Limite de una función.
|
|
|
- Gregorio Carrizo Olivares
- hace 9 años
- Vistas:
Transcripción
1 Limite de una función. Concepto de límite. La palabra límite proviene del latín es que significa frontera. El límite puede ser una línea imaginaria o real, que separa dos países, territorios o terrenos, por ejemplo: un padre le dice a su hijo que el límite de su propiedad es hasta el río, El Ecuador es una línea imaginaria que divide al planeta en dos hemisferios. La frontera es un límite que marca la división de dos regiones, se refiere a algo concreto (un alambrado, un muro, la muralla China etc.), mientras que el límite puede ser algo simbólico. Supongamos que una puga tiene que llegar a un punto que está a una distancia de un metro. En el primer salto recorre medio metro, en el segundo salto recorre un cuarto de metro, y así sucesivamente, de tal menara que en cada salto que dé recorrerá la mitad de la distancia que le falta para llegar. Nos damos cuenta que la distancia que recorre la pulga en su brinco es cada vez más y más pequeña, de tal manera que el límite de la distancia recorrida en el brinco tiende a un valor de cero. Los límites en matemáticas. Wallis ( ) introduce el concepto de límite y el símbolo para el infinito. Newton y Leibniz ignoraban una definición precisa de límite y de los conceptos que éste lleva asociado y sin embargo no fue ningún impedimento grave para inventar el cálculo. Tenían una idea intuitiva de los límites. Los conocimientos de los límites fueron asentados en el siglo XIX por Cauchy, Dedekind y Weierstrass. La famosa curva descubierta en 1906 por Helge von Koch y que originó los fractales fue un proceso al límite de un triángulo equilátero y en cada lado un nuevo triángulo.
2 Existe un límite? Consideremos el triángulo de la figura a, si unimos el punto medio de cada uno de sus lados obtendremos 4 triángulos que se muestran en la figura b, al repetir nuevamente este proceso obtenemos 16 triángulos figura c. Si continuáramos indefinidamente este proceso el límite de triángulos que se forman tiende al infinito. a b c Limite de una función. Consideremos la función definida por f ( x) =. Observamos que la función no está definida en x=1 ya que en este punto f(x) tiene la forma 0, que carece de significado. Sin embargo podríamos ver que le ocurre a f(x) cuando x se 0 aproxima a 1. Entonces cuándo x se aproxima a 1, f(x) se está aproximando a algún número específico Cuál es ese número? Para contestar esta pregunta, le daremos algunos valores a x muy cercanos a 1, tanto antes de como después de 1 y veamos que le ocurre a f(x). x (x, f(x)) x f ( x) = 1. 1 (1.,.) 1 = (1.1,.1) = (1.01,.01) 0.99 = (1.001,.001) 0.75 = (x, f(x)) f ( x) = 1 1 (1,?) = = error (0.999,1.999) = (0.99, 1.99) = (0.75, 1.75) = (0.5, 1.5) =
3 Gráficamente tendríamos lo siguiente: f(x) X Cuando x se aproxima a 1 por la izquierda y por la derecha. Toda la información que se ha obtenido, parece apuntar a la misma conclusión f(x) se aproxima a cuando x se aproxima a 1. En símbolos matemáticos, escribimos que: Esto se lee el límite cuando x tiende a 1 de es Si aplicamos algo de algebraa y factorizamos por diferencia de cuadrados x -1= (x-1)(x+1), podemos obtener más evidencia de este resultado Siempre y cuando x 1. Definición intuitiva de límite de una función. Si una función f(x) está definida para valores de x cercanos a un cierto valor fijo c y si la x está restringida a tomar valores dentro de intervalos cada vez más pequeños en la vecindad de c, los valores de f(x) se acercarán más y más a cierto número fijo L, el número L se llama límite de f(x), cuando x se aproxima al número c. Este enunciado se puede escribir como:
4 Métodos para calcular el límite de una función. En este bloque sólo se darán a conocer dos métodos para calcular los límites: 1) Método de sustitución directa. 0 ) Método de factorización del tipo indeterminado 0 Limite de una función por el método de sustitución directa. En este método sólo se deberá de sustituir el valor de x en la función inicial y realizar las operaciones correspondientes. Ejemplos resueltos. Encontrar el límite de las siguientes funciones por simple sustitución. Ejemplo 1. 4 = 4( 1) = 4( + 1) = 4 Ejemplo = ( ) + 3( ) 1= 4 6 1= 4 7 = 3 Ejemplo = = = = = = = (5) + 6 (5) Ejemplo 4.! +5 +# = () ( + 5() + ) = (4)( ) ) = (4)(4) = 16 Ejemplo 5. ( π ) % 10 $ 10(10) (10) = ( π ) = ( π ) = ( π )( 4) = π () = 4π
5 Limite de una función que se indetermina con 0 0 Método de factorización (diferencia de cuadrados). Para einar una indeterminación se procederá a factorizar la diferencia de cuadrados y posteriormente se efectuará la cancelación en la fracción. Ejemplos resueltos. Calcular los siguientes límites utilizando la factorización a - b = (a- b) (a+b) Ejemplo = Si solamente sustituimos el valor de x en la función, tendríamos: 1 +1 = = 0 0 = '()*+*,-.(/)0. Ahora si factorizamos el numerador tenemos: = = 1 = 1 1 = Ejemplo. Si solamente sustituimos el valor de x en la función, tendríamos = 4 3 # 9 3 = 9 9 # = 0 0 Ahora si factorizamos el numerador tenemos: = = 3 = = 3 3 =
6 Método de factorización (Trinomio de la forma x +bx+c). REGLA PRÁCTICA PARA FACTORAR UN TRINOMIO DE LA FORMA x + bx + c. 1) El trinomio se descompone en dos factores binomios cuyo primer término es x, o sea la raíz cuadrada del primer término del trinomio. ) En el primer factor, después de x se escribe el signo del segundo término del trinomio, y en el segundo factor, después de x se escribe el signo que resulta de multiplicar el signo del término del trinomio por el signo del tercer término del trinomio. 3) Si los dos factores binomios tienen en medio signos iguales se buscan dos números cuya suma sea el valor absoluto del segundo término del trinomio y cuyo producto sea el valor absoluto del tercer término del trinomio. Estos números son los segundos términos de los binomios. 4) Si los dos factores binomios tienen en medio signos distintos se buscan dos números cuya diferencia sea el valor absoluto del segundo término del trinomio y cuyo producto sea el valor absoluto del tercer término del trinomio. El mayor de estos números es el segundo término del primer binomio, y el menor, el segundo término del segundo binomio. Ejemplos resueltos. Calcular los siguientes límites utilizando la factorización x +bx+c. Ejemplo 1. 6 = Si solamente sustituimos el valor de x en la función, tendríamos: = + + = 0 4 = 0 0 = '()*+*,-.(/)0 Ahora si factorizamos el denominador tenemos: + + = = 1 1 = 1 +1 = 1 1 = 1 Ejemplo = Si solamente sustituimos el valor de x en la función, tendríamos: 7 +6 = = = 4 4 = Ahora si factorizamos el denominador tenemos: = = 1 = 6 1 = 7 6 6
PRACTICO: : LÍMITES DE FUNCIONES
APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 16 Introducción
PRACTICO: : LÍMITES DE FUNCIONES
APUNTE TEORICO-PRACTICO PRACTICO: : LÍMITES DE FUNCIONES UNIVERSIDAD NACIONAL DE RIO NEGRO Asignatura: Matemática 1 Carreras: Lic. en Economía Profesor: Prof. Mabel Chrestia Semestre: 1ero Año: 15 Introducción
Como se vio anteriormente un binomio es una expresión algebraica de dos términos.
Como se vio anteriormente un binomio es una epresión algebraica de dos términos. Ejemplos: 1) a+b ) ²-4yz ) -ab³-b³ 4) 1+4⁴ 5) -1-a²b La factorización de binomios es un proceso muy importante en álgebra.
Límite de funciones. Por otra parte se dice que una función es discontínua si para algún (os) valor (es) de x no existe valor de y.
Límite de funciones El concepto de límite se explica y define desde diferentes perspectivas en los libros de cálculo. Se habla por ejemplo del límite de una sucesión (como ya se explicó), o bien del límite
Límite Idea intuitiva del significado Representación gráfica
LÍMITES DE FUNCIONES (resumen) LÍMITE DE UNA FUNCIÓN f(x) se lee: límite de la función f(x) cuando x tiende a k x k Límite Idea intuitiva del significado Representación gráfica Cuando x f(x) = l Al aumentar
LÍMITES. Ing. Ronny Altuve
UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE CIENCIAS ADMINISTRATIVAS Unidad Curricular: Matemática II LÍMITES Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Enero de 2016 INDICADOR DE LOGRO Aplicar la definición
Inecuaciones: Actividades de recuperación.
Inecuaciones: Actividades de recuperación. 1.- Escribe la inecuación que corresponde a los siguientes enunciados: a) El perímetro de un triángulo equilátero es menor que 4. (x = lado del triángulo) b)
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas fórmula cuadrática y casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación
TEMA 3: Polinomios. Tema 3: Polinomios 1
TEMA : olinomios Tema : olinomios ESQUEMA DE LA UNIDAD.- olinomios. Valor numérico...- olinomios...- Valor numérico de un polinomio..- Suma y resta de polinomios..- Multiplicación de polinomios...- roducto
Expresiones racionales. MATE 0008 Departamento de Matemáticas UPRA
Epresiones racionales MATE 0008 Departamento de Matemáticas UPRA EXPRESIONES RACIONALES En las matemáticas, la palabra racional se asocia a epresiones con forma de fracción; o sea que tienen un numerador
24 = = = = = 12. 2
UNIVERSIDAD MARIANO GÁLVEZ DE GUATEMALA FACULTAD DE CIENCIAS DE LA ADMINISTRACIÓN DIRECCIÓN GENERAL DE CENTRO UNIVERSITARIOS CENTRO UNIVERSITARIO DE VILLA NUEVA CURSO MATEMÁTICAS APLICADA I 015 Lic. Manuel
Repaso de Álgebra. Colegio Molière. Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso
Repaso de Álgebra Colegio Molière Repasaremos algunas reglas y procedimientos básicos que te serán útiles a lo largo del curso Operaciones aritméticas a + b b + a ab ba (Ley Conmutativa) (a + b) + c a
2. EXPRESIONES ALGEBRAICAS
2. EXPRESIONES ALGEBRAICAS Tales como, 2X 2 3X + 4 ax + b Se obtienen a partir de variables como X, Y y Z, constantes como -2, 3, a, b, c, d y cobinadas utilizando la suma, resta, multiplicación, división
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático
Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de
Uniboyacá GUÍA DE APRENDIZAJE NO 7. Psicología e Ingeniería Ambiental
Uniboyacá GUÍA DE APRENDIZAJE NO 7 1. IDENTIFICACIÓN Programa académico Psicología e Ingeniería Ambiental Actividad académica o curso Matemáticas básicas Semestre Segundo de 2012 Actividad de aprendizaje
Límites y continuidad
Límites y continuidad LÍMITES El concepto de límite es la base fundamental con la que se construye el cálculo infinitesimal (diferencial e integral). Informalmente hablando se dice que el límite es el
Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito
OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes
Tema II: Análisis Límites
Tema II: Análisis Límites En matemáticas, se usa el concepto del límite para describir la tendencia de una sucesión o una función. La idea es que en una sucesión o una función, decimos que existe el límite
Bachillerato. Gènius, el secreto de los mejores! Ximo Beneyto. 37 Ejercicios propuestos. Cuaderno Genius. Límites Funciones I Página 1
Bachillerato 37 Ejercicios propuestos Gènius, el secreto de los mejores! Ximo Beneyto Cuaderno. Límites Funciones I Página 1 de Cuadernos : LÍMITES Presentación La coleccion de cuadernos Límites/Derivación/Integración,
Límites y continuidad
Límites y continuidad Podríamos empezar diciendo que los límites son importantes en el cálculo, pero afirmar tal cosa sería infravalorar largamente su auténtica importancia. Sin límites el cálculo sencillamente
Reducción de dos términos semejantes del mismo signo P r o c e d i m i e n t o
. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Reducción de dos términos semejantes del mismo signo P r o c e d i m i e n t o Para reducir
REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9_ DE 6
REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9_2016 1 DE 6 Nombre: Fecha: REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9_2016 2 DE 6 REPASO_RECUPERACION_III_PERIODO_MATEMATICAS_9_2016 3 DE 6 VOCABULARIO
LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN
LICEO Nº1 JAVIERA CARRERA 2012 MATEMATICA Benjamín Rojas F. FACTORIZACIÓN Factorizar es transformar un número o una expresión algebraica en un producto. Ejemplos: Transformar en un producto el número 6
Las actividades que se mandan son de factorización. Tienes hasta el día viernes a las 2 de la tarde para enviar tus actividades resueltas
TRABAJO 3 TURNO MATUTINO PARA LOS GRUPOS A, B, C Y D DE MATEMÁTICAS DEL TERCER GRADO PROFESOR: IGNACIO GUZMÁN ARTEAGA TRABAJO PARA LOS DÍAS DEL 23 AL 27 DE OCTUBRE. Las actividades que se mandan son de
FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES
FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización
CASOS DE FACTORIZACION FACTORIZACION Y EN QUE TIPOS DE EJERCICIOS APLICARLOS.
CASOS DE FACTORIZACION IDENTIDICAR LOS CASOS DE FACTORIZACION Y EN QUE TIPOS DE EJERCICIOS APLICARLOS. 1. FACTOR COMUN Cuándo lo utilizo? Es el primer paso que se debe hacer cuando se va a factorizar un
Veamos ahora el comportamiento de la función parte entera (f(x) = E(x)). Si x se aproxima a 2, a qué valor tiende f(x)?
LÍMITES Y CONTINUIDAD DE FUNCIONES. C O N C E P T O D E L Í M I T E D E U N A F U N C I Ó N E N U N P U N T O Consideremos la función f(x)x², cuya gráfica es una parábola. Si x se aproxima a, a qué valor
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y
TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD.
TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. 1. Concepto de función.. Dominio e imagen de una función. 3. Tipos de funciones. 4. Operaciones con funciones. 5. Concepto de límite. 6. Cálculo de límites. 7.
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales
Ecuaciones cuadráticas Resolver ecuaciones cuadráticas casos especiales Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene
PROF. JESÚS OLIVAR. Prof. Jesús Olivar Página 1
PROF. JESÚS OLIVAR Prof. Jesús Olivar Página 1 Límite y Continuidad de Funciones Resumen Estudio del límite de funciones en un punto; comenzaremos dicho estudio analizando la gráfica de una función. Trataremos
UNIDAD DE APRENDIZAJE III
MATEMÁTICAS I ALGEBRA Unidad de Aprendizaje III UNIDAD DE APRENDIZAJE III Saberes procedimentales Saberes declarativos Expresa un polinomio en sus factores primos A Concepto de factores primos algebraicos
2. Se extraen las raíces cuadradas del primer y tercer término. a2 = a
ENCUENTRO # 3 TEMA: Casos de Factorización EJERCICIOS RETO:. Una prueba tiene 25 preguntas, y por cada respuesta correcta se dan 4 puntos y se les resta un punto por cada respuesta incorrecta. Si se omite
MATEMÁTICAS GRADO NOVENO
MATEMÁTICAS GRADO NOVENO PRIMERA PARTE TEMA 1: PRODUCTOS NOTABLES CONCEPTO: DEFINICIONES BÁSICAS: Los productos notables son productos algebraicos que pueden ser resueltos por simple inspección, esto quiere
UNIDAD VI.-OPERACIONES CON FRACCIONES ALGEBRAICAS. Como podrás recordar, en fracciones numéricas,, para simplificarlas era muy sencillo, pues por
UNIDAD VI.-OPERACIONES CON FRACCIONES ALGEBRAICAS Simplificación de Fracciones Algebraicas 8 Como podrás recordar, en fracciones numéricas,, para simplificarlas era mu sencillo, pues por 5 5 ejemplo para
UNIDAD DOS FACTORIZACIÓN
UNIDAD DOS FACTORIZACIÓN Factorizar quiere decir descomponer en factores, los factores son divisores de una expresión que, multiplicados entre sí, dan como resultado la primera expresión. FACTOR COMÚN
Problemas Tema 1 Solución a problemas de Repaso 4ºESO - Hoja 07- Problemas 1, 2, 3, 5, 6, 8
página 1/6 Problemas Tema 1 Solución a problemas de Repaso 4ºESO - Hoja 07- Problemas 1, 2, 3, 5, 6, 8 Hoja 7. Problema 1 Resuelto por Juan Luís Pérez (septiembre 2014) 1. En un triángulo rectángulo, uno
SESIÓN 5 LÍMITES DE FUNCIONES ESPECIALES Y LA DERIVADA.
I. CONTENIDOS: 1. Límites en el infinito SESIÓN 5 LÍMITES DE FUNCIONES ESPECIALES Y LA DERIVADA. 2. Formas indeterminadas de límites del tipo ( ) 3. Dos límites especiales sen 4. El límite de = 1 cuando
EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones
or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado
TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES
TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES Dado un polinomio P(x) y un número real a, el resto de la división de P(x) entre (x a) es P(a) (es decir, el resultado de sustituir el valor de x por
TEMA 3. POLINOMIOS Y FRACCIONES ALGEBRAICAS. Ficha 1. P x
Ficha. Dados los siguientes polinomios, ordenarlos en orden decreciente, indicar cuál es su grado, decir cuántos términos tiene, señalar cuál es el término independiente, calcular su valor numérico para
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos
Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.
Clase 11 Tema: Factorización de un trinomio de la forma x2 + bx + c
Matemáticas 8 Bimestre: III Número de clase: Clase Tema: Factorización de un trinomio de la forma x + bx + c Actividad 47 Escriba los términos que faltan en cada trinomio para que la igualdad se verifique.
Teoría Tema 5 Integrales con fracciones de polinomios
Asignatura: Matemáticas II ºBachillerato página 1/9 Teoría Tema 5 Integrales con fracciones de polinomios Índice de contenido Grado del numerador P(x) menor que Grado del denominador Q(x)... Raíces reales
Laboratorio 1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el MÉTODO COMPLETANDO CUADRADOS.
Laboratorio 1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el MÉTODO DE FACTORIZACIÓN. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes
Laboratorio #1 Ecuaciones Cuadráticas I. II.- Resolver las ecuaciones siguientes usando el método Completando Cuadrados.
Laboratorio #1 Ecuaciones Cuadráticas I I.- Resolver las ecuaciones siguientes utilizando el método de Factorización. 1) 121 25x = 0 2) 27az 2 75a 3 = 0 3) 15y 2 = 21y II.- Resolver las ecuaciones siguientes
Polinomios y fracciones
3 Polinomios y fracciones algebraicas. Binomio de Newton Desarrolla mentalmente: a) ( + ) b)( ) c) ( + )( ) P I E N S A Y C A L C U L A a) + + b) + c) ( + ) 3 A P L I C A L A T E O R Í A 6 3 5 y 5 4 y
x a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente.
or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado
GUÍA DE EJERCICIOS. Áreas Matemáticas Conocimientos Previos
GUÍA DE EJERCICIOS Áreas Matemáticas Conocimientos Previos Resultados de aprendizaje. Identificar y realizar factorizaciones de expresiones algebraicas. Contenidos 1. Factorización de expresiones algebraicas.
Definiciones I. Una solución de una ecuación son aquellos valores que al sustituirlos en la ecuación hacen que la igualdad sea cierta.
Ecuaciones Definiciones I Una ecuación es una igualdad algebraica que se verifica únicamente para un conjunto determinado de valores de las variables o indeterminadas que forman la ecuación. a + b 2 =
LÍMITES Y CONTINUIDAD
LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites
2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
Bloque 3. ECUACIONES Y SISTEMAS (En el libro Temas 4 y 5, páginas 63 y 81) 1. Ecuaciones: Definiciones. Reglas de equivalencia. 2. Ecuaciones de primer grado: (sencillas, con paréntesis, con denominadores).
CURSO PROPEDÉUTICO 2017
CURSO PROPEDÉUTICO 2017 1 FUNDAMENTOS DE MATEMÁTICAS OBJETIVO Formar estudiantes altamente capacitados, que cuenten con competencias y conocimientos para construir y utilizar técnicas que contribuyan a
crece indefinidamente y toma valores positivos cada vez, y si decrece tomando valores negativos escribimos
Límites infinitos y límites al infinito El símbolo se lee infinito, es de carácter posicional, no representa ningún número real. Si una variable independiente está creciendo indefinidamente a través de
Cantidades imaginarias - numeros complejos
Cantidades imaginarias - numeros complejos Las operaciones directas (Suma, multiplicación y potenciación) no crearon problema de cálculo, por ser siempre realizables. En cambio las operaciones inversas
Los Conjuntos de Números
Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes
Resolver ecuaciones cuadráticas. Departamento de Matemáticas Universidad de Puerto Rico - Arecibo
Resolver ecuaciones cuadráticas Departamento de Matemáticas Universidad de Puerto Rico - Arecibo Ecuación cuadrática en forma general Una ecuación cuadrática tiene una forma general como sigue ax + bx
Para encontrar el valor de k sustituimos el valor de h en la función inicial.
.3.4 GRÁFICAS DE FUNCIONES CUADRÁTICAS COMPLETAS. Ejemplo 1. Construir la gráfica de la siguiente función f()= -4-5, estableciendo su dominio, rango, las coordenadas de su vértice sus raíces (método de
Repartido 4. Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016
Repartido 4 Profesor Fernando Díaz Matemática A 3ro E.M.T. Iscab 2016 6. Estudiar los límites laterales de las siguientes funciones en los puntos que anulan al denominador: A) B) 7. Estudiar la existencia
5. Métodos de integración y aplicaciones de la integral denida 5.5 Fracciones parciales. Métodos de Integración. Integración por fracciones parciales
Métodos de Integración Integración por fracciones parciales P x) Consideremos la función racional donde P, Q son polinomios. Si derivamos una función racional Qx) obtenemos una funciòn racional. Si integramos
Lección 1: Números reales
GUÍA DE MATEMÁTICAS III Lección 1: Números reales Los números irracionales En los grados anteriores estudiamos distintas clases de números: Vimos en primer lugar: los naturales, que son aquellos que sirven
DESARROLLO. a 2 ± 2ab + b 2. La cual para factorizarla, se deben seguir los siguientes pasos
ENCUENTRO # 3 TEMA: Casos de Factorización CONTENIDOS:. Trinomio cuadrado perfecto. 2. Trinomio x 2 + bx + c. 3. Trinomio ax 2 + bx + c. 4. Casos especiales. Ejercicio reto. Una prueba tiene 25 preguntas,
Colegio Universitario Boston. Álgebra
1 Factorización de Polinomios En el estudio de la matemática uno de los temas más importantes que encontramos es el de la factorización de polinomios. Este procedimiento nos permite aprender a expresar
Titulo: COMO GRAFICAR UNA FUNCION RACIONAL Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:
Juan C. Castro Mancilla NOCIONES DE ALGEBRA
I. ALGEBRA. NOCIONES DE ALGEBRA 1.- Expresiones algebraicas: Una expresión algebraica es una serie de términos ligados por las operaciones de adición y diferencia. a) 3x y + xy - 7xy 3 b) m - n c) a 3-3ab
Factorización de Polinomios
Factorización de Polinomios Curso de Nivelación Ingreso FaMAF 2016 Marcelo E. Rubio Abstract En este apunte se introduce el concepto de factorización de polinomios, y se muestran algunas herramientas útiles
COL LECCIÓ DE PROBLEMES RESOLTS
DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES
Solución: a) Suprimiendo los factores comunes en numerador y denominador, resulta:
Simplifica las siguientes epresiones: 0y 8 y z 8( z + )( ) + Suprimiendo los factores comunes en numerador y denominador resulta: 5y z Sacando factor común en el denominador resulta: 8( + )( ) ( ) ( +
Tema 9. Limite de funciones. Continuidad
Tema 9. Limite de funciones. Continuidad 1. Límite de una función. Funciones convergentes La idea intuitiva de límite de una función en un punto es fácil de comprender: es el valor hacia el que se aproxima
Tema 1 Límites 1.0.Definición de límite de una función
Tema 1 Límites 1.0.Definición de límite de una función L es el límite de de la función f(x) cuando la variable x tiende (se acerca) al valor x p. El límite de una función es el valor que toma la función
MATERIALES: Cuaderno de 100h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde
MATERIALES: Cuaderno de 00h cuadriculado, block de hojas milimetradas, calculadora, lápiz, borrador, lapicero de color verde FACTORIZACION - Casos de Factorización - Factor común - Factor común por agrupación
Límites y continuidad de funciones reales de variable real
Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones
Lección 6 - Ecuaciones cuadráticas
Ecuaciones cuadráticas Objetivos: Al terminar esta lección podrás definir lo que es una ecuación cuadrática y podrás resolver ecuaciones cuadráticas. En la lección previa aprendimos lo que es una ecuación
Ecuación Función cuadrática
Eje temático: Álgebra y funciones Contenidos: Función cuadrática - Ecuaciones de segundo grado Traslaciones de función cuadrática y función raíz Nivel: 3 Medio Ecuación Función cuadrática 1. Ecuación cuadrática
1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3
Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros
EJEMPLO 1: La suma de los cuadrados de dos números pares consecutivos es 724, hallar los números. 2 =724
PROBLEMAS CON ECUACIONES DE SEGUNDO GRADO. INTRODUCCIÓN Múltiples problemas, tanto como la aplicación de otras ciencias como la vida real, se resuelven mediante ecuaciones de segundo grado. Para hallar
Polinomios y fracciones
3 Polinomios y fracciones algebraicas Ejercicios y problemas. Binomio de Newton 6 Desarrolla el siguiente binomio aplicando la fórmula de Newton: ( y) 3 8 3 y + 6y y 3 7 Desarrolla el siguiente binomio
Sean dos funciones f(x) y g(x), para las que existe límite en un punto o en el infinito. Entonces:
Límite de funciones. Cálculo Propiedades. Sean dos funciones f(x) y g(x), para las que existe límite en un punto o en el infinito. Entonces: En general calcular el límite de una función "normal", cuando
APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.
FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,
Factorización diferencias de cuadrados a 2 b 2
FECHA: 24/07/ Hasta 31/07/ WEB https://ingjairotovarherna.wixsite.com/ieliceoshalom/ - https://jairotovar.jimdofree.com/ Factorización diferencias s a 2 b 2 La diferencia s es igual al producto de la suma
CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO
CORPORACIÓN UNIVERSITARIA MINUTO DE DIOS UNIMINUTO Bucaramanga Profesor: Lic. Eduardo Duarte Suescún Taller: Operaciones Algebraicas, Productos Notables y Factorización MARCO TEÓRICO - CONCEPTUAL Una expresión
Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.
Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los
1.1. Los números reales
1.1. Los números reales El conjunto de los números reales está compuesto por todos los números racionales (Q) y todos los irracionales (I). Sin olvidar que los números racionales incluyen a los naturales
Álgebra Agosto I.-Resolver las ecuaciones siguientes usando el método de factorización.
Laboratorio # 1 Ecuaciones Cuadráticas I I.-Resolver las ecuaciones siguientes usando el método de factorización. 1) x 2 40 = 3x 5) x 2 11x + 12 = 4x 2) 15x 10 = 3x 2 2x 6) 8x 2 6x + 3 = 0 3) x 3 2x 2
1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5
Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,
Ejercicio reto. Definición. Circunferencia con centro en el origen. ENCUENTRO # 60 TEMA:Secciones cónicas. CONTENIDOS: 1. Circunferencia.
ENCUENTRO # 60 TEMA:Secciones cónicas. CONTENIDOS: 1. Circunferencia. Ejercicio reto 1. La ecuación de la recta que pasa por M(π, 0) y por la intersección de las rectas con ecuaciones: 3x 2y 1=0, x 4y+
SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO
Unidad : Polinomios y fracciones algebraicas SOLUCIONES A LOS EJERCICIOS BÁSICOS POLINOMIOS. VALOR NUMÉRICO. De las siguientes epresiones indicar las que son polinomios o pueden transformarse en polinomios
