev se mueve perpendicularmente a un campo magnético de 1,5 T. a) Calcula la fuerza que actúa sobre esta partícula, sabiendo que su masa es de 1,67.10-27 kg.

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones 1. Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho punto?

Más detalles

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4

Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4 Universidad de Alcalá Departamento de Física Solución del Ejercicio propuesto del Tema 4 1) La figura muestra un condensador esférico, cuyas armaduras interna y externa tienen radios R i 1 cm y R e 2 cm.

Más detalles

Tema 3: Electricidad. eléctricos. 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos

Tema 3: Electricidad. eléctricos. 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos Tema 3: Electricidad 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos eléctricos. 4. Conductores. 5. Potencial de membrana. 6. Corriente eléctrica: ley de

Más detalles

Campo eléctrico. Fig. 1. Problema número 1.

Campo eléctrico. Fig. 1. Problema número 1. Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles

V 0 = K Q r. Solución: a) Aplicando la expresión del módulo del campo y la del potencial: 400 V 100 N C -1 = 4 m

V 0 = K Q r. Solución: a) Aplicando la expresión del módulo del campo y la del potencial: 400 V 100 N C -1 = 4 m PROBLEMAS DE FÍSICA º BACHILLERATO Campos eléctrico y magnético /0/03. A una distancia r de una carga puntual Q, fija en un punto O, el potencial eléctrico es V = 400 V y la intensidad de campo eléctrico

Más detalles

TEMA 1. ELECTROESTÁTICA. La electroestática se ocupa del estudio de la interacción eléctrica entre partículas cargadas en reposo.

TEMA 1. ELECTROESTÁTICA. La electroestática se ocupa del estudio de la interacción eléctrica entre partículas cargadas en reposo. TEMA 1. ELECTROESTÁTICA. La electroestática se ocupa del estudio de la interacción eléctrica entre partículas cargadas en reposo. Ley de Coulomb. La interacción eléctrica entre dos partículas cargadas

Más detalles

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética

Ejercicios de acceso a la Universidad Problemas de Interacción Electromagnética 70 Los puntos A, B y C son los vértices de un triángulo equilátero de 2 m de lado. Dos cargas iguales, positivas de 2 μc están en A y B. a) Cuál es el campo eléctrico en el punto C?. b) Cuál es el potencial

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 8, Miércoles 5 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 8, Miércoles 5 de octubre de 2011 Clase 8 Flujo Eléctrico y ley de Gauss Flujo eléctrico El signo del flujo eléctrico Por su definición el flujo eléctrico a través de una cierta superficie puede ser positivo, negativo o nulo. De hecho

Más detalles

Interacción electrostática

Interacción electrostática Interacción electrostática Cuestiones (97-R) Dos cargas puntuales iguales están separadas por una distancia d. a) Es nulo el campo eléctrico total en algún punto? Si es así, cuál es la posición de dicho

Más detalles

E 1.3. LA LEY DE GAUSS

E 1.3. LA LEY DE GAUSS E 1.3. LA LEY DE GAUSS E 1.3.1. Calcule el flujo del campo eléctrico producido por un disco circular de radio R [m], uniformemente cargado con una densidad σ [C/m 2 ], a través de la superficie de una

Más detalles

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.

un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática. 11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Electrostática 1(7) Ejercicio nº 1 Supongamos dos esferas de 10 Kg y 10 C separadas una distancia de 1 metro. Determina la fuerza gravitatoria y la fuerza eléctrica entre las esferas. Compara ambas fuerzas. Ejercicio

Más detalles

K= 1. R2 Ur es un vector unitario en la dirección que une ambas cargas.

K= 1. R2 Ur es un vector unitario en la dirección que une ambas cargas. Tema 9 Campo eléctrico 1. Fuerza eléctrica Ley de Coulomb La fuerza con la que se atraen o repelen dos cargas es directamente proporcional al producto de la de ambas cargas e inversamente proporcional

Más detalles

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero.

4.3 - Determine el punto (distinto del infinito) en el cual el campo eléctrico es igual a cero. Unidad Nº 4 Electrostática Ley de Coulomb Campo eléctrico 4.1 - En las esquinas de un triángulo equilátero existen tres cargas puntuales, fijas, como se ve en la figura, cuyos valores son: q1=2µc, q2=-4µc

Más detalles

ENERGÍA ELECTROSTÁTICA

ENERGÍA ELECTROSTÁTICA ENERGÍA ELECTROSTÁTICA PREGUNTAS. Qué significado físico tiene la energía electrostática de una distribución de carga?. La energía contenida en una distribución de carga, puede ser considerada según dos

Más detalles

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r) ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se

Más detalles

Selectividad Física Andalucia. Interacción Electrostática. Problemas

Selectividad Física Andalucia. Interacción Electrostática. Problemas Problemas (97-E) Una carga puntual Q crea un campo electrostático. Al trasladar una carga q desde un punto A al infinito, se realiza un trabajo de 5 J. Si se traslada desde el infinito hasta otro punto

Más detalles

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA

EXAMEN DE FÍSICA. 5 DE FEBRERO DE GRUPOS C Y D. TEORÍA Página 1 de 8 Índice de exámenes EXAMEN DE FÍSICA. 5 DE FEBRERO DE 1997. GRUPOS C Y D. TEORÍA T3. Si tenemos 2 cargas puntuales separadas un adistancia l, Hay puntos fuera de la recta que las une en que

Más detalles

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =

01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 = 01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO FÍSICA C Primera evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2012-2013 FÍSICA C Primera evaluación SOLUCIÓN Ejercicio 1 (4 puntos) Un par de cargas eléctricas de igual magnitud q y

Más detalles

Departamento de Física y Química

Departamento de Física y Química 1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice

Más detalles

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.

Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q. 1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo

Más detalles

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS

LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS LECCIÓN Nº 02 CAMPO ELECTRICO. LINEAS DE FUERZA. LEY DE GAUSS 2.1. CAMPO ELECTRICO En lugar de manejar el campo de fuerzas, resulta más cómodo definir un campo vectorial denominado campo eléctrico, E.

Más detalles

2 Energía electrostática y Capacidad

2 Energía electrostática y Capacidad 2 Energía electrostática y Capacidad M. Mudarra Física III (2A) - M. Mudarra Enginyeria Aeroespacial - p. 1/44 Densidad de energía electrostática 2.2 Campo E en presencia de 2.6 Fuerzas sobre Física III

Más detalles

Electrotecnia General Tema 3 TEMA 3

Electrotecnia General Tema 3 TEMA 3 TEMA 3 POTENCIAL 3.1. ENERGÍA POTENCIAL ELECTROSTÁTICA Sea una carga q, (Fig.3.1) que se desplaza según una trayectoria a-b. Designando: : Fuerza ejercida sobre la carga por el campo. : Fuerza exterior

Más detalles

Física para ingeniería y ciencias Volumen 2

Física para ingeniería y ciencias Volumen 2 Física para ingeniería y ciencias Volumen 2 Material tomado del texto de Hans C. Ohanian John T. Markett Capítulo 25 Potencial electrostático y energía 2009 by the McGraw-Hill Companies, Inc 1 El potencial

Más detalles

UNIVERSIDAD NACIONAL DEL CALLAO

UNIVERSIDAD NACIONAL DEL CALLAO UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA Curso: TEORÍA DE CAMPOS ELECTROMAGNÉTICOS PROFESOR: ING. JORGE MONTAÑO PISFIL

Más detalles

Guía 1: Campo Eléctrico y Diferencia de potencial

Guía 1: Campo Eléctrico y Diferencia de potencial Segundo uatrimestre 2006 Guía 1: ampo Eléctrico y Diferencia de potencial Ley de oulomb 1. a) Hallar la fuerza eléctrica entre dos cargas puntuales q 1 =+1.5 μ y q 2 =+4 μ, separadas en 10 cm.(plicando

Más detalles

2. A que distancia se deben situar 2 cargas de +1µC para repelerse con una fuerza de 1N?

2. A que distancia se deben situar 2 cargas de +1µC para repelerse con una fuerza de 1N? BOLETÍN DE PROBLEMAS SOBRE CAMPO ELÉCTRICO Ley de Coulomb 1. Calcula la intensidad (módulo) de las fuerzas que dos cargas Q 1 =8µC y Q 2 =-6µC separadas una distancia r=30cm se ejercer mutuamente. Dibújalas.

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.

Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión

Más detalles

Ley de Charles Coulomb

Ley de Charles Coulomb Problemario Ley de Charles Coulomb F = Ke. Q 1. Q 2 r 2 Donde, r = la distancia entre las dos cargas Q1 y Q2. F = Fuerza que actúa sobre cada carga. Ke = constante a determinar de acuerdo con nuestra elección

Más detalles

Módulo 1: Electrostática Potencial eléctrico

Módulo 1: Electrostática Potencial eléctrico Módulo 1: Electrostática Potencial eléctrico 1 Energía potencial electrostática Se tiene una analogía entre la energía potencial gravitatoria (debida a la fuerza de la gravedad) y la energía potencial

Más detalles

Electromagnetismo. CONSEJERÍA DE EDUCACIÓN IES Gonzalo Nazareno. Alberto Molina Coballes 6 de diciembre de 2016

Electromagnetismo. CONSEJERÍA DE EDUCACIÓN IES Gonzalo Nazareno. Alberto Molina Coballes 6 de diciembre de 2016 CONSEJERÍA DE EDUCACIÓN IES Gonzalo Nazareno Electromagnetismo Alberto Molina Coballes 6 de diciembre de 2016 Usted es libre de copiar, distribuir y modificar este documento de acuerdo con las condiciones

Más detalles

29.1. El flujo de un campo vectorial. Capítulo 29

29.1. El flujo de un campo vectorial. Capítulo 29 29 La ley de Gauss La ley de Coulomb se puede usar para calcular E para cualquier distribución discreta o continua de cargas en reposo. Cuando se presenten casos con alta simetría será más conveneinte

Más detalles