Operaciones con fracciones
|
|
|
- Mariano Pinto Cordero
- hace 9 años
- Vistas:
Transcripción
1 Operaciones con fracciones SUMA Y RESTA DE FRACCIONES DEL MISMO DENOMINADOR Para sumar fracciones del mismo denominador se suman los numeradores se deja el mismo denominador. Para restar fracciones del mismo denominador se restan los numeradores se deja el mismo denominador. Calcula las siguientes sumas de fracciones Calcula las siguientes restas de fracciones. 0 Pág.
2 Calcula las siguientes sumas restas combinadas. En el cumpleaños de Ana se dividió una tarta en partes iguales. Ana se comió de tarta Luisa se comió de tarta Pedro se comió de tarta Carlos se comió de tarta. a) Qué fracción de tarta se comieron entre los cuatro amigos? b) Qué fracción de tarta quedó? Pág.
3 REDUCCIÓN DE FRACCIONES A COMÚN DENOMINADOR POR EL MÉTODO DE LOS PRODUCTOS CRUZADOS Para reducir fracciones a común denominador por el método de los productos cruzados se multiplican el numerador el denominador de cada fracción por el producto de los denominadores de las demás. Vamos a reducir a común denominador las fracciones: 0 ; 0 0 ; 0 0 Las fracciones buscadas son: Reduce a común denominador por el método de los productos cruzados las siguientes fracciones. 0 Pág.
4 REDUCCIÓN DE FRACCIONES A COMÚN DENOMlNADOR POR EL MÉTODO DEL MÍNIMO COMÚN MÚLTIPLO Para reducir fracciones a común denominador por el método del mínimo común múltiplo se procede así:. Se calcula el mínimo común múltiplo de los denominadores ese valor es el denominador común de todas las fracciones.. Se divide el mínimo común múltiplo por el denominador de cada fracción el cociente obtenido se multiplica por el numerador. Vamos a reducir a común denominador las fracciones: m.c.m. ( ) ; 0 0 ; Las fracciones buscadas son: Reduce a común denominador por el método del mínimo común múltiplo las siguientes fracciones. 0 Pág.
5 SUMA Y RESTA DE FRACCIONES DE DISTINTO DENOMINADOR Para sumar fracciones de distinto denominador se reducen las fracciones a común denominador; después se suman los numeradores se deja el mismo denominador m.c.m. ( ) 0 Para restar fracciones de distinto denominador se reducen las fracciones a común denominador; después se restan los numeradores se deja el mismo denominador: m.c.m. ( ) Calcula las siguientes sumas de fracciones. 0 Pág.
6 Calcula las siguientes restas de fracciones. 0 Calcula las siguientes sumas restas combinadas. Juan María mezclan café de Colombia café de Brasil café de Guinea café de Venezuela en paquetes de kg. Observa la fracción de kg que utilizan de cada tipo de café calcula: La fracción de kg que representa el café de Colombia utilizado en la mezcla A en la mezcla B. Mezcla A / de kg Brasil / de kg Guinea / de kg Venezuela Resto Colombia Mezcla B / de kg Brasil / de kg Guinea / de kg Venezuela Resto Colombia Pág.
7 MULTIPLICACIÓN DE FRACCIONES El producto de dos o más fracciones es otra fracción cuo numerador es el producto de los numeradores cuo denominador es el producto de los denominadores. 0 Calcula los siguientes productos de fracciones. 0 Calcula. de de de de 0 de de 0 Pág.
8 DIVISIÓN DE FRACCIONES a c Para dividir una fracción por otra fracción se multiplica la fracción b d c c d por la fracción inversa de Inversa o lo que es lo mismo d d c a c a d se multiplican en cruz los términos de las fracciones :. b d b c : a b Calcula las siguientes divisiones de fracciones. : : : : : : Observa el ejemplo resuelto calcula de este modo los restantes. de : Ejemplo de de 0 de 0 de 0 : 0 Pág.
9 PROBLEMAS DE FRACCIONES Un ciclista ha estado corriendo durante tres horas. En la primera hora ha recorrido los de un traecto; en la segunda hora ha recorrido los del traecto en la tercera hora ha recorrido los del traecto. Calcula: a) La fracción del total del traecto que ha recorrido en las tres horas. b) La fracción del traecto que le queda por recorrer. c) Los kilómetros recorridos en las tres horas si el traecto es de 0 km. Un depósito estaba lleno de agua. Primero se sacaron de su contenido después se sacó del agua que quedó en el depósito. Calcula: a) La fracción de contenido que quedó después de sacar Ios del contenido. b) La fracción de contenido que quedó después de sacar del agua que quedaba. c) Los Iitros de agua que quedaron en el depósito si el depósito contenía 0 litros de agua. Pág.
10 En la estantería A ha 0 botellas de de litro cada una en la estantería B ha 0 botellas de de litro cada una. Calcula: a) Los litros que contienen las botellas de cada estantería. b) El número de botellas de de litro que se llenan con litros. Un bidón contiene 00 litros de leche. La mitad se envasa en botellas de de litro; 00 litros se envasan en botellas de de litro el resto de la leche se envasa en botellas de de litro. Calcula: a) El número de botellas de de litro que se llenan. b) El número de botellas de de litro que se llenan. c) El número de botellas de de litro que se llenan. Un peatón ha andado km en de hora. Cuántos kilómetros andará en hora? Pág. 0
11 Un pueblo tiene.000 habitantes. Los de los habitantes tienen menos 0 de 0 años los de los habitantes tienen entre 0 0 años. Calcula: 0 a) El número de habitantes con menos de 0 años que tiene el pueblo. b) El número de habitantes entre 0 0 años que tiene el pueblo. c) La fracción del total de habitantes que tiene menos de 0 años. Una finca tiene una superficie de.0 m. Los de la finca están sembrados de trigo los de la finca están sembrados de cebada el resto está sin sembrar. Calcula: a) La fracción de superficie que está sembrada. b) La fracción de superficie que está sin sembrar. c) Los metros cuadrados que ha sembrados los metros cuadrados que ha sin sembrar. Pág.
12 En un concurso de dibujo se presentaron 0 participantes; de los participantes obtuvieron como premio una bicicleta; de los participantes obtuvieron como premio un juego el resto de los participantes obtuvieron un cuento. Calcula: a) La fracción de participantes que obtuvieron un cuento. b) El número de participantes que obtuvieron cada premio. Un comerciante tiene 0 kilos de café. Ha envasado 0 bolsas de de kilo cada una bolsas de de kilo cada una 0 bolsas de de kilo cada una. Calcula: a) Los kilos de café que ha empleado para envasar las bolsas de de kilo. b) Los kilos de café que ha empleado para envasar las bolsas de de kilo. c) Los kilos de café que ha empleado para envasar las bolsas de de kilo. d) El número de kilos de café que le quedan todavía por envasar. Pág.
LAS FRACCIONES. Si queremos calcular la fracción de un número dividimos el número por el denominador y el resultado lo multiplicamos por el numerador.
LAS FRACCIONES LAS FRACCIONES Y SUS TÉRMINOS Los términos de una fracción se llaman numerador y denominador. El denominador indica el número de partes iguales en que se divide la unidad. El numerador indica
Las fracciones. 1. Concepto de fracción. Cuatro personas se van a comer a partes iguales una tarta. Qué parte le corresponde a cada una?
Las fracciones. Concepto de fracción Cuatro personas se van a comer a partes iguales una tarta. Qué parte le corresponde a cada una? P I E N S A Y C A L C U L A / Carné calculista 0 : C = 8; R = A P L
Guía 1: Concepto de fracción
. Pinta según la fracción correspondiente: Guía : Concepto de fracción Una fracción es una representación de una o varias partes de la unidad. Sus términos son numerador denominador. Numerador Denominador.
1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20
ACTIVIDADES DE REPASO MATEMÁTICAS 1º ESO NOMBRE: GRUPO:. Actividades a realizar: 1) Tacha los números que no sean naturales: 12-4 23-5 36 29-1 -15 13-20 2) Calcula: a) 4 6 + 3 + 9-2 3 = b) 6 (3 + 7) -
Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.
2010 Tema 04:Fracciones. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 01/01/2010 . INDICE: 01. APARICIÓN DE LAS FRACCIONES. 02. CONCEPTO DE FRACCIÓN. 03.
Unidad 1 números enteros 2º ESO
Unidad 1 números enteros 2º ESO 1 2 Conceptos 1. Concepto de número entero: diferenciación entre número entero, natural y fraccionario. 2. Representación gráfica y ordenación. 3. Valor absoluto de un número
Una fracción es una expresión que nos indica que, de un total dividido en partes iguales, escogemos sólo algunas de esas partes.
FRACCIONES 1. LAS FRACCIONES. 1.1. CONCEPTO. Una fracción es una expresión que nos indica que, de un total dividido en partes iguales, escogemos sólo algunas de esas partes. Una fracción también es una
OBJETIVOS CONTENIDOS PROCEDIMIENTOS
_ 0-00.qxd //0 : Página racciones INTRODUCCIÓN En esta unidad se presenta el concepto de fracción como resultado de varios significados: como parte de un todo o unidad, como valor decimal (cociente) y
Divido la barra de helado en ocho partes iguales. De esas ocho partes tomo seis. Parte de la barra que reparto a mis amigos :
1.- NECESIDAD DE QUE EXISTAN LAS FRACCIONES. Imagina que tienes una barra de helado que quieres repartir entre tus ocho amigos que por la tarde van a ir a tu casa a merendar. Para ir adelantando trabajo
1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel.
1. Calcula las edades de Ángel y Francisco, sabiendo que en total suman 28 años y la edad de Francisco excede en 12 años a la de Ángel. 2. Alba y Ana han comprado un regalo a su madre. Indica cuánto ha
Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:
Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z
Concepto de fracción. Fracciones equivalentes
FRACCIONES: DOCUMENTO INTRODUCTORIA. Concepto de fracción Raúl ha conseguido el cinturón azul de judo. Para celebrarlo, ha invitado a sus amigos a una pequeña fiesta en casa. Su padre les ha preparado
5. Los números decimales
40. Los números decimales 6. Representa en la recta los siguientes números a) 0, b) 1,7 c) 2,4 d) 3,2 1. NÚMEROS DECIMALES 3,2 1,7 0, 3 2 1 0 2,4 1 2 3 Escribe la fracción y calcula mentalmente el número
EJERCICIOS SOBRE : FRACCIONES
1.- Introducción a las fracciones: Las fracciones representan siempre una cierta parte de algo. Ese algo es la unidad que elegimos. Ejemplo: _ Dos 1 / 2 litros de leche. _ Sólo tiene 1/ 2 pastilla 2.-
SOLUCIONES MINIMOS 2º ESO TEMA 1 DIVISIBILIDAD Y NUMEROS ENTEROS
SOLUCIONES MINIMOS º ESO TEMA 1 DIVISIBILIDAD Y NUMEROS ENTEROS Ejercicio nº 1.- Comprueba si son equivalentes los siguientes pares de fracciones: a) y 10 1 7 8 b) y 1 60 a) y 10 1 1 10 Sí 7 8 b) y 1 60
NÚMEROS RACIONALES Y DECIMALES
NÚMEROS RACIONALES Y DECIMALES Unidad didáctica. Números racionales y decimales CONTENIDOS Fracciones Fracciones equivalentes Amplificar fracciones Simplificar fracciones Representación en la recta numérica.
REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACION ESCUELA BASICA NACIONAL BOLIVARIANA 19 DE ABRIL
REPUBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACION ESCUELA BASICA NACIONAL BOLIVARIANA 19 DE ABRIL SAN FRANCISCO ESTADO ZULIA DISEÑO DE UN MANUAL DIRIGIDO AL USO DE LAS TIC
Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte
Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en
2 Fracciones y. números decimales. 1. Operaciones con fracciones. Realiza mentalmente las siguientes operaciones: Solución: a) b) c) Carné calculista
Fracciones y números decimales. Operaciones con fracciones Realiza mentalmente las siguientes operaciones: + c) 0 c) P I E N S A Y C A L C U L A Carné calculista : C = ; R = Calcula mentalmente: + c) c)
El número de arriba de la fracción, el numerador, nos dice cuántas de las partes iguales están coloreadas.
Qué es una fracción? Una fracción es un número que indica parte de un entero o parte de un grupo. El siguiente círculo está dividido en partes iguales de las cuales partes están coloreadas. El número de
1º E.S.O. NÚMEROS ENTEROS:
1º E.S.O. NÚMEROS ENTEROS: 1. Los números naturales. Sistema de numeración decimal. Orden y representación de los números naturales. Los números grandes: millones, millardos, billones. Suma, resta y multiplicación.
3.Proporcionalidad directa e inversa
EJERCICIOS PARA ENTRENARSE Proporcionalidad directa. Repartos 3.8 Los números 3,, 18 y forman una proporción. Calcula el valor de. 3 1 8 18 30 3 3.9 La tabla corresponde a dos magnitudes directamente proporcionales
Una fracción puede interpretarse como parte de un total, como medida y como operador de OBJETIVOS CONTENIDOS PROCEDIMIENTOS
_ 0-0.qxd //0 0: Página racciones INTRODUCCIÓN Con el empleo de las fracciones se observa la utilidad de los conceptos estudiados como, por ejemplo, las operaciones básicas con números naturales o el cálculo
Los números racionales son todos aquellos números de la forma a con a y b números enteros y b
Números racionales NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma a con a y b números enteros y b b distinto de cero. El conjunto de los números racionales se representa
ACTIVIDADES DE REPASO. MATEMÁTICAS 1º ESO
ACTIVIDADES DE REPASO. MATEMÁTICAS º ESO NÚMEROS NATURALES. Calcula: a) 4 6 5 + 3 4 b) (4 6 5) + 3 4 c) 4 6 (5 + 3 4) d) 4 (6 5) + 3 4 e) (5 + 0) 8 f) (73 37) : 6. Calcula: a) 987 + 5 + 3 784 b) 3 978
PROPORCIONALIDAD - teoría
PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos
10) 45 : {-2 + 12 : (-7 + 3) + 12 [ (-24) : ( -3 5 + 7) ] + 5} =
REPASO DEL CURSO (ENTREGAR EN SEPTIEMBRE) OPERACIONES COMBINADAS 1) 9:3 4 (4 + 3):3= Sol: 11 ) 3 7 (4 ) :6 + (10 14:7)= Sol: 15 3) 4:6 + 4 5 (3 5)= Sol: 4) -5(-3)-(-7) (-4)+ (-6)(-8)3= Sol: 131 5) 6 +
Sistemas de ecuaciones lineales
9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13
ELABORAR Y COMPARAR DISTINTOS PROCEDIMIENTOS PARA CALCULAR CANTIDADES QUE SE CORRESPONDEN O NO PROPORCIONALMENTE
ELABORAR Y COMPARAR DISTINTOS PROCEDIMIENTOS PARA CALCULAR CANTIDADES QUE SE CORRESPONDEN O NO PROPORCIONALMENTE 6to. Grado Universidad de La Punta CONSIDERACIONES GENERALES En este año nuestro desafío
1.- Un coche tiene que recorrer 540 Km. Cuando lleve recorridos los 5/6 del trayecto cuántos Km le faltaran?
1.- Un coche tiene que recorrer 540 Km. Cuando lleve recorridos los 5/6 del trayecto cuántos Km le faltaran? 2.- Un cine tiene capacidad para 240 personas. Cada entrada cuesta 7,50 y esta tarde se han
Operaciones con Fracciones Aritméticas
Aritméticas Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido : Contenido Discutiremos: el mínimo común múltiplo de dos o más números enteros : Contenido Discutiremos: el mínimo común múltiplo
Fracciones. Objetivos. Antes de empezar
Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a
Matemáticas Problemas matemáticos 4º E.P.
Matemáticas Problemas matemáticos 4º E.P. Nombre: Curso: Una casa costaba el año pasado 137 284, y ahora cuesta 140 594. Cuánto ha aumentado el precio de la casa? Durante la jornada de la mañana, un taxista
EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO
1) Calcular tres números consecutivos cuya suma sea 1. ) Las edades de dos hermanos suman 49 años. Calcularlas sabiendo que la edad de uno es superior en años a la del otro. ) Descomponer el número 171
Problemas de ecuaciones Colección C. MasMates.com Colecciones de ejercicios
1. En el mercado, Rosa ha comprado 3 kg de guisantes, 4 kg de garbanzos y 5 kg de judías por 48'80 euros. Halla, planteando y resolviendo una ecuación con una incógnita, el precio del kilo de cada tipo
FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.
FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y
1.. VALOR POSICIONAL DE CADA CIFRA EN UN NÚMERO DECIMAL.
1.. VALOR POSICIONAL DE CADA CIFRA EN UN NÚMERO DECIMAL. Un número decimal tiene dos partes: una parte entera, a la izquierda de la coma y una parte decimal a la derecha de la coma. Lectura y escritura.
TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS
Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro
Números racionales 1. 1.- En un cine hay 63 personas de las que 4/7 son chicas, cuántos chicos y chicas hay?
Números racionales Los problemas que se presentan a continuación son problemas "tipo". Estúdialos detenidamente pues encontrarás multitud de situaciones cotidianas cuya resolución exige los mismos procesos
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
Tema 4: Problemas aritméticos.
Tema 4: Problemas aritméticos. Ejercicio 1. Cómo se pueden repartir 2.310 entre tres hermanos de forma que al mayor le corresponda la mitad que al menor y a este el triple que al mediano? El reparto ha
FUNCIONES DE PROPORCIONALIDAD
UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),
I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1
ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números
MATEMÁTICAS-EJERCICIOS DE RECUPERACION PENDIENTES 1º E.S.O. 2º BLOQUE. Nombre y Apellidos:
TEMA 7. SISTEMA METRICO DECIMAL 1. 2. Para pasar de una medida de superficie inferior a otra inmediatamente superior: a) Se multiplica el resultado de la medida por 100. b) Se multiplica el resultado de
Recuerda lo fundamental
8 Operaciones con fracciones Recuerda lo fundamental Curso:... Fecha:... Para reducir fracciones a común denominador: Se calcula el mínimo común múltiplo, m, de los denominadores. Se transforma cada fracción
PARA EMPEZAR. Arquímedes nació en el año 287 a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento?
NÚMEROS RACIONALES PARA EMPEZAR.. Arquímedes nació en el año a. C. en Siracusa (Sicilia). Cuántos años han transcurrido desde su nacimiento? x Han transcurrido años, siendo x el número de día del año actual.
Problemas de ecuaciones Colección B.2. MasMates.com Colecciones de ejercicios
1. Calcula las edades de Carolina, Miguel y Francisco, sabiendo que en total suman 54 años, la edad de Francisco es igual al doble de la de Miguel y la de Carolina es inferior en 6 años a la suma de las
EJERCICIOS DE REPASO 2º ESO
NOMBRE: CURSO: 0-0 EJERCICIOS DE REPASO º ESO.- Calcula, poniendo los pasos que haces, no sólo el resultado: a ) - ( - ) + 8 ( - ) = b) ( - 8 ) [ 7 + ( - 9 ) ] = c) 7 ( 8 ) + : ( - + 7 ) = d) 6 : ( 8 )
IES Los Colegiales Matemáticas 1º ESO Tema 1 Los Números Naturales
SOLUCIONES PROBLEMAS DE NÚMEROS NATURALES 1.- Francisco tiene 75. Roberto tiene 13 más que Francisco. Luis tiene 21 menos que Roberto. Cuánto tienen entre los tres? Francisco: 75 Roberto: 75 + 13 = 88
TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO
TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,
Matemáticas pendiente de 3º ESO IES PLAYAMAR Curso 2015-2016
Matemáticas pendiente de º ESO IES PLAYAMAR Curso -6 ºEVALUACIÓN FECHA DEL EXAMEN: 7 DE NOVIEMBRE DE A LAS : (SALÓN DE ACTOS) INSTRUCCIONES o o Las actividades realizadas deben entregarse obligatoriamente
Fracciones. Contenidos
Fracciones La fotografía nos permite captar imágenes de fenómenos que el ojo humano es incapaz de ver por la rapidez con que se suceden. Conseguimos captar estos momentos mediante el obturador, que es
EJERCICIOS PROPUESTOS. a) 9 500 b) 3 c) 2 d) 20 e) 25
2 NÚMEROS ENTEROS EJERCICIOS PROPUESTOS 2.1 Expresa con un número entero las siguientes informaciones. a) El avión está volando a 9 500 metros de altura. b) La temperatura mínima de ayer fue de 3 C bajo
Sistemas de ecuaciones lineales
7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la
Tema 2: Fracciones y proporciones
Tema 2: Fracciones y proporciones Fracciones Números racionales Números decimales Razones y proporciones Porcentajes 1 2 Las fracciones: un objeto, varias interpretaciones (1) Parte de un todo (2) Un reparto
OBJETIVOS CONTENIDOS PROCEDIMIENTOS. Cálculo de los múltiplos y divisores de un número. Criterios de divisibilidad por 2, 3, 5 y 10.
_ 9-.qxd //7 9:7 Página 9 Divisibilidad INTRODUCCIÓN El concepto de divisibilidad requiere dominar la multiplicación, división y potenciación de números naturales. Es fundamental dedicar el tiempo necesario
Problemas + PÁGINA 37
PÁGINA 37 Pág. Problemas + 6 Un grupo de amigos ha ido a comer a una pizzería y han elegido tres tipos de pizza, A, B y C. Cada uno ha tomado /2 de A, /3 de B y /4 de C; han pedido en total 7 pizzas y,
DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO.
DEL LENGUAJE DE LOS NÚMEROS AL LEGUAJE ALGEBRAICO. En ocasiones, en matemáticas, necesitamos operar con números desconocidos. Para ello, se toman letras para representar esas cantidades desconocidas o
EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10
5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por
PROBLEMAS QUE SE RESUELVEN CON ECUACIONES. 1.- Qué edad tiene Rita sabiendo que dentro de 24 años tendrá el triple de la que tiene ahora?
PROBLEMAS QUE SE RESUELVEN CON ECUACIONES 1.- Qué edad tiene Rita sabiendo que dentro de 24 años tendrá el triple de la que tiene ahora? Solución : 12 años 2.- Si al doble de un número le restas 13, obtienes
Operaciones con números decimales
Operaciones con números decimales SUMA DE NÚMEROS DECIMALES Para sumar dos o más números decimales se colocan en columna haciendo coincidir las comas; después se suman como si fuesen números naturales
TAREAS DE APRENDIZAJE MOTIVACION: presentación del video El Bosque Animado de las Fracciones----
AUTORES: DOCENTES TURORES JESÚS PIEDRAHITA Y FERNANDO MUÑOZ GRADO: QUINTO EJE PROBLEMICO: Estructuras aritméticas: Comprensión del concepto de fracciones, de las operaciones, su significado, modelos, propiedades
Matemáticas Propedéutico para Bachillerato. Introducción
Actividad. Fracciones simples. Introducción En las actividades anteriores vimos las operaciones básicas de suma, resta, multiplicación y división, así como la jerarquía de ellas entre números enteros,
EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE 3º ESO PENDIENTES PRIMER PARCIAL
de º de E.S.O. EJERCICIOS DE MATEMÁTICAS PARA ALUMNOS/AS CON LAS MATEMÁTICAS DE º ESO PENDIENTES PRIMER PARCIAL Fecha tope para entregarlos de enero de 0 Examen de enero de 0 I.E.S. SERPIS DEPARTAMENTO
Tema 4: Problemas Aritméticos
Tema 4: Problemas Aritméticos 4.1 Proporcionalidad simple. Vamos a en primer lugar a responder a dos preguntas: Cuándo se dice que dos magnitudes son directamente proporcionales? Se dice que son directamente
ECONOMÍA DE LA EMPRESA EJERCICIOS UMBRAL DE RENTABILIDAD = PUNTO MUERTO
ECONOMÍA DE LA EMPRESA EJERCICIOS UMBRAL DE RENTABILIDAD = PUNTO MUERTO 2008 1. La empresa M, dedicada a la fabricación de bicicletas, fabricó y vendió durante el pasado año, 200.000 bicicletas siendo
IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 2º ESO. Segunda parte. Curso 15/16. Fecha de entrega: 11/2/16
IES ARROYO HONDO ACTIVIDADES REPASO MATEMÁTICAS 2º ESO Segunda parte Curso 15/16 Fecha de entrega: 11/2/16 Nombre: Grupo: DIVISIBILIDAD Y NÚMEROS ENTEROS 1. En las siguientes expresiones, saca factor común
ACTIVIDADES DE RECUPERACIÓN MATEMÁTICAS 1º ESO
CURSO 10-11 ACTIVIDADES DE RECUPERACIÓN MATEMÁTICAS 1º ESO NOMBRE: GRUPO:.; Nº:. Los contenidos mínimos para la prueba extraordinaria de septiembre se encuentran en la programación, que se puede consultar
Matemática. [ en Puerto ] [email protected]. www.puertodepalos.com.ar. /EditorialPuertodePalos ISBN 978-987-547-588-5
Matemática [ en Puerto ] www.puertodepalos.com.ar [email protected] /EditorialPuertodePalos ISBN 978-987-547-588-5 9 789875 475885 6 [ Números naturales ] 1 CAPÍTULO En la provincia de Buenos Aires
Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut
Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la
Serie 5 - Problemas de enunciado
Serie 5 - Problemas de enunciado Nombre:...Curso: 4ºD Resuelve los siguientes problemas. El proceso a seguir es como en el problema resuelto: [1º] Definir adecuadamente la(s) incógnita(s) [2º] Realizar
REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS
REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.
Recuerda Para realizar bien las multiplicaciones, repasa las tablas de multiplicar.
Recuerda Para realizar bien las multiplicaciones, repasa las tablas de multiplicar. La multiplicación es una suma de números iguales. Los términos de la multiplicación son los factores y el producto. -.
CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO
CUADERNILLO DE VERANO MATEMÁTICAS 1º ESO Potencias y raíces. Expresa en forma de potencia: a) 7 7 7 7 = b) 8 8 8 8 8 8 8 = c) 6 6 6 6 6 = d) 5 5 5 5 = e) 9 9 9 = f) 3 3 = Calcula las siguientes potencias:
FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios
FUNDAMENTOS DE ADMINISTRACIÓN Y GESTIÓN Teoría y ejercicios 2ª edición JUAN PALOMERO con la colaboración de CONCEPCIÓN DELGADO Economistas Catedráticos de Secundaria ---------------------------------------------------
TEMA 4: PROPORCIONALIDAD Y PORCENTAJES
TEMA : PROPORCIONALIDAD Y PORCENTAJES.1Razones y proporciones Página 90 ejercicio 1 Elige la respuesta correcta en cada caso: a) La razón de 5 y15 es: 1 2, 1 3, 2 3 5 15 15 5 5 5 1 3 Tareas 05-12-12: todos
REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ
REFUERZO MATEMÁTICAS º ESO CURSO: 009/010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ SUMA Y RESTA DE NÚMEROS ENTEROS... POTENCIAS... 6 FRACCIONES... 8 FRACCIONES EQUIVALENTES... 8 SUMA DE FRACCIONES... 9 PRODUCTO
Análisis de propuestas de evaluación en las aulas de América Latina
Esta propuesta tiene como objetivo la operatoria con fracciones. Se espera del alumno la aplicación de un algoritmo para resolver las operaciones. Estas actividades comúnmente presentan numerosos ejercicios
REPASO DE LA PRIMERA EVALUACIÓN
REPASO DE LA PRIMERA EVALUACIÓN º ESO. Escribe todos los divisores de: 7,, 8, y Sol: a),,,, 6, 8, 9,, 8,, 6, 7 b),,,, 6, 8,, c),,, 7,, 8 d),,, 9,, d),,, 6, 9, 8, 7,. Descompón en factores primos: 800,
Ejercicios Resueltos del Tema 4
70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la
Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)
CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su
1.- a) Cómo se llama el término de una fracción que indica el número de partes en que se ha dividido la unidad?
2.- OPERACIONES CON FRACCIONES Y DECIMALES Al finalizar el sexto curso de Educación Primaria, los estudiantes deben comprender los significados de las fracciones como partes de la unidad, como cocientes
LA MULTIPLICACIÓN DE NÚMEROS NATURALES
LA MULTIPLICACIÓN DE NÚMEROS NATURALES LA MULTIPLICACIÓN Una multiplicación es una suma de varios sumandos iguales. 15 + 15 + 15 + 15 = 60 14 x 4 = 60 Los términos de la multiplicación se llaman 12 factor
PROBLEMAS Tema 7 Sistema Métrico Decimal
PROBLEMAS Tema 7 Sistema Métrico Decimal 1. Un atleta sale a correr todos los días para entrenar. Si cada día recorre 15 km 7hm 9 dam 6 m, Cuántos km recorre a la semana? 2. Si un paquete de caramelos
Sistemas de dos ecuaciones lineales con dos incógnitas
Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x
Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x
Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada
EJERCICIOS SOBRE : PORCENTAJES
1.- Tanto por ciento o porcentaje: Un tanto por ciento o porcentaje es la cantidad que hay en cada 100 unidades. Se expresa añadiendo a la cantidad el símbolo % Ejemplo: Se han preparado bolsas de caramelos,
4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN
4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,
PORCENTAJE Y PROPORCIONALIDAD
PORCENTAJE Y PROPORCIONALIDAD EL PORCENTAJE En una escuela el 15% de los alumnos son rubios, el 35% de los alumnos son morenos y el 50% de los alumnos son castaños. Que el 15% de los alumnos sean rubios
NÚMEROS NATURALES Y NÚMEROS ENTEROS
NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de
SUCESIONES INFINITAS
SUCESIONES INFINITAS 1 2 Ejercicio: Cálculo del término general de una sucesión: Encontrar el quincuagésimo término de la sucesión 1, 3, 5, 7,... Es una progresión aritmética de diferencia 2. Su término
Unidad IV. Volumen. Le servirá para: Calcular el volumen o capacidad de diferentes recipientes o artefactos.
Volumen Unidad IV En esta unidad usted aprenderá a: Calcular el volumen o capacidad de recipientes. Convertir unidades de volumen. Usar la medida del volumen o capacidad, para describir un objeto. Le servirá
CONTENIDOS NECESARIOS PARA MATEMATICAS, 1.
Elaboración de Materiales para Pruebas Libres de Educación Secundaria CONTENIDOS NECESARIOS PARA MATEMATICAS, 1. Números: suma, resta, multiplicación y división de números; operaciones combinadas de números
INSTITUTO VALLADOLID PREPARATORIA página 37
INSTITUTO VALLADOLID PREPARATORIA página 37 página 38 SUMA DE FRACCIONES CONCEPTO Las cuatro operaciones fundamentales, suma, resta, multiplicación y división, con fracciones algebraicas se realizan bajo
I.E.S. VICTORIA KENT DEPARTAMENTO DE MATEMÁTICAS Pág. 1 de 21 ACTIVIDADES DE REFUERZO DE MATEMÁTICAS DE 1º DE E.S.O. UNIDAD 1
DEPARTAMENTO DE MATEMÁTICAS Pág. 1 de 21 Ejercicio nº 1.- Observa esta placa de matrícula del último coche matriculado: Cuántos coches llevan las letras LXZ en su matrícula hasta este momento? Cuántos
Variables que se relacionan... líneas insertadas < coste del anuncio (i) Variable A 1 2 6 5 10 20
Estudiar en el libro de Texto: No PROBLEMAS. PROPORCIONALIDAD (1) Proporcionalidad directa e inversa Ejemplo 1. Proporcionalidad directa En un diario leemos que los anuncios que se pueden insertar en él
NÚMEROS Y OPERACIONES
NÚMEROS Y OPERACIONES NUESTRO SISTEMA DE NUMERACIÓN Para escribir un número usamos sólo diez cifras, que son: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9 El número 2 1 403.745 está formado por siete órdenes de unidades.
PROBLEMAS ORIENTATIVOS PARA EL EXAMEN DE INGRESO AL CICLO FORMATIVO DE GRADO MEDIO
OPERACIONES BÁSICAS CON NÚMEROS NATURALES, ENTEROS, DECIMALES Y FRACCIONES (SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN) Y OPERACIONES COMBINADAS DE LAS ANTERIORES. 1. Realizar las siguientes operaciones con
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables
