Ejercicios con soluciones de demostración axiomática (lógica proposicional)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ejercicios con soluciones de demostración axiomática (lógica proposicional)"

Transcripción

1 Ejercicios con soluciones de demostración axiomática (lógica proposicional) Pedro López García 1. Dadas las fórmulas: A 1 : b d A 2 : d a A 3 : a b c demostrar que T [A 1, A 2, A 3 ] c 1. T 1 b d Axioma no lógico. 2. T 1 d R. Simplificación T 1 d a Axioma no lógico. 4. T 1 d a Definición de T 1 a R. Modus Ponens 2 y T 1 b R. Simplificación T 1 a b R. Producto 5 y T 1 a b c Axioma no lógico. 9. T 1 c R. Modus Ponens 7 y Dadas las fórmulas: A 1 : d b A 2 : d c A 3 : b a demostrar que T [A 1, A 2, A 3 ] c a 1. T 1 d c Axioma no lógico. 2. T 1 d R. Simplificación T 1 d b Axioma no lógico. 4. T 1 d b Definición de T 1 b R. Modus Ponens 2 y T 1 b a Axioma no lógico. 7. T 1 b a Definición de T 1 a R. Modus Ponens 5 y T 1 c a R. Expansión Dadas las fórmulas: A 1 : a b c A 2 : d b A 3 : c d demostrar que T [A 1, A 2, A 3 ] a e 1

2 1. T 1 d b Axioma no lógico. 2. T 1 d b Definición de T 1 c d Axioma no lógico. 4. T 1 c d R. Definición de T 1 d c R. Conmutativa T 1 c b R. Corte 5 y T 1 b c R. Conmutativa T 1 (b c) L. de DeMorgan T 1 a b c Axioma no lógico. 10. T 1 a R. Modus Tollens 9 y T 1 e a R. Expansión T 1 a e R. Conmutativa T 1 a e R. Definición de T 1 a b c Axioma no lógico. 2. T 1 a (b c) R. Definición de T 1 ( a b) ( a c) R Distributiva T 1 a c R. Simplificación T 1 c a R. Conmutativa T 1 d b Axioma no lógico. 7. T 1 d b Definición de T 1 c d Axioma no lógico. 9. T 1 c d R. Definición de T 1 d c R. Conmutativa T 1 c b R. Corte 10 y T 1 a b R. Corte 5 y T 1 b a R. Conmutativa T 1 a b R. Simplificación T 1 b a R. Conmutativa T 1 a a R. Corte 15 y T 1 a R. Contracción T 1 e a R. Expansión T 1 a e R. Conmutativa T 1 a e R. Definición de T 1 a b c Axioma no lógico. 2. T 1 a (b c) R. Definición de T 1 ( a b) ( a c) R Distributiva T 1 a b R. Simplificación T 1 b a R. Conmutativa T 1 d b Axioma no lógico. 7. T 1 d b Definición de T 1 b d R. Conmutativa T 1 a d R. Corte 5 y T 1 d a R. Conmutativa T 1 c d Axioma no lógico. 12. T 1 c d R. Definición de T 1 a c R. Simplificación T 1 c a R. Conmutativa T 1 a d R. Corte 12 y T 1 d a R. Conmutativa T 1 a a R. Corte 10 y T 1 a R. Contracción T 1 e a R. Expansión T 1 a e R. Conmutativa T 1 a e R. Definición de 20. 2

3 4. Dadas las fórmulas: A 1 : a b A 2 : c b A 3 : a c demostrar que T [A 1, A 2, A 3 ] a 1. T 1 a b Axioma no lógico. 2. T 1 a b Definición de T 1 b a R. Conmutativa T 1 a c Axioma no lógico. 5. T 1 a c Definición de T 1 c a R. Conmutativa T 1 c b Axioma no lógico. 8. T 1 c b Definición de T 1 a b R. Corte 6 y T 1 b a R. Conmutativa T 1 a a R. Corte 3 y T 1 a R. Contracción Dadas las fórmulas: A 1 : a b A 2 : a c A 3 : d c A 4 : b d e A 5 : a demostrar que T [A 1, A 2, A 3, A 4, A 5 ] e f Sea T 1 la teoría T [A 1, A 2, A 3, A 4, A 5 ] 1. T 1 a b Axioma no lógico. 2. T 1 a Axioma no lógico. 3. T 1 b R. Modus Ponens 1 y T 1 d c Axioma no lógico. 5. T 1 d c Definición de T 1 c d R. Conmutativa T 1 a c Axioma no lógico. 8. T 1 c R. Modus Ponens 2 y T 1 d c R. Expansión T 1 c d R. Conmutativa T 1 d d R. Corte 10 y T 1 d R. Contracción T 1 d R. Doble negación T 1 b d R. Producto 3 y T 1 b d e Axioma no lógico. 16. T 1 e R. Modus Ponens 14 y T 1 f e R. Expansión T 1 e f R. Conmutativa 17. 3

4 1. T 1 a b Axioma no lógico. 2. T 1 a Axioma no lógico. 3. T 1 b R. Modus Ponens 1 y T 1 d c Axioma no lógico. 5. T 1 c d R. Contraposición 4 + Doble negación + Reemplazo. 6. T 1 a c Axioma no lógico. 7. T 1 c R. Modus Ponens 2 y T 1 d R. Modus Ponens 5 y T 1 b d R. Producto 3 y T 1 b d e Axioma no lógico. 11. T 1 e R. Modus Ponens 9 y T 1 f e R. Expansión T 1 e f R. Conmutativa Dadas las fórmulas: A 1 : b (a (c a)) A 2 : c b demostrar que T [A 1, A 2 ] a c Sea T 1 la teoría T [A 1, A 2 ] 1. T 1 b (a (c a)) Axioma no lógico. 2. T 1 b ( a ( c a)) Definición de T 1 c b Axioma no lógico. 4. T 1 c b Definición de T 1 b c R. Conmutativa T 1 c ( a ( c a)) R. de Corte 5, T 1 ( c a) ( c a) R. Asociativa T 1 c a R. de Contracción (o Idempotencia) T 1 a c R. Conmutativa T 1 a c Definición de Dadas las fórmulas: A 1 : a b A 2 : a c d A 3 : b c d A 4 : ( b c) demostrar que T [A 1, A 2, A 3, A 4 ] d Sea T 1 la teoría T [A 1, A 2, A 3, A 4 ] 1. T 1 ( b c) Axioma no lógico. 2. T 1 ( b c) Definición de 1 + Reemplazo. 3. T 1 (b c) R. Doble Negación 2 + Reemplazo. 4. T 1 b c L. de DeMorgan T 1 b c R. Doble negación 4 + Reemplazo. 6. T 1 c R. de Simplificación T 1 a b Axioma no lógico. 8. T 1 b a R. Conmutativa T 1 b a R. Doble Negación 8 + Reemplazo. 10. T 1 b a Definición de T 1 b R. de Simplificación T 1 a R. Modus Ponens 10 y T 1 a c R. del Producto 6 y T 1 a c d Axioma no lógico. 15. T 1 d R. Modus Ponens 13 y 14. 4

5 8. Dadas las fórmulas: A 1 : a b c A 2 : a c A 3 : s b demostrar que T [A 1, A 2, A 3 ] a 1. T 1 a b c Axioma no lógico. 2. T 1 a ( b c) Definición de T 1 a ( b c) R. Doble Negación T 1 (a b) c R Asociativa T 1 c (a b) R. Conmutativa T 1 a c Axioma no lógico. 7. T 1 c a R. Conmutativa T 1 (a b) a R. de Corte 5 y T 1 a ( b a) R. Asociativa T 1 ( b a) a R. Conmutativa T 1 b (a a) R. Asociativa T 1 b a R. Contracción T 1 b a Definición de T 1 s b Axioma no lógico. 15. T 1 b R. de Simplificación T 1 a R. Modus Ponens 13 y 15. 5

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Métodos de Demostración Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM Métodos de Demostración Matemáticas Discretas - p. 1/13 Introducción En esta sección

Más detalles

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12

personal.us.es/elisacamol Elisa Cañete Molero Curso 2011/12 Teoría de conjuntos. Teoría de Conjuntos. personal.us.es/elisacamol Curso 2011/12 Teoría de Conjuntos. Teoría de conjuntos. Noción intuitiva de conjunto. Propiedades. Un conjunto es la reunión en un todo

Más detalles

Introducción. Lógica de proposiciones: introducción. Lógica de proposiciones. P (a) x. Conceptos

Introducción. Lógica de proposiciones: introducción. Lógica de proposiciones. P (a) x. Conceptos Introducción César Ignacio García Osorio Lógica y sistemas axiomáticos 1 La lógica ha sido históricamente uno de los primeros lenguajes utilizados para representar el conocimiento. Además es frecuente

Más detalles

Matemáticas Discretas

Matemáticas Discretas Matemáticas Discretas Conjuntos (11) Curso Propedéutico 2009 Maestría en Ciencias Computacionales, INAOE Conjuntos (2) Dr Luis Enrique Sucar Succar esucar@inaoep.mx Dra Angélica Muñoz Meléndez munoz@inaoep.mx

Más detalles

Cuantificadores y Métodos de Demostración

Cuantificadores y Métodos de Demostración Cuantificadores y Métodos de Demostración 1. Cuantificadores... 1 1.1. Cuantificador Existencial... 2 1.2. Cuantificador Universal... 3 2. Métodos de Demostración... 4 1. Cuantificadores Hasta ahora habíamos

Más detalles

APÉNDICE A. Axiomas y Teoremas. Índice del Capítulo

APÉNDICE A. Axiomas y Teoremas. Índice del Capítulo APÉNDICE A Axiomas y Teoremas Índice del Capítulo A.1. Teoremas del Cálculo Proposicional..................... 219 A.2. Leyes Generales de la Cuantificación.................... 222 A.3. Teoremas del Cálculo

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas. Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas. Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Fórmulas elementales 1 Teniendo en cuenta las definiciones:

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Teoremas LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Fórmulas elementales 1 Teniendo en cuenta las definiciones:

Más detalles

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 1: Lógica Proposicional

Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 1: Lógica Proposicional Capítulo 1: Fundamentos: Lógica y Demostraciones Clase 1: Lógica Proposicional Matemática Discreta - CC3101 Profesor: Pablo Barceló P. Barceló Matemática Discreta - Cap. 1: Fundamentos: Lógica y Demostraciones

Más detalles

El sistema de Hilbert: Lógica de Primer Orden

El sistema de Hilbert: Lógica de Primer Orden El sistema de Hilbert: Lógica de Primer Orden El sistema de deducción de Hilbert para la lógica de primer orden consta de los siguientes elementos: IIC2213 Lógica de Primer Orden 55 / 65 El sistema de

Más detalles

Operaciones lineales en R 3 y sus propiedades

Operaciones lineales en R 3 y sus propiedades Operaciones lineales en R 3 y sus propiedades Ejercicios Objetivos. Aprender a demostrar propiedades de las operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las

Más detalles

Matemáticas Discretas LOGICA PROPOSICIONAL

Matemáticas Discretas LOGICA PROPOSICIONAL Matemáticas Discretas LOGICA PROPOSICIONAL Matemáticas Discretas Estudio de objetos discretos Habilidad para razonar y argumentar Base otras áreas en computación Bases de datos Lenguajes formales Inteligencia

Más detalles

Axiomas y Teoremas APÉNDICE A. Teoremas del Cálculo Proposicional. Índice del Capítulo

Axiomas y Teoremas APÉNDICE A. Teoremas del Cálculo Proposicional. Índice del Capítulo APÉNDICE A Axiomas y Teoremas Índice del Capítulo A.1. Teoremas del Cálculo Proposicional..................... 217 A.2. Teoremas del Cálculo de Predicados..................... 220 A.3. Cuantificación Existencial...........................

Más detalles

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Axiomática

LÓGICA FORMAL TEORIAS DE PRIMER ORDEN. Axiomática LÓGICA FORMAL TEORIAS DE PRIMER ORDEN Francisco Bueno Pedro López Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Teoría de Primer Orden 1 Formalmente,

Más detalles

Tema 3: Demostraciones proposicionales

Tema 3: Demostraciones proposicionales Razonamiento Automático Curso 2000 200 Tema 3: Demostraciones proposicionales José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁGEBRA Y ANÁLISIS MATEMÁTICO 1 Introducción 2 Axiomas y reglas de inferencia Reglas de la impliación, conjunción y disyunción 3 Reglas derivadas

Más detalles

Vectores en el plano con punto inicial fijo

Vectores en el plano con punto inicial fijo Vectores en el plano con punto inicial fijo bjetivos. Considerar el conjunto V 2 () de los vectores en el plano euclidiano (también llamados segmentos dirigidos o flechas) con un punto inicial fijo. Definir

Más detalles

Capítulo 3 Cálculo proposicional 3.5 Razonamientos con proposiciones

Capítulo 3 Cálculo proposicional 3.5 Razonamientos con proposiciones 3.5 Razonamientos con proposiciones Si nos entregan el valor de verdad de las proposiciones simples es posible deducir el valor de verdad de la proposición compuesta. p: Holmes nació antes que Marx, es

Más detalles

Lógica, conjuntos, relaciones y funciones

Lógica, conjuntos, relaciones y funciones Lógica, conjuntos, relaciones y funciones Álvaro Pérez Raposo Universidad Autónoma de San Luis Potosí Universidad Politécnica de Madrid Publicaciones Electrónicas Sociedad Matemática Mexicana A la memoria

Más detalles

ESCUELA MILITAR DE INGENIERIA ALGEBRA I Misceláneas de problemas 2014 Tema: Estructuras Algebraicas.

ESCUELA MILITAR DE INGENIERIA ALGEBRA I Misceláneas de problemas 2014 Tema: Estructuras Algebraicas. ESCUELA MILITAR DE INGENIERIA ALGEBRA I Misceláneas de problemas 2014 Tema: Estructuras Algebraicas. Estructuras Algebraicas. Para cada operación binaria definida en el conjunto señalado dígase cuándo

Más detalles

Clase 5 1. Lógica proposicional. Razonamientos

Clase 5 1. Lógica proposicional. Razonamientos Clase 5 1 Lógica proposicional Razonamientos Clase 5 2 LOGICA - INTRODUCCION!OBJETIVO Uno de los fundamentales objetivos ha sido el estudio de las DEDUCCIONES, RAZONAMIENTOS O ARGUMENTOS LOGICA DEDUCTIVA

Más detalles

Matemáticas Discretas Tarea No 7: Argumentación en Lógica de Predicados Maestro Eduardo Uresti, Semestre Agosto-Diciembre 2015

Matemáticas Discretas Tarea No 7: Argumentación en Lógica de Predicados Maestro Eduardo Uresti, Semestre Agosto-Diciembre 2015 Matemáticas Discretas Tarea No 7: Argumentación en Lógica de Predicados Maestro Eduardo Uresti, Semestre Agosto-Diciembre 2015 Grupo: Matrícula: Nombre: Tipo:-1 1. Para el siguiente razonamiento indique

Más detalles

Lógica Proposicional IIC2212. IIC2212 Lógica Proposicional 1 / 56

Lógica Proposicional IIC2212. IIC2212 Lógica Proposicional 1 / 56 Lógica Proposicional IIC2212 IIC2212 Lógica Proposicional 1 / 56 Inicio de la Lógica Originalmente, la Lógica trataba con argumentos en el lenguaje natural. Ejemplo Es el siguiente argumento válido? Todos

Más detalles

Guía 4: Demostraciones en Cálculo Proposicional

Guía 4: Demostraciones en Cálculo Proposicional Introducción a los Algoritmos - 2do. cuatrimestre 2014 Guía 4: Demostraciones en Cálculo Proposicional Docentes: Walter Alini y Luciana Benotti. El objetivo principal de esta guía es lograr un buen entrenamiento

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 en FOL Departamento de Matemáticas / Centro de Sistema Inteligentes ITESM en FOL Matemáticas Discretas - p. 1/23 En esta lectura veremos principalmente cómo se construyen argumentos

Más detalles

Lógica Matemática. Tema: Tautología, contradicción y evaluación de la validez

Lógica Matemática. Tema: Tautología, contradicción y evaluación de la validez Lógica Matemática Tema: Tautología, contradicción y evaluación de la validez Tautología, contradicción y evaluación de la validez Una proposición molecular es una tautología si es cierta, cualesquiera

Más detalles

RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS

RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS RAZONAMIENTOS LÓGICOS EN LOS PROBLEMAS DE MATEMÁTICAS AUTORÍA SERGIO BALLESTER SAMPEDRO TEMÁTICA MATEMÁTICAS ETAPA ESO, BACHILLERATO Resumen En este artículo comienzo definiendo proposición y los distintos

Más detalles

Guía 4: Demostraciones en Cálculo Proposicional

Guía 4: Demostraciones en Cálculo Proposicional Introducción a los Algoritmos - 1er. cuatrimestre 2015 Guía 4: Demostraciones en Cálculo Proposicional Cálculo Proposicional Tomando ideas de E. W. Dijkstra (EWD-999), proponemos el uso de lo que llamamos

Más detalles

Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1

Liceo Nº 35, Instituto Dr. Alfredo Vázquez Acevedo. Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1 Liceo Nº 35, "Instituto Dr. Alfredo Vázquez Acevedo". Nocturno. Matemática. 5º B1 - B2 y 5ª H3. Profesora. María del Rosario Quintans 1 TEORÍA DE CONJUNTOS CONOCIMIENTOS BÁSICOS Cuando decimos: "un elemento

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS Fundamentos de la Matemática 1 Operaciones Binarias Dado un conjunto A, A, decimos que es una operación binaria en A si, y sólo si, : A A A es una función. Investigar si los siguientes son ejemplos de

Más detalles

Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación.

Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación. Conjuntos Numéricos Axiomas de los números La matemática se rige por ciertas bases, en la que descansa toda la matemática, estas bases se llaman axiomas. Cuántas operaciones numéricas conocen? La suma

Más detalles

LÓGICA DE PROPOSICIONES. a) El rumor y el ir y venir incesante de las abejas. b) No te vayas! c) Hoy es martes.

LÓGICA DE PROPOSICIONES. a) El rumor y el ir y venir incesante de las abejas. b) No te vayas! c) Hoy es martes. LÓGICA DE PROPOSICIONES 1. Cuál de las siguientes oraciones es una proposición lógica? a) El rumor y el ir y venir incesante de las abejas. b) No te vayas! c) Hoy es martes. La opción a) no es una proposición

Más detalles

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa:

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa: NÚMERO REAL El conjunto de los números racionales se nos hace insuficiente a la hora de representar con exactitud magnitudes tan reales como la diagonal de un cuadrado cuyo lado mida 1, por ejemplo, o

Más detalles

ISSN 1988-6047 DEP. LEGAL: GR 2922/2007 Nº 15 FEBRERO DE 2009

ISSN 1988-6047 DEP. LEGAL: GR 2922/2007 Nº 15 FEBRERO DE 2009 LÓGICA PROPOSICIONAL AUTORÍA SILVIA BORREGO DEL PINO TEMÁTICA MATEMÁTICAS. LÓGICA ETAPA UNIVERSITARIA Resumen La lógica forma parte de la filosofía, en la que se distinguen dos dimensiones, la dimensión

Más detalles

Significado de las f.b.f (fórmulas bien formadas) en términos de objetos, propiedades y relaciones en el mundo

Significado de las f.b.f (fórmulas bien formadas) en términos de objetos, propiedades y relaciones en el mundo Significado de las f.b.f (fórmulas bien formadas) en términos de objetos, propiedades y relaciones en el mundo Semánticas del cálculo de predicados proporcionan las bases formales para determinar el valor

Más detalles

Lógica. Lógica Proposicional. Cuáles de las siguientes frases son proposiciones? Proposición

Lógica. Lógica Proposicional. Cuáles de las siguientes frases son proposiciones? Proposición Lógica Lógica Proposicional Escuela de Ingeniería Industrial Pontificia Universidad Católica de Valparaíso, Chile rgatica@ucv.cl Proposición Definición: Una proposición o enunciado es una frase que a la

Más detalles

Asignación de verdad a FBF

Asignación de verdad a FBF 2.2.3. Semántica Asignación del valor cierto o falso a una proposición (simple o compuesta), con independencia de los significados que para nosotros tengan las proposiciones. Asignación de verdad a fórmulas

Más detalles

CONJUNTO, RELACIONES, FUNCIONES Y LÓGICA

CONJUNTO, RELACIONES, FUNCIONES Y LÓGICA CONJUNTO, RELACIONES, FUNCIONES Y LÓGICA Fundamentos de la Matemática 2010 Introducción Cuando decimos: un elemento pertenece a un conjunto, estamos utilizando nada menos que tres conceptos primitivos

Más detalles

SERVICIO DE DESCARGA DE VIDEOS DE MATEMATICAS

SERVICIO DE DESCARGA DE VIDEOS DE MATEMATICAS SERVICIO DE DESCARGA DE VIDEOS DE MATEMATICAS (Actualizado el 08 de septiembre de 2009) Esta es la lista de videos que tenemos disponibles para descargar hasta la fecha actual. Esta lista se va actualizando

Más detalles

Introducción a la Lógica Modal

Introducción a la Lógica Modal Introducción a la Lógica Modal Pedro Cabalar Depto. Computación Universidade da Coruña, SPAIN 4 de mayo de 2006. Cabalar ( Depto. Computación Universidade da Coruña, SPAIN Lógica ) Modal 4 de mayo de 2006

Más detalles

Guía 6: Demostraciones en Cálculo Proposicional

Guía 6: Demostraciones en Cálculo Proposicional Introducción a los Algoritmos - 1er. cuatrimestre 2012 Guía 6: Demostraciones en Cálculo Proposicional Docentes: Araceli Acosta, Mariana Badano, Javier Blanco, Paula Estrella, Pedro Sanchez Terraf, Mauricio

Más detalles

UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE

UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE UNIVERSIDAD POPULAR DEL CESAR DEPATAMENTO DE MATEMATICA Y ESTADISTICA ALGEBRA DE BOOLE GERMAN ISAAC SOSA MONTENEGRO EJERCICIOS 3. Escriba en notación expandida los siguientes numerales : a) 2375 b) 110111

Más detalles

Computational Logic Chapter 5. Intuitionistic Logic

Computational Logic Chapter 5. Intuitionistic Logic Computational Logic Chapter 5. Intuitionistic Logic Pedro Cabalar Dept. Computer Science University of Corunna, SPAIN January 18, 2011 P. Cabalar ( Dept. Ch5. Computer Intuitionistic ScienceLogic University

Más detalles

Taller Matemático. Lógica. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid

Taller Matemático. Lógica. Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid Taller Matemático Lógica Cristóbal Pareja Flores antares.sip.ucm.es/cpareja Facultad de Estadística Universidad Complutense de Madrid 1. Lógica 14 amigos aportan la misma cantidad de dinero, sobre un fondo

Más detalles

Repaso de Lógica de Primer Orden

Repaso de Lógica de Primer Orden Repaso de Lógica de Primer Orden IIC3260 IIC3260 Repaso de Lógica de Primer Orden 1 / 29 Lógica de primer orden: Vocabulario Una fórmula en lógica de primer orden está definida sobre algunas constantes

Más detalles

Sistemas deductivos. Lógica Computacional. Curso 2005/2006. Departamento de Matemática Aplicada Universidad de Málaga

Sistemas deductivos. Lógica Computacional. Curso 2005/2006. Departamento de Matemática Aplicada Universidad de Málaga Sistemas deductivos Lógica Computacional Departamento de Matemática plicada Universidad de Málaga Curso 2005/2006 Contenido 1 Sistema axiomático de Lukasiewicz Sistema proposicional Extensión a predicados

Más detalles

CUADERNO I LÓGICA Y TEORÍA DE CONJUNTOS. Miguel A. Sainz, Josep M. Humet Dep. de Informática y Matemática Aplicada Universidad de Girona

CUADERNO I LÓGICA Y TEORÍA DE CONJUNTOS. Miguel A. Sainz, Josep M. Humet Dep. de Informática y Matemática Aplicada Universidad de Girona 1 CUADERNO I LÓGICA Y TEORÍA DE CONJUNTOS Miguel A. Sainz, Josep M. Humet Dep. de Informática y Matemática Aplicada Universidad de Girona RESUMEN: El pensamiento humano es más complicado de lo que en principío

Más detalles

Ejercicios de lógica

Ejercicios de lógica 1. Sistemas formales. Ejercicios de lógica 1. Considere el siguiente sistema formal: Símbolos: M, I, U. Expresiones: cualquier cadena en los símbolos. Axioma: UMUIUU Regla de inferencia: xmyiz xumyuizuu

Más detalles

Si Sócrates es un ser humano, entonces Sócrates es mortal Sócrates es un ser humano

Si Sócrates es un ser humano, entonces Sócrates es mortal Sócrates es un ser humano Capítulo I Lógica, Pruebas e Inducción La lógica es el estudio de razonamiento correcto. Más específicamente en nuestro contexto matemático, estamos interesados en razonamiento deductivo. En un argumento,

Más detalles

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003

Álgebras de Boole. Juan Medina Molina. 25 de noviembre de 2003 Álgebras de Boole Juan Medina Molina 25 de noviembre de 2003 Introducción Abordamos en este tema el estudio de las álgebras de Boole. Este tema tiene una aplicación directa a la electrónica digital ya

Más detalles

TEMA 3 (parte 2). Representación del Conocimiento

TEMA 3 (parte 2). Representación del Conocimiento TEMA 3 (parte 2). Representación del Conocimiento Francisco José Ribadas Pena INTELIGENCIA ARTIFICIAL 5 Informática ribadas@uvigo.es 13 de noviembre de 2009 FJRP ccia [Inteligencia Artificial] 3.2.2 Lógica

Más detalles

LA MULTIPLICACIÓN Y SUS PROPIEDADES

LA MULTIPLICACIÓN Y SUS PROPIEDADES LA MULTIPLICACIÓN Y SUS PROPIEDADES Observa la siguiente multiplicación: 7 x 4 = 28 7: es el sumando que se repite y recibe el nombre de multiplicando. 4: es el número de veces que se repite el sumando

Más detalles

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN : ESPACIO VECTORIAL Propiedades de la adición de vectores y la multiplicación de un vector por un escalar Teorema.1: Si A, B y C son vectores cualesquiera

Más detalles

La Representación del Conocimiento CÓMO REPRESENTAR EL CONOCIMIENTO?

La Representación del Conocimiento CÓMO REPRESENTAR EL CONOCIMIENTO? La Representación del Conocimiento CÓMO REPRESENTAR EL CONOCIMIENTO? TIPOS DE CONOCIMENTO El epistemología es el estudio del conocimiento, hay dos tipos esenciales llamados a priori y posteriori. Algoritmo

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 1.1. LEY DE COMPOSICIÓN INTERNA Definición 1.1.1. Sea E un conjunto, se llama ley de composición interna en E si y sólo si a b = c E, a, b E. Observación 1.1.1. 1. también se llama

Más detalles

2.1. Introducción Lógica: Campo del conocimiento relacionado con el estudio y el análisis de los métodos de razonamiento. El razonamiento lógico es es

2.1. Introducción Lógica: Campo del conocimiento relacionado con el estudio y el análisis de los métodos de razonamiento. El razonamiento lógico es es Tema 2. Introducción a la lógica 1. Introducción 2. Lógica de proposiciones 1. Definiciones 2. Sintaxis 3. Semántica Bibliografía Matemática discreta y lógica. Grassman y Tremblay. 1997. Prentice Hall.

Más detalles

Cálculo Proposicional Implicativo Clásico

Cálculo Proposicional Implicativo Clásico Cálculo Proposicional Implicativo Clásico Antonio A R Monteiro Estas notas reproducen el curso [13] que dictara en la Universidad Nacional del Sur, en 1960 el Dr Antonio A R Monteiro, donde presentó resultados

Más detalles

El sistema deductivo de Hilbert

El sistema deductivo de Hilbert El sistema deductivo de Hilbert IIC2213 IIC2213 El sistema deductivo de Hilbert 1 / 17 Completidad de resolución proposicional Qué tenemos que agregar a nuestro sistema de deducción para que sea completo?

Más detalles

D.I.I.C.C Arquitectura de Sistemas Computacionales

D.I.I.C.C Arquitectura de Sistemas Computacionales CAPITULO 6.- ÁLGEBRA DE BOOLE INTRODUCCIÓN. En 1854 George Boole introdujo una notación simbólica para el tratamiento de variables cuyo valor podría ser verdadero o falso (variables binarias) Así el álgebra

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 1 Estructuras algebraicas 1.1 Álgebras binarias Sea A un conjunto no vacío, una operación binaria (u operación interna) en A es una aplicación *: A A A (x, y) x * y es decir, una regla que a cada

Más detalles

LÓGICA. 1. Qué es un silogismo Irregular? 2. Qué es un entimema? 3. Da un ejemplo de entimema. 4. Qué es un epiquerema?

LÓGICA. 1. Qué es un silogismo Irregular? 2. Qué es un entimema? 3. Da un ejemplo de entimema. 4. Qué es un epiquerema? LÓGICA 1. Qué es un silogismo Irregular? 2. Qué es un entimema? 3. Da un ejemplo de entimema 4. Qué es un epiquerema? 5. Da un ejemplo de un epiquerema 6. Qué es un Poli silogismo? 7. Da un ejemplo de

Más detalles

I. LÓGICA PROPOSICIONAL A) Deducción natural

I. LÓGICA PROPOSICIONAL A) Deducción natural I. LÓGICA PROPOSICIONAL A) Deducción natural Regla de supuestos (S) A A Reglas primitivas Modus ponens (MP) Δ A Γ, Δ B Doble negación (DN) Γ A Γ A Modus tollens (MT) Δ B Γ, Δ A Prueba condicional (PC)

Más detalles

Tarea 4 Soluciones. la parte literal es x3 y 4

Tarea 4 Soluciones. la parte literal es x3 y 4 Tarea 4 Soluciones Extracto del libro Baldor. Definición. Término.-es una expresión algebraica que consta de un solo símbolo o de varios símbolos no separados entre sí por el signo + o -. Así, a, 3b, 2xy,

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

Guía 4: Cálculo Proposicional y Aplicaciones

Guía 4: Cálculo Proposicional y Aplicaciones Introducción a los Algoritmos - 1er. cuatrimestre 2011 Guía 4: Cálculo Proposicional y Aplicaciones Docentes: Araceli Acosta, Carlos Areces, Mariana Badano, Luciana Benotti, Javier Blanco, Paula Estrella,

Más detalles

LÓGICA MATEMÁTICA. Álgebra de Boole Guía de trabajo

LÓGICA MATEMÁTICA. Álgebra de Boole Guía de trabajo LÓGICA MATEMÁTICA Álgebra de Boole Guía de trabajo Favián Arenas A. y Amaury Camargo Universidad de Córdoba Facultad de Ciencias Básicas e Ingenierías Departamento de Matemáticas 4.15 Objetivos Lógica

Más detalles

Tema 3 : Algebra de Boole

Tema 3 : Algebra de Boole Tema 3 : Algebra de Boole Objetivo: Introducción al Algebra de Boole 1 INTRODUCCIÓN George Boole creó el álgebra que lleva su nombre en el primer cuarto del siglo XIX. Pretendía explicar las leyes fundamentales

Más detalles

Lógica y Programación

Lógica y Programación Lógica y Programación Resolución proposicional Antonia M. Chávez, Agustín Riscos, Carmen Graciani Dpto. Ciencias de la Computacion e Inteligencia Artificial Universidad de Sevilla Introducción Idea básica

Más detalles

Estructuras Discretas. Teoremas. Técnicas de demostración. Reglas de Inferencia. Reglas de Inferencia Ley de Combinación.

Estructuras Discretas. Teoremas. Técnicas de demostración. Reglas de Inferencia. Reglas de Inferencia Ley de Combinación. Estructuras Discretas Teoremas Técnicas de demostración Claudio Lobos, Jocelyn Simmonds clobos,jsimmond@inf.utfsm.cl Universidad Técnica Federico Santa María Estructuras Discretas INF 15 Definición: teorema

Más detalles

Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole.

Tema 1: Teoría de Conjuntos. Logica proposicional y Algebras de Boole. Tema 1: Teoría de Conjuntos. Logica proposicional y lgebras de oole. 1.1 Teoria de conjuntos Objetivo específico: Operar con conjuntos y aplicar sus propiedades para resolver problemas reales. Piensa Elabora

Más detalles

3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS

3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS TEMA 12: MODELADO CON VARIABLES BINARIAS 1.- MOTIVACIÓN 2.- INTRODUCCIÓN 3.- ALGUNOS CONCEPTOS BÁSICOS DE ÁLGEBRA DE BOOLE 4.- TRANSFORMACIÓN DE EXPRESIONES LÓGICAS A EXPRESIONES ALGEBRAICAS 5.- MODELADO

Más detalles

Operaciones Booleanas y Compuertas Básicas

Operaciones Booleanas y Compuertas Básicas Álgebra de Boole El álgebra booleana es la teoría matemática que se aplica en la lógica combinatoria. Las variables booleanas son símbolos utilizados para representar magnitudes lógicas y pueden tener

Más detalles

Introducción a la Lógica Proposicional Seminario de Matemáticas

Introducción a la Lógica Proposicional Seminario de Matemáticas Introducción a la Lógica Proposicional Seminario de Matemáticas Julio Ariel Hurtado Alegría ahurtado@unicauca.edu.co 8 de mayo de 2015 Julio A. Hurtado A. Departamento de Sistemas 1 / 34 Agenda Motivación

Más detalles

T (a;b) : R! R x! ax + b. H = T (a;b) : a 2 Q y b 2 R : Probar que H con la operación de nida en el problema anterior es un grupo no abeliano.

T (a;b) : R! R x! ax + b. H = T (a;b) : a 2 Q y b 2 R : Probar que H con la operación de nida en el problema anterior es un grupo no abeliano. 9. Determine cuales de las operaciones binarias de nidas en el problema (2) determinan grupos. 10. Sea R el conjunto de los números reales, para a; b 2 R con a 6= 0 de nimos T (a;b) : R! R x! ax + b Probar

Más detalles

Un álgebra de Heyting satisface distributividad, es lo que demostramos un poco más arriba (la prueba es muy similar). Recíprocamente, si se define

Un álgebra de Heyting satisface distributividad, es lo que demostramos un poco más arriba (la prueba es muy similar). Recíprocamente, si se define 62 (Undécima clase: Ejemplos de exponenciales) Algunos ejemplos de lógica y computación. Álgebras de Heyting. La clase pasada vimos que una álgebra de Boole, vista como categoría, es cartesiana cerrada

Más detalles

3. LA ARGUMENTACIÓN FICHA 1 DE REFUERZO DE CONTENIDOS

3. LA ARGUMENTACIÓN FICHA 1 DE REFUERZO DE CONTENIDOS FICHA 1 DE REFUERZO DE CONTENIDOS 1. La argumentación está formada por dos tipos de enunciados: a) inducción y deducción; b) analíticos y sintéticos; c) premisas y conclusión; d) axiomas y teoremas. 2.

Más detalles

Tema 2 ESPACIOS VECTORIALES

Tema 2 ESPACIOS VECTORIALES Tema 2 ESPACIOS VECTORIALES Prof. Rafael López Camino Universidad de Granada 1 Espacio vectorial Definición 1.1 Un espacio vectorial es una terna (V, +, ), donde V es un conjunto no vacío y +, son dos

Más detalles

TEORÍAS AXIOMÁTICAS DE CLASES Y CONJUNTOS

TEORÍAS AXIOMÁTICAS DE CLASES Y CONJUNTOS Antonio Cipriano Santiago Zaragoza Departamento de Matemáticas Abril de 2009 TEORÍAS AXIOMÁTICAS DE CLASES Y CONJUNTOS Qué es un sistema axiomático? Una contestación muy resumida la encontramos en el libro

Más detalles

UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS 1. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH 1-1. R. ESPINOSA R. y P. FUENTES R.

UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS 1. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH 1-1. R. ESPINOSA R. y P. FUENTES R. UNIDAD I INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS. ÁLGEBRA DE BOOLE 2. MÉTODO DE REDUCCIÓN DE MAPAS DE KARNAUGH - . INTRODUCCIÓN A LOS CIRCUITOS LÓGICOS. ÁLGEBRA DE BOOLE. ÁLGEBRA DE BOOLE El álgebra de Boole

Más detalles

Con los dos conectivos y en las formulas que tienen una sola variable proposicional distinta, no hay forma de construir una contradicción.

Con los dos conectivos y en las formulas que tienen una sola variable proposicional distinta, no hay forma de construir una contradicción. 1) No se puede formar una contradicción usando solamente los dos conectivos, {*,->}, en las formulas que tienen una sola variable proposicional distinta. Con los dos conectivos y en las formulas que tienen

Más detalles

Tema 4: (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla

Tema 4: (Tecnologías Informáticas) Curso Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Tema 4: Proposicional Dpto. Ciencias de la Computación Inteligencia Artificial Universidad de Sevilla Lógica Informática (Tecnologías Informáticas) Curso 2015 16 Contenido Los tableros semánticos proporcionan

Más detalles

Lógica de Primer Orden

Lógica de Primer Orden Capítulo 2 Lógica de Primer Orden Resumen En términos generales, la Programación Lógica concierne al uso de la lógica para representar y resolver problemas. Más adelante precisaremos que, en realidad,

Más detalles

Tema 2: Teoría de la Demostración

Tema 2: Teoría de la Demostración Tema 2: Teoría de la Demostración Conceptos: Estructura deductiva Teoría de la Demostración Sistemas axiomáticos: Kleene Fórmulas válidas Teorema de la Deducción Introducción a la T. de la Demostración

Más detalles

Consecuencia Lógica. Desde un punto de vista lógico, un argumento no es más que una sucesión (finita) de premisas o hipótesis y una conclusión.

Consecuencia Lógica. Desde un punto de vista lógico, un argumento no es más que una sucesión (finita) de premisas o hipótesis y una conclusión. Desde un punto de vista lógico, un argumento no es más que una sucesión (finita) de premisas o hipótesis y una conclusión. 1,, n Un argumento es correcto si la conclusión es consecuencia, si se sigue,

Más detalles

Demostración Automática. Tema 2. Procesamiento del conocimiento con la Lógica Matemática

Demostración Automática. Tema 2. Procesamiento del conocimiento con la Lógica Matemática Demostración Automática de Teoremas Tema 2. Procesamiento del conocimiento con la Lógica Matemática Temas Introducción Sistemas de axiomas Teoría de la demostración. Sistema de Kleene Deducción natural

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC1003 Módulo I: s Válidos Departamento de Matemáticas ITESM Módulo I: s Válidos Matemáticas Discretas - p. 1/50 En matemáticas y en lógica un argumento no es una disputa. Más bien,

Más detalles

TEMA II: ÁLGEBRA DE CONMUTACIÓN

TEMA II: ÁLGEBRA DE CONMUTACIÓN TEMA II: ÁLGEBRA DE CONMUTACIÓN En este capítulo veremos los métodos matemáticos que se disponen para las operaciones relacionadas con los circuitos digitales, así como las funciones más básicas de la

Más detalles

Al finalizar el estudio de Matemática del Ciclo de Nivelación usted deberá ser capaz de:

Al finalizar el estudio de Matemática del Ciclo de Nivelación usted deberá ser capaz de: 0 Objetivos Generales Al finalizar el estudio de Matemática del Ciclo de Nivelación usted deberá ser capaz de: 1. Utilizar una metodología adecuada para el estudio de la Matemática. 2. Alcanzar destreza

Más detalles

OR (+) AND( ). AND AND

OR (+) AND( ). AND AND Algebra de Boole 2.1.Introducción 2.1. Introducción El Algebra de Boole es un sistema matemático que utiliza variables y operadores lógicos. Las variables pueden valer 0 o 1. Y las operaciones básicas

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Un ejemplo de esta falacia podría ser el siguiente:

Un ejemplo de esta falacia podría ser el siguiente: Una falacia es un razonamiento que parece correcto, pero que no lo es. Hay falacias cuyo fallo reside en un mal paso lógico y otras que simplemente simulan argumentar; las primeras pueden probarse como

Más detalles

LOGICA MATEMATICA. Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías:

LOGICA MATEMATICA. Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías: LOGICA MATEMATICA Utilizando esas definiciones y las leyes de lógica matemática, demostrar las siguientes tautologías: 1 ) q p q p ( q ) p ( Definición ) q p ( Doble Negación ) p q ( Conmutatividad ) (

Más detalles

Universidad de Antioquia

Universidad de Antioquia Índice general Prefacio II 0.1. Algunos conjuntos de números.................. 1 0.2. DEFINICIONES Y TEOREMAS................. 2 1. Lógica - Teoría de Conjuntos 5 1.1. Operación binaria.........................

Más detalles

Análisis de una variable real I. Tijani Pakhrou

Análisis de una variable real I. Tijani Pakhrou Análisis de una variable real I Tijani Pakhrou Índice general 1. Introducción axiomática de los números 1 1.1. Números naturales............................ 1 1.1.1. Axiomas de Peano........................

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Ejercicio: 1.1 utor: ntonio Rivero uesta, Tutor.. Palma de Mallorca 1.1 uál de las siguientes oraciones es una proposición lógica? a) Soy minero. b) Para qué seguir. c) Que nadie sepa mi sufrir. La oración

Más detalles

INFERENCIA LÓGICA CAPITULO 2. 2. 1 Introducción

INFERENCIA LÓGICA CAPITULO 2. 2. 1 Introducción CAITULO 2 INFERENCIA LÓGICA 2. 1 Introducción En el capítulo uno, hemos aprendido a dividir las proposiciones en sus partes lógicas y de este modo se ha llegado a conocer algo sobre la forma lógica de

Más detalles

FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS 1. FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS EN Q.

FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS 1. FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS EN Q. FACTORIZACIÓN DE LA SUMA DE DOS CUADRADOS CON APLICACIONES EN EL CÁLCULO DIFERENCIAL E INTEGRAL JORGE ALFONSO HERNÁNDEZ Profesor Titular de Matemática Facultad de Ciencias Económicas Universidad de El

Más detalles

Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.

Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1. Guía de estudio Métodos de demostración Unidad A: Clase 3 Camilo Ernesto Restrepo Estrada, Félix Ruiz de Villalba, Lina María Grajales Vanegas y Sergio Iván Restrepo Ochoa 1.. Inferencias y métodos de

Más detalles