Método de Determinantes

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Método de Determinantes"

Transcripción

1 Método de Determinantes Este método es de los más inmediatos 1, además de que nos ayuda desde el prinipio a reonoer si un S.E.L. tiene soluión únia o no. Para empezar definimos el onepto de determinante: Determinante Sean a,,, d números reales. El arreglo de números: d Definiión 1 se utiliza para denotar al determinante y su valor es igual a: a d. Entones, por definiión: d = a d Una forma de memorizar el onepto de determinante y ómo alularlo onsiste en oservar que multipliamos las diagonales del arreglo de números, primero la que va de izquierda a dereha (que es la manera omo leemos) y de arria haia aajo (que nos arroja el primer produto: a d), y después multipliamos los otros dos números que no haíamos onsiderado: y restamos este produto del anterior. En un S.E.L. podemos tener, por ejemplo: a x + y = m x + d y = n el ual se puede esriir en forma matriial 2 : [ a m d n ] Para otener la forma matriial de un S.E.L. asta esriir el mismo S.E.L. sin las variales. Es deir, esriimos solamente los oefiientes. De aquí se definen 3 determinantes: El determinante prinipal: = d = a d El determinante auxiliar en x: m n d = m d n 1 Desuierto por Gariel Cramer ( ), matemátio suizo. Hay evidenia de que esta regla fue usada anteriormente por el Matemátio Inglés Colin Malaurin ( ). [?] 2 En matemátias, una matriz se define omo un arreglo retangular de números. El álgera lineal es la rama de las matemátias que estudia estos ojetos matemátios, así omo los vetores. 1/7

2 El determinante auxiliar en y: m n = a n m Para haer más fáil las osas, oserva que en el determinante auxiliar de x hemos sustituido los oefiientes de la variale x por el lado dereho de las euaiones del S.E.L., y de manera semejante, para el determinante auxiliar de y se han sustituido los oefiientes de la variale y por los números m, n, y el determinante se ha alulado omo se definió anteriormente. A partir de los determinantes podemos enontrar la soluión del S.E.L.: a x + y = m x + d y = n En este aso: x = x = y = y = m n d d m n d = m d n a d = a n m a d Para dar evidenia de que esto es verdad, vamos a volver a resolver el siguiente S.E.L.: Ejemplo 1 Resuelve: x + y = 10 x y = 2 Primero enontramos el determinante prinipal: = = (1)( 1) (1)(1) = ( 1) (1) = 2 Ahora alulamos el determinante auxiliar en x: = (10)( 1) (1)(2) = ( 10) (2) = 12 Y finalmente alulamos el determinante auxiliar en y: = (1)(2) (10)(1) = (2) (10) = 8 Ahora podemos alular la soluión del S.E.L.: 2/7

3 x = x = 12 2 = 6 y = x = 8 2 = 4 Y ya saemos que la soluión es orreta 3. Resuelve: 2 x + y = 6 x 2 y = 8 Ejemplo 2 Calulamos primero el determinante prinipal: = = (2)( 2) (1)(1) = ( 4) (1) = 5 Ahora alulamos el determinante auxiliar en x: = (6)( 2) (1)(8) = ( 12) (8) = 20 Y finalmente alulamos el determinante auxiliar en y: = (2)(8) (6)(1) = (16) (6) = 10 Ahora podemos alular la soluión del S.E.L.: x = x = 20 5 = 4 y = x = 10 5 = 2 Ahora vamos a verifiar que la soluión sea orreta: 2 x + y = 6 2 (4) + ( 2) = 6 x 2 y = ( 2) = 8 La ventaja de usar este método onsiste en que si el determinante prinipal es igual a ero, entones podemos onluir inmediatamente que el S.E.L. no tiene soluión únia. Es posile que no tenga soluión, omo es posile que tenga un número infinito de soluiones. Resuelve: 2 x 3 y = 7 4 x 6 y = 0 Ejemplo 3 3 Este S.E.L. ya se resolvió por varios métodos. Puedes ver la soluión en las páginas?? (método gráfio),?? (eliminaión) ó?? (sustituión). 3/7

4 Para resolver este S.E.L. 4 vamos a alular primero el determinante prinipal: = = (2)( 6) ( 3)(4) = ( 12) ( 12) = 0 Dado que = 0, no podremos enontrar los valores de las variales x e y, porque tendremos división por ero. De aquí se onluye que el S.E.L. no tiene soluión únia. Para saer si el S.E.L. tiene un número infinito de soluiones o no tiene soluión, alulamos los otros dos determinantes auxiliares: Empezamos alulando el valor del determinante auxiliar de x: = (7)( 6) ( 3)(0) = ( 42) (0) = 42 Y ahora alumamos el determinante auxiliar en y: = (2)(0) (7)(4) = (0) (28) = 28 En este aso tanto x omo y son distintos de ero, indiando que el S.E.L. no tiene soluión. Por qué? Oserva que si multipliamos la primera euaión del S.E.L. por 2 otenemos: 2 x 3 y = 7 4 x 6 y = 14 Y al ompararla on la segunda euaión del S.E.L. podemos onluir que se trata de un S.E.L. formado por dos retas paralelas distintas. En aso de que los determinantes auxiliares huieran resultado ser iguales a ero, tendríamos que las dos euaiones que forman el S.E.L. serían la misma reta, y el S.E.L. tendría en ese aso un número infinito de soluiones. Entones, este S.E.L. no tiene soluión. Ejemplo 4 En la ofiina muniipal utilizan dos fotoopiadoras para preparar invitaiones para el día de las madres. La máquina Y produe 600 fotoopias más por hora que la máquina X. Cuando traajan juntas produen fotoopias en 3 horas. Cuál es la veloidad de fotoopiado de ada máquina? Saemos que la máquina Y produe 600 fotoopias más por hora que la máquina X. Es deir, si x es la veloidad de fotoopiado de la máquina X y y es la veloidad de fotoopiado de la máquina Y, tenemos que: y = x x + y = 600 Por otra parte, saemos que en 3 horas las dos máquinas traajando juntas produen fotoopias: 3 x + 3 y = Este S.E.L. fue tomado de la fuente: [?] indiada en la iliografía. 4/7

5 Entones, el S.E.L. que modela nuestro prolema es: x + y = x + 3 y = Primero lo esriimos en forma matriial: [ Ahora es más fáil enontrar los determinantes: = = ( 1)(3) (1)(3) = ( 3) (3) = 6 Dado que = 0 saemos que el S.E.L. tiene soluión únia. Ahora enontramos el determinante auxiliar en x: = (600)(3) (1)(19800) = (1800) (19800) = Y el determinante auxiliar en y: = ( 1)(19800) (600)(3) = ( 19800) (1800) = Y la soluión de este S.E.L. es: x = x = = y = x = = Ahora omproamos que la soluión esté orreta: Es evidente que la soluión satisfae la primera euaión: y = x = Ahora verifiamos que satisfaga la segunda euaión: 3 x + 3 y = (3 000) + 3 (3 600) = Con lo que proamos que la veloidad de la fotoopiadora X es de fotoopias por hora y la fotoopiadora Y tiene una veloidad de fotoopias por hora. ] En la iliotea de una primaria enontraron que hay 3 liros de químia más que de físia y la suma de esos liros es 27. Cuántos liros de ada una de esas materias hay? Ejemplo 5 Vamos a denotar al número de físia on la letra f y los de químia por q. 5/7

6 Saemos que si a los liros de físia le sumamos 3, otenemos el número de liros de químia: q = f + 3 f + q = 3 Por otra parte, saemos que sumamdos los liros de físia y los de químia en total son 27: f + q = 27 Nuestro S.E.L. es: f + q = 3 f + q = 27 Es evidente que este S.E.L. se puede resolver rápidamente por el método de eliminaión, pero vamos a proar la soluión por el método de determinantes. Ahora esriimos el S.E.L. en su forma matriial: [ Para resolver este S.E.L., empezamos alulamos los determinantes: = = ( 1)(1) (1)(1) = ( 1) (1) = 2 f = = (3)(1) (1)(27) = (3) (27) = 24 q = = ( 1)(27) (3)(1) = ( 27) (3) = 30 ] Entones, la soluión de este prolema es: f = f = 24 2 = 12 q = q = 30 2 = 15 Ahora vamos a verifiar que esta soluión satisfae las ondiiones del prolema: La primera ondiión: «...hay 3 liros de químia más que de físia», se umple: 15 = La segunda ondiión: «...la suma de esos liros es 27», tamién se umple: = 27 Cuando enuentres un S.E.L., primero oserva qué método de soluión te ayuda a resolverlo on el mínimo esfuerzo. Una uena idea onsiste en alular primero el determinante prinipal del S.E.L., porque esta informaión te dirá si tiene soluión únia (en aso de que = 0). 6/7

7 Alert Einstein Créditos Todo dee haerse tan simple omo sea posile, pero no más. Este material se extrajo del liro Matemátias I esrito por Efraín Soto Apolinar. La idea es ompartir estos truos para que más gente se enamore de las matemátias, de ser posile, muho más que el autor. Autor: Efraín Soto Apolinar. Ediión: Efraín Soto Apolinar. Composiión tipográfia: Efraín Soto Apolinar. Diseño de figuras: Efraín Soto Apolinar. Produtor general: Efraín Soto Apolinar. Año de ediión: 2010 Año de puliaión: Pendiente. Última revisión: 22 de agosto de Derehos de autor: Todos los derehos reservados a favor de Efraín Soto Apolinar. Méxio Espero que estos truos se distriuyan entre profesores de matemátias de todos los niveles y sean divulgados entre otros profesores y sus alumnos. Este material es de distriuión gratuita. Profesor, agradezo sus omentarios y sugerenias a la uenta de orreo eletrónio: efrain@aprendematematias.org.mx 7/7

Método de Igualación

Método de Igualación Método de Igualación Ya vimos que la solución del S.E.L. debe ser tal que cuando sustituyamos los valores de las variables en cada ecuación obtengamos una igualdad verdadera. Entonces, el valor de x que

Más detalles

Profr. Efraín Soto Apolinar. Ley de senos

Profr. Efraín Soto Apolinar. Ley de senos Profr. Efrín Soto Apolinr. Ley de senos Hst hor hemos resuelto triángulos retángulos, pero tmién es omún enontrr prolems on triángulos que no son retángulos, omo utángulos u otusángulos. Pr resolver estos

Más detalles

Circunferencia que pasa por tres puntos

Circunferencia que pasa por tres puntos Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,

Más detalles

Profr. Efraín Soto Apolinar. Suma de ángulos

Profr. Efraín Soto Apolinar. Suma de ángulos Suma de ángulos En esta sección vamos a demostrar algunos teoremas que nos ayudarán a resolver problemas más adelante. La suma de los ángulos internos de un polígono de n lados es igual a 180 (n 2). Teorema

Más detalles

Int. indefinida de funciones exponenciales

Int. indefinida de funciones exponenciales Int. indefinida de funciones exponenciales Ahora vamos a calcular integrales indefinidas de funciones exponenciales de la forma: y = e v y y = a v Para este fin, vamos a estar utilizando las reglas de

Más detalles

Series y sucesión lineal

Series y sucesión lineal Series y sucesión lineal En la naturaleza muchas veces aparecen las sucesiones de números. Por ejemplo, cuando el hombre tuvo la necesidad de contar, tuvo que inventar un conjunto de números que le sirviera

Más detalles

Profr. Efraín Soto Apolinar. Método de despeje

Profr. Efraín Soto Apolinar. Método de despeje Método de despeje Cuando tenemos una ecuación cuadrática incompleta es muy buena idea hacer un despeje para resolverla. Este método es el más sencillo para este tipo de ecuaciones. Resuelve la siguiente

Más detalles

Triangulación de polígonos. Perímetros y áreas

Triangulación de polígonos. Perímetros y áreas Triangulación de polígonos Para calcular el área de un polígono de n lados nos apoyaremos en la fórmula para calcular el área de un triángulo. Empezamos dibujando n diagonales que partan de un mismo vértice:

Más detalles

Profr. Efraín Soto Apolinar. Forma general

Profr. Efraín Soto Apolinar. Forma general Forma general La forma general de la ecuación de la recta es la que considera todos los casos de las rectas: horizontales, verticales e inclinadas. En otros casos no siempre es posible escribir la ecuación

Más detalles

Conversión de la forma general a la forma ordinaria

Conversión de la forma general a la forma ordinaria Conversión de la forma general a la forma ordinaria Ahora que ya conocemos las formas ordinaria y general de la ecuación de la circunferencia y que ya hemos hecho conversiones de la forma ordinaria a la

Más detalles

Desigualdades de dos variables

Desigualdades de dos variables Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.

Más detalles

Tutorial MT-b8. Matemática 2006. Tutorial Nivel Básico. Triángulos II

Tutorial MT-b8. Matemática 2006. Tutorial Nivel Básico. Triángulos II 134567890134567890 M ate m átia Tutorial MT-b8 Matemátia 006 Tutorial Nivel Básio Triángulos II Matemátia 006 Tutorial Triángulos II Maro teório: 1. Triángulo retángulo: Es aquel triángulo que posee un

Más detalles

Profr. Efraín Soto Apolinar. La función racional

Profr. Efraín Soto Apolinar. La función racional La función racional Ahora estudiaremos una extensión de las funciones polinomiales. Las funciones racionales se definen a partir de las funciones polinomiales. Esta generalización es semejante a la que

Más detalles

Incertidumbres. Tipos de instrumentos. Algunas formas de expresar las incertidumbres

Incertidumbres. Tipos de instrumentos. Algunas formas de expresar las incertidumbres Inertidumres Es posile otener el valor real (exato) de una magnitud a través de mediiones? Aunque pareza sorprende, la respuesta a esta pregunta es NO. El proeso de mediión involura neesariamente el uso

Más detalles

Método de fórmula general

Método de fórmula general Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula

Más detalles

Interpretación gráfica

Interpretación gráfica Interpretación gráfica En la introducción de la sección Sistemas de Ecuaciones Lineales se presentó la interpretación gráfica (o geométrica) de la solución de un S.E.L.. Este tema está relacionado con

Más detalles

Profr. Efraín Soto Apolinar. Forma normal

Profr. Efraín Soto Apolinar. Forma normal Forma normal Todavía nos falta una última forma de la ecuación de la recta que nos ayudará a estudiar el último tema de esta unidad. Ecuación de la recta en su forma normal La ecuación de la recta en su

Más detalles

S.E.L.: 3 ecuaciones con 3 incógnitas

S.E.L.: 3 ecuaciones con 3 incógnitas 1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

Teorema de Pitágoras

Teorema de Pitágoras Profr. Efrín Soto Apolinr. Teorem de Pitágors En geometrí, uno de los teorems más importntes es el teorem de Pitágors porque se pli muy freuentemente pr resolver prolems. En todo triángulo retángulo que

Más detalles

Funciones especiales

Funciones especiales Funciones especiales En esta sección estudiaremos algunas funciones que son muy importantes en el estudio del análisis matemático. Empezamos con algunos casos particulares de las funciones polinomiales.

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Discontinuidades en un Punto 1 - Tiene ramas infinitas en un punto LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS Tipos de Disontinuidades en un Punto - Tiene ramas infinitas en un punto y 5 La reta 5 es una asíntota vertial - Presenta un salto en un punto, si y

Más detalles

Problemas geométricos y algebraicos. Reglas de los exponentes

Problemas geométricos y algebraicos. Reglas de los exponentes Problemas geométricos y algebraicos Aquí empezamos a estudiar los conceptos que más vamos a utilizar en los cursos de matemáticas. Los temas de esta unidad son los conceptos de álgebra que no debes olvidar.

Más detalles

Profr. Efraín Soto Apolinar. Productos notables

Profr. Efraín Soto Apolinar. Productos notables Productos notables Cuando realizamos operaciones entre polinomios con el fin de resolver problemas, es muy frecuente encontrar algunas operaciones que por su naturaleza, aparecen en muchos fenómenos. Debido

Más detalles

PRODUCTOS Y COCIENTES NOTABLES

PRODUCTOS Y COCIENTES NOTABLES INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: MATEMATICAS DOCENTE: HUGO HERNAN BEDOYA TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO FECHA DURACION 0 DE Julio

Más detalles

Profr. Efraín Soto Apolinar. Método Gráfico

Profr. Efraín Soto Apolinar. Método Gráfico Método Gráfico El último método que estudiaremos es el más sencillo. Se trata de considerar a la ecuación como una máquina que transforma los números. Para eso, crearemos una función. Función (Definición

Más detalles

1 Ecuaciones y propiedades de la recta

1 Ecuaciones y propiedades de la recta Ecuaciones propiedades de la recta Ecuaciones propiedades de la recta En esta sección estudiaremos la caracterización de la recta desde el punto de vista algebraico. A partir del concepto de pendiente

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Atividades iniiales. Expresa en notaión matriial y resuelve por el método de Gauss los sistemas de euaiones siguientes: Las resoluión de los sistemas puede expresarse de la forma

Más detalles

1 Razones y Proporciones

1 Razones y Proporciones 1 Razones y Proporciones 1 1 Razones y Proporciones En la vida real surgen muchas ocasiones en las que deseamos comparar dos cantidades. Para compararlas tenemos muchas opciones válidas, pero la que nos

Más detalles

Las poligonales en forma general pueden ser clasificadas según sus formas en:

Las poligonales en forma general pueden ser clasificadas según sus formas en: Agrimensura Faena - Unne átedra: Topografía Poligonometría Una poligonal esta formada por una suesión de líneas enlazadas entre si por medio del ángulo que forman entre si las líneas. Las poligonales en

Más detalles

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales. LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales a γ α Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo

Más detalles

SOLUCIÓN EJERCICIOS DE SISTEMAS

SOLUCIÓN EJERCICIOS DE SISTEMAS EJERCICIOS DE SISTEMAS PARA ELCUADERNO. CURSO 00-0 EJERCICIOS DE SISTEMAS EJERCICIOS DE DISCUSIÓN DE SISTEMAS. Disutir según valores de m el sistema de euaiones lineales y z z 3 3 y mz A' 0 3 0 3 4 0 3

Más detalles

La diferencial como aproximación al incremento

La diferencial como aproximación al incremento La diferencial como aproximación al incremento Ahora vamos a utilizar la diferencial para hacer aproximaciones. Esta aproximación está basada en la interpretación geométrica que acabamos de dar de la diferencial.

Más detalles

Los números de siete cifras

Los números de siete cifras Los números de siete ifras Feha Reuerda Los números de siete ifras están ompuestos por unidades de millón, entenas de millar, deenas de millar, unidades de millar, entenas, deenas y unidades.. Rodea en

Más detalles

Ec. rectas notables en un triángulo

Ec. rectas notables en un triángulo Ec rectas notables en un triángulo omo recordarás del curso de geometría plana (segundo semestre), las rectas notables de un triángulo son: Medianas: Una mediana es la recta que pasa por el punto medio

Más detalles

Tema 4. Relatividad especial

Tema 4. Relatividad especial 1. Masa relativista Tema 4. Relatividad espeial Terera parte: Dinámia relativista La ineria de un uerpo es onseuenia de su resistenia al ambio en su estado de movimiento, y se identifia usualmente on la

Más detalles

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución.

se llama ecuación polinómica de primer grado con una incógnita. Dos ecuaciones son equivalentes cuando admiten el mismo conjunto solución. Euiones e ineuiones de Primer Grdo on un inógnit Se P () un euión polinómi, on P() un polinomio, resolver l mism es enontrr los eros o ríes de P(), es deir, los vlores de que nuln diho polinomio. X se

Más detalles

PROBLEMA N 1: Vibraciones mecánicas

PROBLEMA N 1: Vibraciones mecánicas U.T.N. F.R.B.B. Meánia del Sólido Sergio R. Val PROBLEMA N 1: Vibraiones meánias Analizar el problema en idioma inglés sobre un montaje antivibratorio para el tambor de una seadora entrífuga. - Traduir

Más detalles

Denominadores con factores lineales

Denominadores con factores lineales Denominadores con factores lineales uando al sumar dos fracciones algebraica obtenemos una nueva fracción con denominador que se puede factorizar hasta tener factores lineales, significa que los denominadores

Más detalles

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN

ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN ANÁLISIS DE LA EXTENSIÓN DE LA GRÁFICA DE UNA FUNCIÓN Sugerenias al Profesor: Trabajar úniamente on funiones polinomiales y raionales, alarando que generalmente al bosquejar sus gráfias solo se muestra

Más detalles

Matriz Inversa. 1. Transpuesta de una matriz. 2. Matriz identidad. 3. Matriz inversa

Matriz Inversa. 1. Transpuesta de una matriz. 2. Matriz identidad. 3. Matriz inversa Matriz Inversa Transpuesta de una matriz Si A es una matriz m x n entones la transpuesta de A denotada por A T se dene omo la matriz n x m que resulta de interambiar los renglones y las olumnas de A Si

Más detalles

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan

En el sistema S las fórmulas de aberración relativista y efecto Doppler dan FÍSICA TEÓRICA 1 2do. Cuatrimestre 2015 Fresnel relativista Guía 6, problema 3 Se trata de enontrar las ondas reflejadas y transmitidas en el sistema del laboratorio uando una onda plana inide sobre la

Más detalles

Examen final de Cálculo Integral

Examen final de Cálculo Integral xamen final de Cálulo Integral 6 de septiembre de 1 (Soluiones) Cuestiones C 1 Apliando el teorema 1.15 y definiión 1. de los apuntes se onluye inmediatamente que el valor de la integral oinide on la longitud

Más detalles

1. Funciones matriciales. Matriz exponencial

1. Funciones matriciales. Matriz exponencial Dpto. Matemátia Apliada, Faultad de Informátia, UPM EDO Sistemas Lineales. Funiones matriiales. Matriz exponenial.. Funiones vetoriales Sea el uerpo IK que puede ser IC ó IR y sea I IR un intervalo. Entones

Más detalles

Análisis del Lugar Geométrico de las Raíces (LGR) o Método de Evans

Análisis del Lugar Geométrico de las Raíces (LGR) o Método de Evans Análii del Lugar Geométrio de la Raíe (LGR) o Método de Evan La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el

Más detalles

3.- Límites y continuidad

3.- Límites y continuidad 3.- ímites y ontinuidad El límite de una unión está íntimamente unido a su representaión gráia y a la interpretaión de la misma debido a que lo que nos india es el omportamiento o tendenia de la gráia.

Más detalles

Problemas aritméticos

Problemas aritméticos Problemas aritméticos En las matemáticas los números y los conjuntos son la base de toda la demás teoría. Por eso es importante saber realizar las operaciones básicas con ellos: suma, resta, multiplicación

Más detalles

La función cuadrática

La función cuadrática La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola

Más detalles

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales.

LEY DE SENOS. Ya hemos visto como resolver triángulos rectángulos ahora veremos todas las técnicas para resolver triángulos generales. LEY DE SENOS Ya hemos visto omo resolver triángulos retángulos ahora veremos todas las ténias para resolver triángulos generales. Este es un triángulo el ángulo α se esrie en el vértie de, el ángulo se

Más detalles

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008. (a) *1'5 puntos+ Clasifícalo según los valores del parámetro λ.

Ejercicios de Matrices, determinantes y sistemas de ecuaciones lineales. Álgebra 2008. (a) *1'5 puntos+ Clasifícalo según los valores del parámetro λ. IES PDRE SUÁREZ MTEMTICS II Ejeriios de Matries, deterinantes sisteas de euaiones lineales. Álgebra 8 - Dado el sistea de euaiones lineales (a) *' puntos+ Clasifíalo según los valores del paráetro λ. (b)

Más detalles

CHULETARIO sobre el uso de la CALCULADORA CIENTÍFICA TIPO CASIO FX ***MS

CHULETARIO sobre el uso de la CALCULADORA CIENTÍFICA TIPO CASIO FX ***MS CHULETARIO sobre el uso de la CALCULADORA CIENTÍFICA TIPO CASIO FX ***MS Las operaiones de suma, resta, multipliaión y división son onoidas, por lo que no se inidirá en ellas. La prinipal diferenia entre

Más detalles

Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG)

Pruebas de Acceso a Ensen anzas Universitarias Oficiales de Grado (PAEG) PAEG junio 016 Propuesta B Matemátias II º Bahillerato Pruebas de Aeso a Ensen anzas Universitarias Oiiales de Grado (PAEG) Matemátias II (Universidad de Castilla-La Manha) junio 016 Propuesta B EJERCICIO

Más detalles

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar:

1 2 +! $ = # 1$ $ Pensamiento Algebraico GUÍA DE PARA LOS ASPIRANTES A LA MME Temas que debe dominar: Pensamiento lgebraio Temas que debe dominar: GUÍ DE PR LOS SPIRNTES L MME-06 Definiión, operaiones y propiedades de: Números Naturales Números Enteros Números raionales Números irraionales Números omplejos

Más detalles

En donde x representa la incógnita, y a, b y c son constantes.

En donde x representa la incógnita, y a, b y c son constantes. FUNCIÓN CUADRÁTICA. Cundo los elementos de un onjunto los elementos de un onjunto se soin medinte un regl de orrespondeni definid por un euión de segundo grdo en, l llmmos funión de segundo grdo o udráti.

Más detalles

PROBLEMAS DEL TEMA 1: CIRCUITOS ELÉCTRICOS EN AC. Problemas de reactancias

PROBLEMAS DEL TEMA 1: CIRCUITOS ELÉCTRICOS EN AC. Problemas de reactancias ey Juan Carlos POBEMAS DE TEMA : CICUITOS EÉCTICOS EN AC Problemas de reatanias Problema 4. Una bobina on = 5 mh se oneta a un generador de tensión alterna sinusoidal de V ef = 80 V. Calula la reatania

Más detalles

XXV OLIMPIADA DE FÍSICA CHINA, 1994

XXV OLIMPIADA DE FÍSICA CHINA, 1994 OMPD NTENCON DE FÍSC Prolemas resueltos y omentados por: José uis Hernández Pérez y gustín ozano Pradillo XX OMPD DE FÍSC CHN, 99.-PTÍCU ETST En la teoría espeial de la relatividad la relaión entre la

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-0111 Estructuras Discretas Prof. Kryscia Daviana Ramírez Benavides Reursión y Relaiones de Reurrenia UCR ECCI CI-0 Estruturas Disretas Prof. Krysia Daviana Ramírez Benavides Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania

Más detalles

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides

Recursión y Relaciones de Recurrencia. UCR ECCI CI-1204 Matemáticas Discretas M.Sc. Kryscia Daviana Ramírez Benavides Reursión y Relaiones de Reurrenia UCR ECCI CI-04 Matemátias Disretas M.S. Krysia Daviana Ramírez Benavides Algoritmos Reursivos Un algoritmo es reursivo si se soluiona un problema reduiéndolo a una instania

Más detalles

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B.

CONJUNTOS. Según se ha visto en el ejercicio anterior, para que la intersección de dos conjuntos A y B sea A, se tiene que verificar que A B. CONJUNTOS 1. Si se umple: a) = b) = ) = (Convoatoria junio 2001. Examen tipo E ) Es laro que la opión orreta es la a). Cuando un onjunto está dentro de otro, la interseión es el onjunto pequeño y la unión

Más detalles

Introducción a la Química Computacional

Introducción a la Química Computacional Introduión a la Químia Computaional MÉTODO D LA VARIACION PARA ROLVR APROXIMADAMNT LA CUACIÓN D CRÖDINGR Reservados todos los derehos de reproduión. Luis A. Montero Cabrera y Rahel Crespo Otero, Universidad

Más detalles

Lección 13: Resolución algebraica de sistemas de ecuaciones

Lección 13: Resolución algebraica de sistemas de ecuaciones GUÍA DE MATEMÁTICAS III Lección 1: Resolución algebraica de sistemas de ecuaciones En la lección anterior hemos visto cómo resolver gráficamente un sistema de ecuaciones. Si bien ese método es relativamente

Más detalles

Equilibrio Químico (I) Kc. Cociente de reacción

Equilibrio Químico (I) Kc. Cociente de reacción K. Coiente de reaión IES La Magdalena. Avilés. Asturias Cuando se lleva a abo una reaión químia podemos enontrarnos on las siguientes situaiones: Las onentraiones iniiales de los reativos van disminuyendo

Más detalles

El efecto Sagnac y el gravitomagnetismo

El efecto Sagnac y el gravitomagnetismo 17 El efeto Sagna y el gravitomagnetismo 1.17 El efeto Sagna lásio Consideremos una guia de ondas irular (o un montaje de espejos que permita que un rayo de luz realie un reorrido errado) que está rotando

Más detalles

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible

Más detalles

Facultad de Ciencias Sociales Universidad de la República Curso: Análisis Económico, Práctico 4

Facultad de Ciencias Sociales Universidad de la República Curso: Análisis Económico, Práctico 4 Prátio 4. La siguiente ilustraión muestra la situaión maroeonómia atual de la eonomía de Alernia. Usted ha sido ontratado omo asesor eonómio a fin de haer que la eonomía alane su produión potenial, Y p.

Más detalles

Potencial Eléctrico y Diferencia de Potencial

Potencial Eléctrico y Diferencia de Potencial Potenial létrio y iferenia de Potenial Potenial létrio: se llama potenial elétrio en un punto A de un ampo elétrio al trabajo () neesario para transportar la unidad de arga positiva ( ) desde fuera del

Más detalles

Graficación de ecuaciones paramétricas

Graficación de ecuaciones paramétricas LECCIÓN CONDENSADA 8.1 Grafiaión de euaiones paramétrias En esta leión Esriirás euaiones paramétrias para desriir ómo se relaiona el tiempo on las oordenadas y y de una trayetoria Grafiarás un par de euaiones

Más detalles

RESPUESTAS A LOS EJERCICIOS

RESPUESTAS A LOS EJERCICIOS RESPUESTAS A LOS EJERCICIOS UNIDAD. DERIVADAS DE FUNCIONES TRASCENDENTES os sen. v ( ) Ejeriios 7. t'( ) os (w ) (6sen w + (w )os w)). s'( w) senw os. ' sen. h'( t) sent 6. f '( ) sen os Ejeriios ost +.

Más detalles

OPCIÓN A. Problema A.1. Obtener razonadamente: a) dx. (3 puntos).

OPCIÓN A. Problema A.1. Obtener razonadamente: a) dx. (3 puntos). OPCIÓN A Problema A.. Obtener razonadamente: a) d ( puntos). b) d 5 8 (4 puntos). El numerador es de grado superior al denominador. Hay que realizar la división: 5 8 d d d, 5 8 ) d ( puntos). Integral

Más detalles

Examen Final Tema A Cálculo Vectorial Mayo 23 de 2017

Examen Final Tema A Cálculo Vectorial Mayo 23 de 2017 Examen Final Tema A Cálulo Vetorial Mayo 3 de 17 Este es un examen individual, no se permite el uso de libros, apuntes, aluladoras o ualquier otro medio eletrónio. Reuerde apagar y guardar su teléfono

Más detalles

x z - Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura Cálculo I 1Tales, Pitágoras, Euclides,...

x z - Fernando Sánchez - Departamento de Matemáticas - Universidad de Extremadura Cálculo I 1Tales, Pitágoras, Euclides,... - Fernando Sánchez - - Cálculo I 1Tales, Pitágoras, Euclides,... Si se consideran ciertas magnitudes a y, no es difícil imaginar cómo son algunas operaciones entre ellas, como la suma y la resta. Basta

Más detalles

1. INTRODUCCIÓN A LAS ESTRUCTURAS ALGEBRAICAS

1. INTRODUCCIÓN A LAS ESTRUCTURAS ALGEBRAICAS Introduión a las estruturas algebraias 1. INTRODUCCIÓN A LAS ESTRUCTURAS ALGEBRAICAS SUMARIO: INTRODUCCIÓN OBJETIVOS INTRODUCCIÓN TEÓRICA 1.- Conjuntos y Subonjuntos. 2.- Operaiones on Conjuntos. Propiedades.

Más detalles

Momentos de Inercia de cuerpos sólidos: EJE. Varilla delgada. Disco. Disco. Cilíndro. Esfera. Anillo I = MR

Momentos de Inercia de cuerpos sólidos: EJE. Varilla delgada. Disco. Disco. Cilíndro. Esfera. Anillo I = MR 91 Momentos de Ineria de uerpos sólidos: EJE Varilla delgada 1 I = ML 1 Diso 1 I = M Diso 1 I = M 4 ilíndro 1 I = M Esfera I = M 5 Anillo I = M 9 Observaión: Los momentos de ineria on respeto a ejes paralelos

Más detalles

Olimpiadas. Internacionales. Física

Olimpiadas. Internacionales. Física Prolemas de as Olimpiadas nternaionales De Físia José uis Hernández Pérez gustín ozano Pradillo Madrid 008 José uis Hernández Pérez, gustín ozano Pradillo, Madrid 008 XX OMPD NTENCON DE FÍSC. CHN. 99.-PTÍCU

Más detalles

Seminario de problemas. Curso Hoja 18

Seminario de problemas. Curso Hoja 18 Seminario de problemas. Curso 016-17. Hoja 18 111. Demuestra que una ondiión neesaria y sufiiente para que un triángulo sea isóseles es que tenga dos medianas iguales. Soluión: Vamos a utilizar un resultado

Más detalles

Singularidades. Una serie de Laurent es una serie de potencias que pueden ser positivas y/o negativas: a n (z z 0 ) n =

Singularidades. Una serie de Laurent es una serie de potencias que pueden ser positivas y/o negativas: a n (z z 0 ) n = Singularidades Hay muhas funiones que son analítias en una región on exepión de algunos puntos aislados donde no están definidas. Por ejemplo, /z es analítia en C {0} y os(z) es analítia en C {0, ±π, ±π,

Más detalles

DEDUCCIÓN DE LA FÓRMULA DEL EFECTO DOPPLER COMPLETO USANDO UN TELESCOPIO REFLECTOR NEWTONIANO ALBERT ZOTKIN

DEDUCCIÓN DE LA FÓRMULA DEL EFECTO DOPPLER COMPLETO USANDO UN TELESCOPIO REFLECTOR NEWTONIANO ALBERT ZOTKIN DEDUCCIÓN DE LA FÓRMULA DEL EFECTO DOPPLER COMPLETO USANDO UN TELESCOPIO REFLECTOR NEWTONIANO ALBERT ZOTKIN Resumen. En este orto artíulo se ofreerá una deduión de la fórmula del efeto Doppler Completo

Más detalles

Definición 1. Una proposición lógica es una afirmación que puede ser verdadera o falsa.

Definición 1. Una proposición lógica es una afirmación que puede ser verdadera o falsa. Capítulo 0 Introduión 0.1 Proposiiones lógias Definiión 1. Una proposiión lógia es una afirmaión que puede ser verdadera o falsa. Ejemplo. La tierra es un planeta. El sol gira en torno a la tierra. Estas

Más detalles

Modulo de Desigualdades e Inecuaciones. 3º Medio

Modulo de Desigualdades e Inecuaciones. 3º Medio Modulo de Desigualdades e Ineuaiones. º Medio TEMA : Orden, Valor Absoluto y sus propiedades Definiión : La desigualdad a < b es una relaión de orden en el universo de los números reales. Por lo tanto

Más detalles

Método de Sustitución

Método de Sustitución Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las

Más detalles

2 2 2 x. Solución: Ya que la integración es una curva cerrada y la integral esta representada por funciones reales, empleamos el teorema de Green

2 2 2 x. Solución: Ya que la integración es una curva cerrada y la integral esta representada por funciones reales, empleamos el teorema de Green Elaborado por: Jhonny hoquehuana Lizarraga Variable ompleja Exámenes esueltos Segundo Parial. alular x y { xln( y ) x ( y) } dx y ( x ) dy y, donde es el uadrado de vérties ± i ± i. Soluión: Ya que la

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Euaiones de primer grado. Resuelve las siguientes euaiones de primer grado on paréntesis. 3( + ) + ( 3 ) = 7 3( ) ( 3 ) ( + ) = 3( ) ( + ) ( + 3) = 3 + = 5 ( 7 ). Resuelve las siguientes euaiones de primer

Más detalles

Sistemas de ecuaciones

Sistemas de ecuaciones CUADERNO Nº 6 NOMBRE: FECHA: / / Sistemas de ecuaciones Contenidos 1. Sistemas de ecuaciones lineales Ecuación lineal con dos incógnitas Sistemas de ecuaciones lineales Clasificación de sistemas 2. Métodos

Más detalles

Resolución de las ecuaciones cuadráticas según Al Jwarizmi:

Resolución de las ecuaciones cuadráticas según Al Jwarizmi: María Moreno Warleta ESTALMAT Madrid Au Jafar Mohammet in Mose Al - Jwarizmi fue uno de los mejores matemátios áraes de la Edad Media y es onsiderado el padre del álgera. Conoemos su ora matemátia graias

Más detalles

PROCEDIMIENTO SIMPLEX REVISADO

PROCEDIMIENTO SIMPLEX REVISADO PROEDIIENTO SIPLEX REVISADO Este método requiere una menor antidad de álulos ya que realia álulos úniamente en los vetores de aquellas variables nobásias y registra en memoria lo relativo a las variables

Más detalles

Hidráulica de canales

Hidráulica de canales Laboratorio de Hidráulia In. David Hernández Huéramo Manual de prátias Hidráulia de anales 5o semestre Autores: Guillermo enjamín Pérez Morales Jesús Alberto Rodríuez Castro Jesús Martín Caballero Ulaje

Más detalles

Ecuación general de la circunferencia

Ecuación general de la circunferencia Ecuación general de la circunferencia Hasta aquí hemos calculado la ecuación de la circunferencia dejándola como la suma de binomios al cuadrado igualada a una constante positiva. Ahora vamos a ir un paso

Más detalles

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos.

Clase 2. Las ecuaciones de Maxwell en presencia de dieléctricos. Clase Las euaiones de Maxwell en presenia de dielétrios. A diferenia de los metales (ondutores elétrios) existen otro tipo de materiales (dielétrios) en los que las argas elétrias no son desplazadas por

Más detalles

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos:

Una inecuación lineal con 2 incógnitas puede tener uno de los siguientes aspectos: TEMA 3: PROGRAMACIÓN LINEAL ÍNDICE 3.1.- Ineuaiones lineales on 2 inógnitas. 3.2.- Sistemas de ineuaiones lineales on 2 inógnitas. 3.3.- La programaión lineal. 3.4.- Soluión gráfia de un problema de programaión

Más detalles

Centro fuera del origen

Centro fuera del origen Centro fuera del origen Ya conoces la ecuación de la circunferencia que tiene su centro en el origen. Si trasladamos el centro de la circunferencia h unidades a la derecha k unidades hacia arriba, obtenemos

Más detalles

Ángulos formados por dos rectas paralelas y una secante

Ángulos formados por dos rectas paralelas y una secante Ángulos formados por dos rectas paralelas y una secante Cuando dos rectas paralelas son cortadas por una tercer recta que no es paralela a ellas, se forman varios ángulos de interés. La secante a una curva

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Proporcionalidad numérica. Porcentajes a b veces su altura.

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Proporcionalidad numérica. Porcentajes a b veces su altura. 1. Razón y proporión 1.1. Razón numéria Una razón entre dos números a Una razón no tiene unidades. y es e oiente a. Es importante saer que: Los números a y que forman una razón pueden ser enteros o deimaes.

Más detalles

EJERCICIOS DE ALGORITMIA. FUNDAMENTOS DE PROGRAMACIÓN (GRADO EN BIOTECNOLOGÍA)

EJERCICIOS DE ALGORITMIA. FUNDAMENTOS DE PROGRAMACIÓN (GRADO EN BIOTECNOLOGÍA) EJERCICIOS DE ALGORITMIA. UNDAMENTOS DE PROGRAMACIÓN (GRADO EN BIOTECNOLOGÍA) 1. Realizar un organigrama para dividir un segmento [a,b] en N subintervalos iguales. Como datos de entrada se emplearán a,

Más detalles

EQUILIBRIO QUÍMICO QCA 07

EQUILIBRIO QUÍMICO QCA 07 1.- Dado el equilibrio: N (g) + 3 H (g) NH 3 (g) Justifique la influenia sobre el mismo de: a) Un aumento de la resión total. b) Una disminuión de la onentraión de N. ) Una disminuión de la temeratura.

Más detalles

Colegio Javier Año de la Misericordia y reconciliación Presentación # 3 de Matemática 10 II Trimestre. Material de Apoyo

Colegio Javier Año de la Misericordia y reconciliación Presentación # 3 de Matemática 10 II Trimestre. Material de Apoyo Colegio Javier Año de la Miseriordia y reoniliaión Presentaión # 3 de Matemátia 1 II Trimestre Material de Apoyo Elaborador por: Prof. Hétor Luis Fernández Objetivo: Apliar las funiones de ángulos espeiales,

Más detalles

Distancia entre un punto y una recta

Distancia entre un punto y una recta Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular

Más detalles

Análisis del lugar geométrico de las raíces

Análisis del lugar geométrico de las raíces Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el itema tiene una ganania

Más detalles

Reglas del producto y del cociente

Reglas del producto y del cociente Reglas del producto y del cociente Al igual que la regla de la potencia, ya calculamos las fórmulas para calcular la derivada de un producto de dos funciones en la página?? y del cociente de dos funciones

Más detalles

Lugar geométrico de las raíces

Lugar geométrico de las raíces Lugar geométrio de la raíe Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si

Más detalles

La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory

La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory Weneslao Segura González La teoría de Einstein-Infeld-Hoffmann Einstein-Infeld-Hoffmann s theory Weneslao Segura González Investigador independiente e-mail: weneslaoseguragonzalez@yahooes web: http://weneslaoseguragonwixom/weneslao-segura

Más detalles