Actividades con GeoGebra
|
|
|
- Montserrat Fidalgo Carrizo
- hace 9 años
- Vistas:
Transcripción
1 Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas Para comprender las nociones básicas de Geo Gebra construiremos distintos cuadriláteros. 1) Cuadrilátero a) Seleccionar la opción Polígono. b) Marcar 4 puntos, que serán los vértices del cuadrilátero c) Marcar nuevamente el primer punto, para finaliza d) Seleccionar la opción Elige y mueve y mover los vértices. e) Observar que todos los 4 vértices se pueden mover libremente. 2) Trapecio Construiremos un trapecio ABCD, con AB paralelo a CD. a) Trazar un segmento AB. b) Trazar un punto C. c) Trazar una recta paralela por C al segmento AB. d) Marcar un punto D en la recta. (Es importante utilizar la opción Punto en objeto, y no colocarlo a ojo sobre la recta. De esta forma, nos aseguramos que el segmento CD será siempre paralelo al segmento AB.) e) Seleccionar la opción Polígono y marcar el cuadrilátero ABCD. f) Mover los vértices del trapecio. g) Observar que los puntos A, B y C se pueden mover libremente. Sin embargo el punto D solo se puede mover sobre la recta, manteniéndose la propiedad de trapecio. 3) Paralelogramo Construiremos un paralelogramo ABCD, con AB paralelo a CD y BC paralelo a AD. a) Trazar segmentos AB y BC. b) Trazar por B un recta paralela a AC. c) Trazar por C una recta paralela a AB.
2 d) Marcar el punto D de intersección entre las dos rectas. (Utilizar la opción Intersección entre dos objetos.) e) Trazar el cuadrilátero ABCD. f) Mover los vértices del trapecio. g) Observar que los puntos A, B y C se pueden mover libremente. Sin embargo el punto D no puede moverse. Ese punto está determinado por la posición de los otros tres vértices. 4) Rectángulo a) Trazar un segmento AB. b) Trazar por B una recta perpendicular a AB. c) Marcar un punto C en esa recta. (Recordar usar la opción Punto en objeto.) d) Trazar por C una recta perpendicular a BC. e) Trazar por A una recta perpendicular a AB. f) Marcar el punto D de intersección entre esas dos rectas. g) Trazar el cuadrilátero ABCD. h) Mover los vértices del rectángulo. i) Observar cuáles puntos se mueven libremente, cuáles se mueven en forma restringida y cuáles quedan determinados por la posición de los otros vértices. 5) Cuadrado a) Trazar un segmento AB b) Trazar por B una recta perpendicular a AB. c) Trazar una circunferencia con centro en B que pase por A. (Utilizar la opción Circunferencia dados su centro y uno de sus puntos.) d) Marcar la intersección C entre la circunferencia y la recta. e) Observar que por construcción los segmentos AB y BC tienen la misma longitud. f) Trazar por C una recta perpendicular a BC. g) Trazar por A una recta perpendicular a AB. h) Marcar el punto D de intersección entre esas dos rectas. i) Trazar el cuadrilátero ABCD. j) Mover los vértices del rectángulo. k) Observar cuáles puntos se mueven libremente, cuáles se mueven en forma restringida y cuáles quedan determinados por la posición de los otros vértices. 6) Actividades (para pensar) a) Construir un rombo ABCD. b) Construir un romboide ABCD con AB = BC y CD = DA. Una vez hechas las construcciones, mover los vértices libres y verificar que se sigan cumpliendo siempre las propiedades pedidas del cuadrilátero
3 Fractales 7) Triángulo de Sierpinski a) Construir un triángulo ABC. b) Marcar los puntos medios D, E y F de los lados del triángulo AB, BC y CA respectivamente. c) Construir los triángulos ADF, DBE y FEC. d) Para repetir esta construcción, utilizamos la opción Creación de herramienta nueva en el menú Herramientas. e) Seleccionar como Objeto de entrada el triángulo ABC y como objeto de salida los triángulos ADF, DBE y FEC. f) Concluir la creación de la herramienta. g) Aparace un nuevo botón en la barra de botones. h) Seleccionar ese botón y aplicarlo a los triángulos ADF, DBE y FEC.
4 i) Repetir el procedimiento con todos los nuevos triángulos. j) Mover los vértices del triángulo ABC. 8) Árbol fractal a) Construimos primero un segmento AB, que será el tronco del árbol. b) Ahora construimos dos ramas: i) Trazá las circunferencias con centro en cada vértice que pasen por el otro vértice. ii) Marcá las intersecciones y trazá las rectas que unen esos puntos de intersección con el vértice B. iii) Los ángulos que forman esas rectas con el segmento AB miden 60º. iv) Marcá los puntos de intersección de esas rectas con la circunferencia de centro B. v) Tomá los puntos medios I y J de BC y BD respectivamente
5 vi) Trazá los segmentos BI y BJ. vii) Ocultá todos los objetos auxiliares (desde el listado de objectos), dejando visibles únicamente los segmentos AB, BI y BJ. AB es el tronco y BI y BJ son las primeras ramas. La idea ahora es hacer lo mismo con BI y BJ. Es decir, pensar que BI y BJ son los troncos y construir las ramas que salen de estos troncos. Para esto, construimos una nueva herramienta. c) Seleccionar la opción Creación de Herramienta Nueva. d) Seleccionar como objetos de entrada primero el punto A y luego el punto B. (Es importante el orden en que ingresamos los puntos.) e) Seleccionar como objetos de salida los puntos I y J y los segmentos BI y BJ. (En este caso, no importa el orden en que los seleccionemos.) f) Concluir la herramienta. g) Seleccionar el nuevo botón, y aplicar la herramienta a los puntos B e I. Deben aparecer dos nuevas ramas. h) Aplicar la herramienta a los puntos B y J. i) Aplicar la herramienta a las 4 nuevas ramas. j) Mover los puntos A y B y observar cómo se mueve el fractal.
6 9) Actividades Realizar el fractal de la figura. Qué son los fractales? La principal característica de nuestra figura es la "auto-semejanza". Si miramos cualquiera de las figuras que construimos, veremos que cada parte es semejante a la figura total. Por ejemplo, la figura que se forma en cada triangulito del triangulo de Sierpinski es semejante a la figura total (si repetimos el procedimiento que vimos infinitas veces). Los fractales aparecen en la naturaleza, y estudiar estas estructuras nos permite entender mejor cómo se generan estas formas y conocer sus propiedades.
7 Fractales en la naturaleza Delta de un río Brócoli Romanescu
8
UNIDAD 8 Geometría analítica
Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.
TEMA 6: LAS FORMAS POLIGONALES
EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado
INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO
CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos
Club GeoGebra Iberoamericano 5 CUADRILÁTEROS
5 CUADRILÁTEROS CUADRILÁTEROS 1. INTRODUCCIÓN En esta unidad te proponemos un viaje lleno de retos por el mundo de los cuadriláteros. Algunos miembros de esta familia ya te resultarán familiares: el cuadrado,
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C.
Algunos problemas de cuadriláteros Propiedades Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades : - Las diagonales de un paralelogramo se cortan en sus respectivos
LA RECTA Y SUS ECUACIONES
UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás
TALLER DE RESOLUCIÓN DE PROBLEMAS EN GEOMETRÍA
UNIVERSIDAD NACIONAL DE RÍO CUARTO FACULTAD DE CIENCIAS EXACTAS, FÍSICO-QUÍMICAS Y NATURALES DEPARTAMENTO DE MATEMÁTICA TALLER DE RESOLUCIÓN DE PROBLEMAS EN GEOMETRÍA Actividades de Ingreso Año 2009 Profesorado
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES
TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra
Geometría con GeoGebra
Geometría con GeoGebra Geometría con GeoGebra 2 Actividad 1: Para empezar Puesta en marcha del programa Para arrancar el programa, haz doble clic sobre el icono que está en el Escritorio. (si no encuentras
4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.
7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.
*DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al
Mª Rosa Villegas Pérez
Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o
La carrera geométrica
La carrera geométrica Materiales: el tablero 1, un personaje por cada jugador y un dado. 1. Cada jugador ubica su ficha en la salida. 2. Por turno, cada jugador tira el dado y mueve su ficha tantos casilleros
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por
x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y
1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice?
Pág. 1 Puntos 1 Si los puntos ( 6, 2), ( 2, 6) y (2, 2) son vértices de un cuadrado, cuál es el cuarto vértice? 2 Los puntos ( 2, 3), (1, 2) y ( 2, 1) son vértices de un rombo. Cuáles son las coordenadas
CUENCA DEL ALTO PARANÁ Soluciones - Primer Nivel
CUENCA DEL ALTO PARANÁ Soluciones - Primer Nivel Problema 1: Si se traza una recta m paralela a r que pase por el centro del rectángulo, éste quedará seccionado en dos trapecios iguales. En efecto, trazando
ACTIVIDADES PROPUESTAS
GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el
Polígonos Polígonos especiales: Cuadriláteros y triángulos
Polígonos Polígonos especiales: Cuadriláteros y triángulos 1) a) Busca información sobre polígonos equiláteros, equiángulares y regulares. Lista semejanzas y diferencias. b) Haz una lista de los polígonos
UNIDAD 12. CUADRILÁTEROS
UNIDAD 12. ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 12 ESQUEMA DE LA UNIDAD Nombre y apellidos:... Curso:... Fecha:... Un cuadrilátero puede ser:, si tiene dos pares de lados
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.
EJERCICIOS DE GEOMETRÍA
1) Sean las rectas EJERCICIOS DE GEOMETRÍA x 2y 6z 1 r : x y 0 x y 1 s: z 2 a a) Determinar la posición relativa de r y s según los valores de a. b) Calcular la distancia entre las rectas r y s cuando
11. ALGUNOS PROBLEMAS CON TRIÁNGULOS
11. ALGUNOS PROBLEMAS CON TRIÁNGULOS Estos problemas son ejemplos de aplicación de las propiedades estudiadas. 11.1. Determinar la posición de un topógrafo que tiene tres vértices geodésicos A,B,C, si
Problema a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente.
Problema 717.- a) En un triángulo rectángulo OAB una recta r paralela a la hipotenusa corta a los catetos OA y OB en los puntos A y B respectivamente. Hallar el lugar geométrico de los puntos comunes a
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
Ángulo inscrito es aquel cuyo vértice está en la circunferencia. Todos los ángulos inscritos que compartan el mismo arco son iguales.
TEMA 8: PROBLEMAS MÉTRICOS EN EL PLANO ÁNGULOS EN LA CIRCUNFERENCIA Ángulo central es aquel cuyo vértice está en el centro de la circunferencia. Ángulo inscrito es aquel cuyo vértice está en la circunferencia.
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1
EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento
NIVEL : 1er. AÑO PROF. L. ALTIMIRAS R. CARRERA : GEOGRAFÍA AYUD. C. ESCOBEDO C. AÑO : 2009 GEOMETRÍA ANALÍTICA
UNIVERSIDAD DE CHILE FACULTAD DE ARQUITECTURA Y URBANISMO ESCUELA DE GEOGRAFÍA DEPARTAMENTO DE CIENCIAS DE LA CONSTRUCCIÓN ASIGNATURA : MATEMATICAS MATERIAL DE APOYO NIVEL : 1er. AÑO PROF. L. ALTIMIRAS
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado.
REPARTIDO Nº 6 1) Calcular la hipotenusa de un triángulo rectángulo sabiendo que los catetos miden 6 cm y 8 cm respectivamente. 2) Si la hipotenusa de un triángulo rectángulo mide 13 cm y uno de sus catetos
Actividad Reconociendo lo invariante en figuras simétricas
Actividad 37.1. Reconociendo lo invariante en figuras simétricas Construir figuras simétricas respecto de un eje y describir las propiedades que se conservan. Recuerda que la simetría axial o simetría
Agudo Recto Obtuso Extendido Completo º 180º. Ángulos complementarios
Definición Ángulo: Vértice: O Lados: OA y OB Clasificación Agudo Recto Obtuso Extendido Completo 0º 90º 90º 90º 80 º 360 º Posiciones relativas Ángulos consecutivos Ángulos adyacentes Ángulos complementarios
open green road Guía Matemática tutora: Jacky Moreno .co
Guía Matemática PERÍMETRO Y ÁREA tutora: Jacky Moreno.co 1. Perímetro y área de figuras planas Los registros más antiguos que se tienen del campo de la geometría corresponden a la cultura mesopotámica,
IES LOS PEDROCHES. Geométrico
Geométrico Relaciones Trazar y acotar en mm. sobre cada uno de los segmentos correspondientes, la distancia entre cada par de elementos dados: Puntos P y Q, rectas r y s y circunferencia de centro O. +Q
PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO
Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.
GEOMETRÍA. Contenidos a desarrollar: Circunferencia. Mediatriz. Bisectriz. Alturas. Medianas. Puntos notables del triángulo.
GEOMETRÍA Contenidos previos: Recta. Segmento. Semirrecta. Ángulos. Clasificación. Ángulos opuestos por el vértice. Ángulos adyacentes. Clasificación de triángulos. Propiedades elementales. Contenidos
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
EXAMEN A: Ejercicio nº 1.- Página 1 de 25 Indica el valor de los ángulos señalados en cada figura: Ejercicio nº 2.- La siguiente figura es una esfera de centro C y radio 3 unidades. Cómo definirías dicha
ARITMÉTICA. 1. Resolver las siguientes ecuaciones en Q. 2 x + 5. d) ( x ) ( x ) x = x + = x. l) ( ) ( )( ) + = + + o) ( x ) 2.
1. Resolver las siguientes ecuaciones en Q. ARITMÉTICA a) b) 3. x + 1 = 3 83 3,90x x = 3 31 c) 0,x + x 4,16 = 6 d) ( x ) ( x ) + 3 1 = + 1 4 e) f) g) x x + = 0,3 0, 6x 3 0, 6 1x + 6x = 0,3 8 0,86x 0,73
Ejercicios para 1 EMT geometría (extraídos de los parciales y exámenes)
Ejercicio 1 Construya con regla y compas un triángulo ABC conociendo: { Indicar programa de construcción. Ejercicio 2 Dado ABC tal que: { se pide a) Construir todos los puntos P que cumplan simultáneamente:
Trazados en el plano. Potencia
UNIDAD 1 Trazados en el plano. Potencia Localización de un barco mediante el arco capaz (Ilustración de los autores utilizando fotografías del Banco de imágenes del ISFTIC). E n esta Unidad se completan
CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS
OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.
Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes:
Identificación de las propiedades de los cuadriláteros Cuadrilátero. Es un polígono de cuatro lados. Se le representa con sus cuatro vértices. Características Dado este cuadrilátero ABCD, se tiene: Clasificación.
Un ángulo mide y otro Cuánto mide la suma de estos ángulos?
Los Ángulos Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos
C onstrucción de triángulos
C onstrucción de triángulos Figuras básicas y ángulos Nombre Escuela Edad Fecha Propósito: Distinguir triángulos con características diferentes. Escribe lo que entiendas por triángulo isósceles. Dibuja
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
Club GeoGebra Iberoamericano 3 ÁNGULOS EN LA CIRCUNFERENCIA
3 ÁNGULOS EN LA CIRCUNFERENCIA ÁNGULOS EN LA CIRCUNFERENCIA INTRODUCCIÓN Comenzamos la publicación de un nuevo tema, dedicado en esta ocasión al trabajo con ángulos en la circunferencia. La estructura
INSTITUCION EDUCATIVA LA PRESENTACION
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMATICAS ASIGNATURA: GEOMETRIA DOCENTE: HUGO BEDOYA TIPO DE GUIA: CONCEPTUAL Y EJERCITACION PERIODO GRADO No. FECHA DURACION 3 7 2 FEBRERO
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Rafael Ballestas Rojano Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2015 Universidad Nacional de Colombia
Polígonos regulares, el triángulo de Sierpinski y teselados
Sesión 3 Polígonos regulares, el triángulo de Sierpinski y teselados PROPÓSITOS Plantear y resolver problemas que involucren el análisis de características y propiedades de diversas figuras planas. MATERIALES
MATEMÁTICAS BÁSICAS. Jeanneth Galeano Peñaloza. 13 de agosto de Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas
MATEMÁTICAS BÁSICAS Jeanneth Galeano Peñaloza Universidad Nacional de Colombia Sede Bogotá Departamento de Matemáticas 13 de agosto de 2012 Parte I Introducción a la geometría elemental Nociones básicas
SISTEMASS DE REPRESENTACIÓNN Geometría Básica
SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,
SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C
XXIV OLIMPIADA COSTARRICENSE DE MATEMÁTICA MEP ITCR UCR UNA UNED - MICIT SOLUCIÓN PRIMERA ELIMINATORIA NACIONAL NIVEL C 01 1. Un factor de la factorización completa de corresponde a mx y + 9y m x y x 4
Triángulos y Cuadriláteros
04 Lección Apertura Matemáticas Triángulos y Cuadriláteros APRENDO JUGANDO Competencia Identifica las características de los triángulos y los cuadriláteros. Diseño instruccional Por la importancia que
NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS
NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS 8.3.1 8.3.4 Un cuadrilátero es cualquier polígono de cuatro lados. Hay seis casos especiales de cuadriláteros con la que los estudiantes deben estar familiarizados.
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
CENAFE MATEMÁTICAS POLÍGONOS
POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:
III: Geometría para maestros. Capitulo 1: Figuras geométricas
III: Geometría para maestros. Capitulo : Figuras geométricas SELECCIÓN DE EJERCICIOS RESUELTOS SITUACIONES INTRODUCTORIAS En un libro de primaria encontramos este enunciado: Dibuja un polígono convexo
Figuras planas, propiedades métricas
Figuras planas, propiedades métricas Contenidos 1. Ángulos en la circunferencia Ángulo central y ángulo inscrito 2. Semejanza Figuras semejantes Semejanza de triángulos, criterios 3. Triángulos rectángulos
Preguntas Propuestas
reguntas ropuestas 2 ... olígonos 1. alcule la suma de lados de dos polígonos si se sabe que las sumas de las medidas de sus ángulos interiores difieren en 540º y el número de diagonales del polígono de
Cuadriláteros y circunferencia
CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C
donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.
Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices
UNIDAD DIDÁCTICA 10ª. Objetivos didácticos. Al finalizar el tema serás capaz de:
UNIDAD DIDÁCTICA 10ª Etapa: Educación Primaria. Ciclo: 3º Curso 6º Área del conocimiento: Matemáticas Nº UD: 10ª (12 sesiones de 60 minutos; a cuatro sesiones por semana) Título: Los polígonos, el círculo,
Soluciones Primer Nivel - 5º Año de Escolaridad
Primer Nivel - 5º Año de Escolaridad Problema 1. La diagonal del cuadrado mide cm. El cuadrado se descompone en cuatro triángulos rectángulos cuyos catetos miden 1cm. Las áreas de estos triángulos miden
B7 Cuadriláteros. Geometría plana
Geometría plana B7 Cuadriláteros Cuadrilátero es un polígono de cuatro lados. Lados opuestos son los que no tienen punto común. Ejemplo AB y CD, AD y BC. Lados contiguos son los que tienen un extremo común.
Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante?
Ámbito Científico-Tecnológico Módulo III Bloque 4 Unidad 6 Eres mi semejante? Cuántas veces nos hemos parado a pensar, esas dos personas mira que se parecen, casi son igualitas! De igual manera, cuando
Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA
Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA 1. 2. 3. 4. 5. 6. Educación Plástica y Visual de 1º de ESO Página 48 Ejercicio 5.1 Los polígonos
EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos
EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades
Módulo 17. Capítulo 4: Cuadriláteros. 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2.
Módulo 17 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 210 Capítulo 4: Cuadriláteros Figura 7 Figura 8 Figura 9 2. En
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
Tema 5 Proporcionalidad y escalas
Tema 5 Proporcionalidad y escalas Tema 5 Proporcionalidad y escalas...1 Proporcionalidad... 2 Razón...2 Proporción...2 Proporcionalidad directa...2 Proporcionalidad inversa...3 Construcción de la media
Problemas geométricos
Problemas geométricos Contenidos 1. Figuras planas Triángulos Paralelogramos Trapecios Trapezoides Polígonos regulares Círculos, sectores y segmentos 2. Cuerpos geométricos Prismas Pirámides Troncos de
Reporte de Actividades 15
Reporte de Actividades 15 Profesores: Arturo Ramírez, Alejandro Díaz. Tutores: Paulina Salcedo, Filomeno Alcántara. 1. Sesión del 8 de junio de 2011. 1.1 Resumen de la clase con Alejandro Díaz Barriga.
INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA
Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,
a) Las mediatrices de un triángulo se cortan en un punto llamado... b) Las bisectrices de un triángulo se cortan en un punto llamado...
Geometría Plana 3º E.S.O. PARTE TEÓRICA 1.- Define para un triángulo los siguientes conceptos: Mediatriz: Bisectriz: Mediana: Altura: 2.- Completa las siguientes frases: a) Las mediatrices de un triángulo
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta
Tema 2: Figuras geométricas
Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy
NOMBRE Y APELLIDOS: debe medir el tercero para que ese triángulo sea un triángulo rectángulo?
FICHA REFUERZO TEMA 8: TEOREMA DE PITAGORAS. SEMEJANZA. CURSO: 2 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Los dos lados menores de un triángulo miden 8 cm y 15 cm. Cuánto debe medir el tercero para que
Traslaciones en el Plano
COLEGIO RAIMAPU Departamento de Matemática Guía Práctica Nº 1 Traslaciones en el Plano Nombre Alumno(a): Al resolver esta guía aprenderás a crear una traslación con el programa GeoGebra. Abrir el programa
Los Elementos. Libro I 2 Los fundamentos de la Geometría Teoría de los triángulos, paralelas y el Teorema de Pitágoras.
Los Elementos Está obra está compuesta por trece libros. El Libro I trata congruencia, paralelas y el teorema de Pitágoras, y en el se incluyen las definiciones de los conceptos, nociones comunes y postulados
25 Actividades de Geometría Básica
25 Actividades de Geometría Básica Marco Barrales Introducción A través de la historia, la geometría ha sido enfocada de diferentes maneras. Para los egipcios, fue práctica y utilitaria: medían los terrenos
GEOMETRÍA. DESPLAZAMIENTO 2 Nuevas isometrías: composición de simetrías axiales
GEOMETRÍA DESPLAZAMIENTO 2 Nuevas isometrías: composición de simetrías axiales Instituto de Profesores Artigas Departamento de Matemática de Formación Docente 2013 DEFINICIÓN 1 1? DEFINICIONES DE ROTACIÓN
Figuras planas, propiedades métricas
Figuras planas, propiedades métricas Contenidos 1. Ángulos en la circunferencia Ángulo central y ángulo inscrito 2. Semejanza Figuras semejantes Semejanza de triángulos, criterios 3. Triángulos rectángulos
ángulo agudo ángulo agudo triángulo acutángulo triángulo acutángulo ángulo ángulo Nombre Ángulo que es menor que un ángulo recto
Tarjetas de vocabulario ángulo agudo ángulo agudo Ángulo que es menor que un ángulo recto acutángulo acutángulo Un con tres ángulos agudos ángulo ángulo Una figura formada por dos semirrectas que tienen
Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre..
Guía de ejercicios 2º medio(thales, homotecia,euclides,división interior) Nombre.. 1) En la figura, AC // BD, entonces x mide: 2) Con respecto a la figura, donde AB // CD // EF, cuál de las siguientes
1. Teoremas válidos para triángulos rectángulos
1. Teoremas válidos para triángulos rectángulos Sea ABC triángulo rectángulo en C, entonces: El lado opuesto al ángulo recto, AB, es llamado HIPOTENUSA, y los lados AC y BC, CATETOS. cateto hipotenusa
13. PROBLEMAS DE CUADRILÁTEROS
13. PROBLEMAS DE CUADRILÁTEROS 13.1. Propiedades. Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades: - Las diagonales de un paralelogramo se cortan en sus
G - 6. Guía Cursos Anuales. Matemática. Cuadriláteros I
G - 6 Guía ursos nuales Matemática 2008 uadriláteros I Guía ursos nuales Introducción La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza,.
TEMA 7 Las formas y las medidas que nos rodean. 2. Repaso a las figuras planas elementales
TEMA 7 Las formas y las medidas que nos rodean 1. Introducción 1.1. Qué es la geometría? Es una rama de la matemática que se ocupa del estudio de las propiedades de las figuras geométricas en el plano
EGRESADOS. Matemática PROGRAMA. Guía: Generalidades de ángulos, polígonos y cuadriláteros. Ejercicios PSU // L 2. 1.
PROGRM GRSOS Guía: Generalidades de ángulos, polígonos y cuadriláteros jercicios PSU 1. n la figura, L 1 // L 2 // L 3, entonces α mide ) 82º ) 90º ) 122º ) 168º ) 238º L 1 L 2 110º a L 3 12º Matemática
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
