TEMA 6: LAS FORMAS POLIGONALES
|
|
|
- Ramón Acuña Martín
- hace 9 años
- Vistas:
Transcripción
1 EDUCACIÓN PLÁSTICA Y VISUAL 1º DE LA E.S.O. TEMA 6: LAS FORMAS POLIGONALES Los polígonos son formas muy atractivas para realizar composiciones plásticas. Son la base del llamado arte geométrico, desarrollado por artistas de diferentes culturas y épocas. Los polígonos estructuran también las plantas y las fachadas de los edificios clásicos y modernos. Asimismo el diseño gráfico actual recurre constantemente a las formas poligonales. En estas imágenes podéis ver ejemplos de decoraciones basadas en formas poligonales como las que podríamos encontrar en los palacios árabes de la Alhambra de Granada. 1.- LOS POLÍGONOS a. Elementos de un polígono Un polígono es una figura geométrica plana, limitada por segmentos de rectas, llamados lados. Los lados se cortan en puntos denominados vértices. Los ángulos de un polígono son las porciones de plano limitadas por dos lados consecutivos. Los vértices se nombran con letras mayúsculas (A, B...), y los lados, mediante sus dos vértices; por ejemplo, lado AB, o por una letra minúscula, por ejemplo, lado c. Para nombrar un polígono se emplean las letras de sus vértices; por ejemplo, en el caso de un triángulo, ABC. Las diagonales de los polígonos son segmentos que unen un vértice con otro no consecutivo. Por eso el triángulo no tiene diagonales, mientras que un cuadrado tiene dos. b. Clasificación de polígonos Según la medida de sus lados y ángulos, un polígono puede ser regular o irregular. Los polígonos regulares tienen sus lados iguales. Sus ángulos también miden lo mismo. Los polígonos irregulares tienen, sin embargo, lados y ángulos diferentes. 1
2 Según el número de lados, los polígonos pueden ser: triángulos, cuadriláteros, pentágonos, etc. Observa algunos de los polígonos que se pueden construir en función del número de lados. Los polígonos son figuras geométricas planas, limitadas por segmentos de recta, llamados lados. Pueden ser regulares (lados y ángulos iguales) o irregulares (lados y ángulos diferentes) 2.- TRIÁNGULOS El triángulo es un polígono de tres lados y, por tanto, tres vértices. Existen diferentes clases de triángulos según la relación de igualdad o desigualdad que haya entre sus lados o entre sus ángulos. a. Clasificación de los triángulos Dependiendo de la medida de sus lados, los triángulos pueden ser escalenos, isósceles y equiláteros. El triángulo escaleno no tiene ningún lado igual. El triángulo isósceles tiene al menos dos lados iguales. El triángulo equilátero tiene sus lados y ángulos iguales. El triángulo equilátero es también isósceles, y es el único triángulo regular. Dependiendo de la clase de ángulos que posean, los triángulos pueden ser: rectángulos, obtusángulos y acutángulos. El triángulo rectángulo tiene un ángulo recto (90 ). Los dos lados perpendiculares se llaman catetos, y el tercero, hipotenusa. El triángulo obtusángulo es el que tiene un ángulo obtuso (mayor de 90º) El triángulo acutángulo es el que tiene los tres ángulos agudos (menores de 90º) 2
3 3.- RECTAS Y PUNTOS NOTABLES DE UN TRIÁNGULO En un triángulo existen rectas características: mediatrices, bisectrices, medianas y alturas. Estas rectas se cortan en los denominados puntos notables. Las mediatrices de los lados son las rectas perpendiculares a estos, trazadas por su punto medio. Las tres mediatrices se cortan en un punto llamado circuncentro: Cc. El circuncentro es el centro de la circunferencia circunscrita al triángulo. Las bisectrices son las rectas que bisecan los ángulos. El punto de intersección de las tres bisectrices se llama incentro: lc. El incentro equidista de los tres lados de! triángulo y por ello es el centro de la circunferencia inscrita en el triángulo. Las medianas de un triángulo son los segmentos trazados desde los vértices hasta el punto medio del lado opuesto. Las tres medianas se cortan en un punto llamado baricentro: Bc. El baricentro es el centro de gravedad del triángulo: si atamos una cuerda vertical a este centro, todo el triángulo quedaría horizontal. Las alturas son los segmentos perpendiculares a los lados, trazados hasta el vértice opuesto. En un triángulo obtusángulo, la altura correspondiente al lado del ángulo obtuso cae fuera del triángulo. Las tres alturas se cortan en un punto llamado ortocentro: Oc. 4.- CONSTRUCCIÓN DE TRIÁNGULOS Existen distintos procedimientos para construir triángulos, dependiendo de los datos que conozcamos. a. Construcción de un triángulo equilátero dado el lado Se traza un segmento con la medida del lado. Con centro en sus extremos A y B, se dibujan dos arcos de radio igual al lado. Al cortárselos arcos tenemos el vértice C, opuesto al lado AB. Uniendo AC y BC obtenemos el triángulo buscado. 3
4 dado b. Construcción de un triángulo equilátero inscrito en una circunferencia de radio 1. Se dibuja la circunferencia de radio conocido AO. Con centro en el extremo D del diámetro AD, y el mismo radio, se traza un arco. Este arco corta a la circunferencia en dos puntos, B y C. 2. Los puntos B y C son dos de los vértices del triángulo buscado. El tercer vértice es A. Uniendo A, B y C, tendremos el triángulo inscrito. igual c. Construcción de un triángulo isósceles conociendo el lado desigual y un ángulo 1. Se parte del lado b y sobre sus extremos, A y C, se transporta, usando el compás, el ángulo dado Â. 2. Se prolongan los lados c y a hasta que se corten en el vértice B. Con los tres vértices se puede trazar el triángulo isósceles buscado. d. Construcción de un triángulo rectángulo dados su hipotenusa y un cateto 1. Se parte del segmento AB con la longitud del cateto dado, c. Sobre el punto A, se eleva una perpendicular a AB. 2. Con B como centro y radio a, se traza un arco que corte a la perpendicular en el tercer vértice, C. Para terminar, se une C con B. 4
5 e. Construcción de un triángulo cualquiera dados dos lados y el ángulo comprendido 1. Se traza uno de los lados conocidos, por ejemplo el BC, y en el vértice B se transporta mediante el compás el ángulo B. 2. Sobre el lado obtenido se construye un segmento igual al otro lado conocido, BA. Finalmente, se une A con C para completar el triángulo. 5.- CUADRILÁTEROS El cuadrilátero es un polígono de cuatro lados. Existen tres clases de cuadriláteros: paralelogramos, trapecios y trapezoides. a. Paralelogramos Son los cuadriláteros que tienen los lados opuestos paralelos dos a dos. Pueden ser: cuadrados, rectángulos, rombos y romboides. El cuadrado es un paralelogramo que tiene los cuatro lados iguales y ángulos rectos (90 ). Las diagonales son también iguales y se bisecan, es decir, se cortan en el punto medio, y son perpendiculares. El rectángulo es un paralelogramo que tiene los lados iguales dos a dos y los ángulos rectos. Las diagonales son iguales y se bisecan, pero son, a diferencia del caso del cuadrado, oblicuas; es decir, no forman ángulo recto. El rombo es un paralelogramo que tiene los cuatro lados iguales, pero los lados consecutivos son oblicuos. Las diagonales son desiguales, se bisecan y son perpendiculares. El romboide es un paralelogramo que tiene los lados iguales dos a dos y oblicuos los lados consecutivos. Las diagonales son desiguales y se bisecan, pero son oblicuas. 5
6 b. Trapecios Son los cuadriláteros que tienen solo dos lados paralelos. Pueden ser: trapecio rectángulo, trapecio isósceles y trapecio escaleno. El trapecio rectángulo tiene dos lados paralelos y dos ángulos rectos. Las diagonales son desiguales, oblicuas, y no se bisecan. El trapecio isósceles tiene dos lados paralelos y los ángulos guales dos a dos. Las diagonales son iguales, oblicuas, y no se bisecan. El trapecio escaleno tiene dos lados paralelos y los cuatro ángulos desiguales. Las diagonales son desiguales, oblicuas, y no se bisecan. c. Trapezoides El trapezoide es el cuadrilátero que no tiene ningún lado paralelo y que tiene tanto los lados como los ángulos diferentes. Las diagonales son desiguales, oblicuas, y no se bisecan. 6.- CONSTRUCCIÓN DE CUADRILÁTEROS El trazado geométrico de los cuadriláteros puede realizarse de varias maneras. Observa con atención los diferentes procedimientos que te mostramos en estas páginas. a. Construcción de un cuadrado dado el lado Se traza un segmento con la medida del lado, AB. Sobre sus extremos se levantan las perpendiculares I y m, y sobre estas, se transporta con el compás la medida del lado. Para ello, con centros en A y B, se trazan dos arcos que cortan a I y m en los puntos C y D. Al unir C y D, se obtiene el cuadrado buscado. 6
7 b. Construcción de un cuadrado inscrito en una circunferencia de radio dado 1. Se dibuja la circunferencia de radio conocido AO. Se traza un diámetro, con extremos A y B. 2. Se traza otro diámetro, CD, perpendicular al anterior. A, B, C y D son los vértices del cuadrado buscado. c. Construcción de un rectángulo conociendo la diagonal y un lado 1. Se traza la diagonal AC y, haciendo centro en su punto medio O, se traza la circunferencia de radio OC. Con centro en C y radio igual al lado, se traza un arco que corta a la circunferencia en el vértice B. 2. Al unir B con A y C se tienen los dos primeros lados. Se traza, usando las plantillas, una paralela a BC que pase por A. Esta paralela corta a la circunferencia en el punto D, el último vértice del rectángulo. d. Construcción de un rombo dadas las dos diagonales 1. Se dibuja la primera diagonal AC y se traza su mediatriz, que corta a AC en el punto O. 2. A partir de O, se lleva sobre la mediatriz la mitad de la segunda diagonal BD en los dos sentidos, OB y OD. Al unir los vértices, se obtiene el rombo ABCD. 7
8 e. Construcción de un trapecio rectángulo dadas las bases y la altura 1. Se dibuja la base mayor AB, y por su extremo A, se traza una perpendicular. Sobre ésta, se levanta la altura AC. 2. Seguidamente, se traza la paralela a AB que pasa por C. Sobre ella, se transporta el segmento CD. Al unir D con B se obtiene el trapecio ABCD. 7.- POLÍGONOS REGULARES DE ÁNGULOS CONVEXOS Aunque existen diferentes métodos para construir polígonos regulares de más de cuatro lados, en este curso se presenta un método general, a partir del cual puedes trazar polígonos de cualquier número de lados. Método general de construcción de polígonos regulares Se quiere, por ejemplo, construir un polígono de cinco lados: Se dibuja un segmento AQ, de 5 cm de longitud, al que hacemos cinco divisiones iguales. En la mitad del segmento se sitúa el centro de una circunferencia cuyo radio abarca hasta los extremos de AQ. Se traza la circunferencia. Sobre el extremo A y con radio AQ, se traza un arco. Se repite la misma operación haciendo centro en el extremo Q. Llamamos P a la intersección de ambos arcos. Se une con una recta el punto P, y la segunda división del segmento AQ. Prolongando la recta hasta la circunferencia, se obtiene el punto B sobre esta. El segmento AB es el primer lado del pentágono buscado. Con ayuda del compás se transporta esta distancia cinco veces sobre la circunferencia, pinchando sucesivamente en cada nuevo vértice hasta volver al punto A. 8
9 8.- POLÍGONOS REGULARES ESTRELLADOS Los polígonos estrellados son polígonos con ángulos cóncavos que tienen forma de estrella. Para construir estos polígonos también se puede usar un método general. a. Polígono estrellado de cinco puntas Se dibuja un pentágono regular por el método general y se borra el trazado auxiliar inicial. Se van uniendo los vértices, dejando, entre cada dos, uno sin unir. Al dar dos vueltas a la circunferencia se cierra el polígono. b. Polígono estrellado de seis puntas Este polígono se consigue dibujando dos triángulos equiláteros invertidos, inscritos en una circunferencia, borrando los trazados auxiliares iniciales. c. Polígono estrellado de siete puntas Existen dos posibilidades. En ambas se parte del heptágono regular convexo. Para trazar el primero se unen los vértices de dos en dos, es decir, dejando, entre cada dos que se unen, uno en medio sin unir. En este caso se unen los vértices del heptágono, dejando, entre cada dos, dos sin unir. Al dar tres vueltas al heptágono, se cierra el polígono. 9
10 10
Departamento de Educación Plástica y Visual. Unidad 3: Polígonos. 3º ESO EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS.
EDUCACIÓN PLÁSTICA Y VISUAL UNIDAD 3: POLÍGONOS Página 1 de 15 1. POLÍGONOS 1.1. Conocimiento de los polígonos regulares Polígono: Proviene de la palabra compuesta de Poli (muchos) Gonos (ángulos). Se
TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco.
2009 TEMA 10: FORMAS Y FIGURAS PLANAS. Primer Curso de Educación Secundaria Obligatoria. I.e.s. Fuentesaúco. Manuel González de León. mgdl 01/01/2009 TEMA 10: FORMAS Y FIGURAS PLANAS. 1. Polígonos. 2.
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA X: POLÍGONOS Y CIRCUNFERENCIAS Triángulos. Elementos y relaciones. Tipos de triángulos. Rectas y puntos notables: o Mediatrices y circuncentro. o Bisectrices e incentro.
Tema 2: --TRAZADOS DE FORMAS POLIGONALES
Tema 2: --TRAZADOS DE FORMAS POLIGONALES 1.- TRIÁNGULOS: - CLASIFICACIÓN Y PUNTOS NOTABLES 2.- CUADRILÁTEROS: PROPIEDADES Y CLASIFICACIÓN 3.- POLÍGONOS REGULARES: CLASIFICACIÓN Y CONSTRUCCIÓN Ø INTRODUCCIÓN:
1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas.
MYP (MIDDLE YEARS PROGRAMME) 2015-2016 Fecha 30/03/2016 APUNTES DE GEOMETRÍA 1º ESO 1. LOS ELEMENTOS DEL PLANO 1.1. Punto, plano, segmento, recta, semirrectas. Un punto es una posición en el espacio, adimensional,
GEOMETRÍA 1ESO ÁNGULOS & TRIÁNGULOS
Un punto se nombra con letras mayúsculas: A, B, C Una recta, formada por infinitos puntos, se nombra con letras minúsculas: a, b, c Dos rectas pueden ser paralelas, secantes o coincidentes. 1. Paralelas
CONCEPTO DE POLÍGONO. RECONOCER Y CLASIFICAR POLÍGONOS
OBJETIVO 1 CONCEPTO DE POLÍGONO. RECONOCER Y CLASIICAR POLÍGONOS NOMBRE: CURSO: ECHA: POLÍGONOS Varios segmentos unidos entre sí forman una línea poligonal. Una línea poligonal cerrada es un polígono.
POLÍGONOS POLÍGONOS. APM Página 1
POLÍGONOS 1. Polígonos. 1.1. Elementos de un polígono. 1.2. Suma de los ángulos interiores de un polígono. 1.3. Diagonales de un polígono. 1.4. Clasificación de los polígonos. 2. Polígonos regulares. Elementos.
GEOMETRÍA PLANA 3º E.S.O. Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados.
GEOMETRÍA PLANA 3º E.S.O. POLÍGONO.- Un polígono es una figura geométrica plana y cerrada limitada por tres o más segmentos llamados lados. El triángulo (tres lados), el cuadrilátero (cuatro lados), el
TRIÁNGULOS Y CUADRILÁTEROS.
TRIÁNGULOS Y CUADRILÁTEROS. 1. Triángulos. Al polígono de tres lados se le llama triángulo. Clasificación: Según sus lados, un triángulo puede ser Equilátero, si tiene los tres lados iguales Isósceles,
Geometría. Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid
Geometría Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Ángulos Un ángulo es la región del plano limitada por dos semirrectas con el origen común. Lados Vértice Clasificación de los ángulos
Las bisectrices de dos ángulos adyacentes son perpendiculares. Las bisectrices de los ángulos opuestos por el vértice están en línea recta.
CONCEPTOS Y TEOREMAS BÁSICOS PARA LA RESOLUCIÓN DE PROBLEMAS DE GEOMETRÍA PLANA 1. CONSIDERACIONES GENERALES El objeto de la Geometría plana es el estudio de las figuras geométricas en el plano desde el
POLIGONOS. Nº DE LADOS NOMBRE 3 Triángulos 4 Cuadriláteros 5 Pentágonos 6 Hexágonos 7 Heptágonos 8 Octógonos 9 Eneágonos 10 Decágonos
1 POLIGONO POLIGONOS Polígono es la superficie plana limitada por una línea poligonal cerrada. Lados Vértices Polígono regular es el que tiene todos sus lados y ángulos iguales, mientras que polígono irregular
Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos.
Geometría plana B6 Triángulos Polígono Polígono es la porción del plano limitada por rectas que se cortan dos a dos. Clasificación de los polígonos Según el número de lados los polígonos se llaman: Triángulo
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
Unidad 11. Figuras planas
Unidad 11. Figuras planas Matemáticas Múltiplo 1.º ESO / Resumen Unidad 11 FIGURS LNS OLÍGONOS IRUNFERENI SIMETRÍ Elementos onstrucción lasificación Según el número de lados óncavos y convexos Regulares
Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos.
Definición Triángulo es la porción de plano limitado por tres rectas que se cortan dos a dos. Elementos primarios Vértice:, y. Lados:, y. Ángulos interiores:, y. Ángulos exteriores:, y. * Observaciones:
Cuadriláteros y circunferencia
CLAVES PARA EMPEZAR Un triángulo isósceles tiene dos lados iguales: b c. Como es rectángulo, se cumple el teorema de Pitágoras: 10 2 b 2 b 2 100 2b 2 b 7,07. Los dos lados miden 7,07 cm cada uno. r A C
Complemento de un ángulo es lo que le falta al ángulo para completar 90. Complemento de un ángulo es lo que le falta al ángulo para completar 180
CLASIFICACIÓN DE ÁNGULOS Nombre Definición Figura Ángulo recto Mide 90 Ángulo agudo Mide menos de 90 Ángulo obtuso Mide más de 90 Ángulo extendido Mide 180 Ángulo completo Mide 360 ÁNGULOS COMPARATIVOS
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA
RESUMEN DE VARIOS CONCEPTOS BÁSICOS DE GEOMETRÍA 1.- Figuras Congruentes y Semejantes. Teorema de Thales. Escalas. - Se dice que dos figuras geométricas son congruentes si tienen la misma forma y el mismo
Triángulos IES BELLAVISTA
Triángulos IES BELLAVISTA Definiciones y notación Un triángulo es la figura plana limitada por tres rectas que se cortan dos a dos. Los puntos de corte se denominan vértices. El triángulo tiene tres lados
TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO
2ª EVALUACIÓN AMPLIACIÓN MATEMÁTICAS TEMA 1. ELEMENTOS DE GEOMETRIA EN EL PLANO 1. EL PUNTO El punto es uno de los conceptos primarios de geometría. El punto no es un objeto físico y no tiene dimensiones
1.1. Trazar la mediatriz del segmento Trazar la perpendicular que pasa por el punto Trazar la perpendicular que pasa por C.
1.1. Trazar la mediatriz del segmento. 1.2. Trazar la perpendicular que pasa por el punto. A B P 1.3. Trazar la perpendicular que pasa por C. 1.4. Trazar la perpendicular que pasa por el extremo de la
Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes. Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA
Educación Plástica y Visual de 1º de ESO Cuaderno de apuntes Tema 5 FORMAS POLIGONALES ESQUEMA DEL TEMA 1. 2. 3. 4. 5. 6. Educación Plástica y Visual de 1º de ESO Página 48 Ejercicio 5.1 Los polígonos
ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO
ESTUDIO GEOMÉTRICO SOBRE EL TRIÁNGULO 1. EL TRIÁNGULO COMO POLÍGONO Debemos comenzar el estudio geométrico del triángulo considerándolo como el más sencillo de los polígonos. Así, vamos a considerar algunas
Construcción de formas poligonales. Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes).
UNIDAD 2 Construcción de formas poligonales Polígonos en la cúpula gótica de la catedral de Burgos (ISFTIC. Banco de imágenes). E n esta Unidad se presentan construcciones de triángulos a partir de datos
Ángulos 1º = 60' = 3600'' 1' = 60''
Ángulos Definición de ángulo Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. Medida de ángulos Para
INSTITUCIÓN EDUCATIVA ESCUELA NORMAL SUPERIOR DEL BAJO CAUCA
Las matemáticas, históricamente, comenzaron con la geometría. La geometría es la ciencia que estudia la forma y posición de la figuras y nos enseña a medir su extensión. Geometría (del griego geo, tierra,
Mª Rosa Villegas Pérez
Mª Rosa Villegas Pérez FIGURAS PLANAS G.T. Elaboración de Materiales y Recursos Didácticos en un Centro TIC. Polígonos.- / 14 POLÍGONOS Un polígono es una figura plana y cerrada formada al unir tres o
EDUCACIÓN PLÁSTICA Y VISUAL. Trabajo de Recuperación de Pendientes Para 3º ESO. Geometría. IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1
EDUCACIÓN PLÁSTICA Y VISUAL Trabajo de Recuperación de Pendientes Para 3º ESO Geometría IES Ramón Menéndez Pidal DPTO. DE DIBUJO 3º ESO 1 TEOREMA DE THALES El Teorema de Thales sirve para dividir un segmento
ACTIVIDADES. b. Completa la actividad haciendo lo mismo para los vértices restantes. Qué observas?
ACADEMIA SABATINA RECTAS Y PUNTOS DEL TRIÁNGULO ACTIVIDADES 1. Materiales: triángulos de papel, regla y compás. a. Toma un triángulo cualquiera, escoge uno de sus vértices y haz un doblez de tal modo que
REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA
MAT B Repartido Nº I REVISIÓN DE ALGUNOS CONCEPTOS DE GEOMETRÍA MÉTRICA Conceptos primitivos Partiremos de un conjunto que llamaremos espacio, E, a cuyos elementos llamamos puntos, (a los cuales escribiremos
SISTEMASS DE REPRESENTACIÓNN Geometría Básica
SISTEMASS DE REPRESENTACIÓNN Geometría Básica Coordinadora de Cátedra: Ing. Canziani, Mónica Profesores: Arq. Aubin, Mónica Arq. Magenta, Gabriela Ing. Medina, Noemí Ing. Nassipián, Rosana V. Ing. Borgnia,
ACTIVIDADES PROPUESTAS
GEOMETRÍA DINÁMICA ACTIVIDADES PROPUESTAS 1. Dibujar un pentágono y trazar sus diagonales. 2. A partir de una circunferencia c y de un punto exterior A, trazar la circunferencia que tiene centro en el
Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja un triángulo obtusángulo e isósceles.
FICHA REFUERZO TEMA 12: FIGURAS PLANAS Y ESPACIALES CURSO: 1 FECHA: NOMBRE Y APELLIDOS: Ejercicio nº 1.-Clasifica los siguientes triángulos atendiendo a sus lados y sus ángulos: Ejercicio nº 2.-Dibuja
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
Polígono. Superficie plana limitada por una línea poligonal cerrada.
POLÍGONO B C r A d O a l E D Polígono. Superficie plana limitada por una línea poligonal cerrada. r O r =a Elementos, puntos y líneas en los polígonos. (Regulares) LADO Cada uno de los segmentos de la
LA GEOMETRÍA PLANA. Llanos: Si su medida es de 180º. Agudos: Si su medida esta comprendida entre 0 y 90. Rectos: si su medida es 90
LA GEOMETRÍA PLANA La geometría plana trata de aquellos elementos que solo tienen dos dimensiones y, que por lo tanto, se encuentran y operan en un plano. Los elementos básicos con los que se suele trabajar
Punto. Recta. Semirrecta. Segmento. Rectas Secantes. Rectas Paralelas. Rectas Perpendiculares
Punto El punto es un objeto geométrico que no tiene dimensión y que sirve para indicar una posición. A Recta Es una sucesión continua e indefinida de puntos en una sola dimensión. Semirrecta Es una línea
Se llama lugar geométrico a todos los puntos del plano que cumplen una propiedad geométrica. Ejemplo:
3º ESO E UNIDAD 11.- GEOMETRÍA DEL PLANO PROFESOR: RAFAEL NÚÑEZ ------------------------------------------------------------------------------------------------------------------------------------- 1.-
Triángulos. 1. En todo triángulo la suma de sus ángulos interiores es En todo triángulo la suma de los ángulos exteriores es 360
Triángulos Es un polígono formado por tres segmentos cuyos tres puntos de intersección no están en línea recta. Triángulo ABC A,B y C son vértices del triángulo α, β, γ s interiores. a, b y c, longitud
MATEMÁTICAS Y SU DIDÁCTICA
MATEMÁTICAS Y SU DIDÁCTICA ESCUELA UNIVERSITARIA DE MAGISTERIO SAGRADO CORAZÓN UNIVERSIDAD DE CÓRDOBA Curso académico: 2011 2012 ACTIVIDADES DE GEOMETRÍA TRABAJO EN GRUPO Las siguientes actividades se
Agudo Recto Obtuso Extendido Completo º 180º. Ángulos complementarios
Definición Ángulo: Vértice: O Lados: OA y OB Clasificación Agudo Recto Obtuso Extendido Completo 0º 90º 90º 90º 80 º 360 º Posiciones relativas Ángulos consecutivos Ángulos adyacentes Ángulos complementarios
TALLER No. 17 GEOMETRÍA
TLLER No. 17 GEOMETRÍ ontenidos: Los triángulos Fecha de entrega: Mayo 12 de 2014 1. Investigue sobre las líneas y puntos notables en un triángulo. 2. Responda las siguientes preguntas: a. Qué es un polígono?
Geometría 1 de Secundaria: I Trimestre. yanapa.com. Rayo. I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano
I: ELEMENTOS DE LA GEOMETRÍA - SEGMENTOS ELEMENTOS DE LA GEOMETRÍA El Plano Rayo Segmento : Rayo de Origen O y que pasa por B : Rayo de Origen O y que pasa por A La Recta : Se lee Segmento AB : Se lee
11. ALGUNOS PROBLEMAS CON TRIÁNGULOS
11. ALGUNOS PROBLEMAS CON TRIÁNGULOS Estos problemas son ejemplos de aplicación de las propiedades estudiadas. 11.1. Determinar la posición de un topógrafo que tiene tres vértices geodésicos A,B,C, si
INSTITUTO RAÚL SCALABRINI ORTIZ CUADRILATERO
CUADRILATERO INTRODUCCION Son polígonos de 4 lados. La suma de los ángulos interiores es igual a 360º y la suma de los ángulos exteriores es igual a 360º. Vértices : A, B, C, D Lados : a, b, c, d Ángulos
MATEMÁTICAS (GEOMÉTRÍA)
COLEGIO COLOMBO BRITÁNICO Formación en la Libertad y para la Libertad MATEMÁTICAS (GEOMÉTRÍA) GRADO:6 O DOCENTE: Nubia E. Niño C. FECHA: 9 / 06 / 15 Guía Didáctica 3 1 Desempeños: * Identifica, clasifica
Algunos conceptos básicos de Trigonometría DEFINICIÓN FIGURA OBSERVACIONES. Nombre y definición Figura Característica
Ángulos. DEFINICIÓN FIGURA OBSERVACIONES Ángulo. Es la abertura formada por dos semirrectas unidas en un solo punto llamado vértice. Donde: α = Ángulo O = Vértice OA = Lado inicial OB = Lado terminal Un
POLÍGONO ÁNGULOS DE UN POLÍGONO CLASIFICACIÓN: La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos
POLÍGONO La denominación de polígono palabra compuesta de poli, del griego: muchos; y gonos del griego: ángulos Un polígono es una porción del plano limitada por una línea poligonal cerrada. Los segmentos
DEPARTAMENTO DE MATEMATICAS
1.- Halla la suma de los ángulos interiores de los siguientes polígonos convexos. a) Cuadrilátero b) Heptágono c) Octógono 2.- Halla la medida de los ángulos interiores de: a) Un octógono regular. b) Un
LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. ELEMENTOS GENERALES DE UN POLÍGONO.
LOS POLÍGONOS, PROPIEDADES Y CONSTRUCCIONES. 1. DEFINICIÓN Y TIPOS DE POLÍGONOS. DEFINICIÓN. Polígono es la superficie plana limitada por una línea poligonal cerrada. Línea poligonal es la figura formada
EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos
EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades
Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio.
Tema 5: Polígonos 5.1 Elementos Fundamentales de Geometría Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. A P * B Cualquier punto P de la mediatriz equidista de los extremos
CENAFE MATEMÁTICAS POLÍGONOS
POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:
TRABAJO PARA SEPTIEMBRE PLÁSTICA Y VISUAL 1º ESO
TRABAJO PARA PLÁSTICA Y VISUAL 1º ESO Los ejercicios que no se puedan hacer en estos folios, se harán por orden en folios aparte y se presentaran todos juntos debidamente encuadernados. Todos los ejercicios
Lados. Posee 4 lados que son representados por los segmentos: AB, Vértice. Posee 4 vértices, a saber: A, Lados opuestos. Son los lados no adyacentes:
Identificación de las propiedades de los cuadriláteros Cuadrilátero. Es un polígono de cuatro lados. Se le representa con sus cuatro vértices. Características Dado este cuadrilátero ABCD, se tiene: Clasificación.
Dibujar un rombo de diagonal BD y lado AB dados. Se dibuja la diagonal DB y se trazan arcos con centro en sus extremos y radio AB, para hallar A y C.
Algunos problemas de cuadriláteros Propiedades Para la resolución de problemas de cuadriláteros es necesario conocer algunas de sus propiedades : - Las diagonales de un paralelogramo se cortan en sus respectivos
Módulo III: Geometría Elmentos del triángulo Teorema de Pitágoras Ángulos en la circunferencia
Módulo III: Geometría Elmentos del triángulo Altura Bisectriz Simetral o mediatriz Transversal de gravedad Teorema de Pitágoras Ángulos en la circunferencia Ángulo del centro Ángulo inscrito Ángulo interior
1º ESO CAPÍTULO 10: FIGURAS PLANAS
1º ESO CAPÍTULO 10: FIGURAS PLANAS 157 1. ELEMENTOS DEL PLANO Índice 1.1. PUNTOS, RECTAS, SEMIRRECTAS, SEGMENTOS. 1.2. RECTAS PARALELAS Y SECANTES. 1.3. ÁNGULOS. TIPOS DE ÁNGULOS. 1.4. MEDIDA DE ÁNGULOS.
1º ESO TEMA 12 FIGURAS PLANAS
1º ESO TEMA 12 FIGURAS PLANAS 1 1.- POLÍGONOS Concepto de polígono POLÍGONO 2 1.- POLÍGONOS Elementos de un polígono Lado: segmento que une dos vértices consecutivos Vértice: punto en común entre dos lados
Clasificación de los triángulos
COLEGIO ITALO BOLIVIANO CRISTOFORO COLOMBO PROF. HEINS VEGA Clasificación de los triángulos Triángulo: Figura geométrica cerrada delimitada por tres segmentos de recta. Los segmentos son los lados del
5. UNIDAD DIDACTICA 5: FORMAS GEOMÉTRICAS I.
5. UNIDAD DIDACTICA 5: FORMAS GEOMÉTRICAS I. Normalmente, un dibujo se puede realizar de dos maneras. La primera es a mano alzada, es decir, sin utilizar ningún instrumento que sirva de guía o de apoyo
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS.
CUERPOS GEOMÉTRICOS EN EL PLANO Y EN EL ESPACIO: APLICACIONES DIDÁCTICAS. Resumen AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO EN ÉSTE ARTÍCULO, SE ESTUDIAN LOS CUERPOS
Dibujo Técnico Curvas técnicas
22 CURVAS TÉCNICAS En la actualidad, una parte importante de los objetos que se fabrican están realizados bajo algún tipo de forma curva geométrica. Si prestamos atención a nuestro entorno, nos damos cuenta
IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS. Nombre: Grado: Costrucciones
IE FINCA LA MESA TALLERR DE COMPETENCIAS BÁSICAS Nombre: Grado: 9 5 1. Costrucciones 2. las rectas y puntos notables de un triángulo Sabemos que los polígonos son figuras cerradas planas, de lados rectos,
1. INCENTRO Y ORTOCENTRO EN UN TRIÁNGULO ACUTÁNGULO.
1. INCENTRO Y ORTOCENTRO ❶ Sitúate en el ortocentro como punto de partida. ❷ Recorre la altura hasta el lado más alejado. ❸ Desplázate por el perímetro hasta el vértice más próximo. ❹ Dirígete al incentro.
CLASIFICACIÓN DE POLÍGONOS: SU DIDÁCTICA.
CLASIFICACIÓN DE POLÍGONOS: SU DIDÁCTICA. AUTORIA FERNANDO VALLEJO LÓPEZ TEMÁTICA DIDÁCTICA DE LA MATEMÁTICA ETAPA ESO Resumen EN ÉSTE ARTÍCULO, ESTUDIAMOS LA CLASIFICACIÓN DE POLÍGONOS. HACEMOS UNA CLASIFICACIÓN
UNIDAD 12. CUADRILÁTEROS
UNIDAD 12. ESQUEMA DE LA UNIDAD FICHA DE TRABAJO A FICHA DE TRABAJO B SOLUCIONES 12 ESQUEMA DE LA UNIDAD Nombre y apellidos:... Curso:... Fecha:... Un cuadrilátero puede ser:, si tiene dos pares de lados
4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS
4. GEOMETRÍA // 4.3. PROPIEDADES DE LOS POLÍGONOS. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 4.3.1. Dos nuevas demostraciones del teorema de Pitágoras. 4.3.1. Dos nuevas
4. Resolver un triángulo rectángulo e isósceles en el que la hipotenusa tiene 9 pies de longitud.
7 CAPÍTULO SIETE Ejercicios propuestos 7.5 Triángulos 1. Construya de ser posible los siguientes triángulos ABC. En caso de que existan, determine sus cuatro puntos característicos empleando regla y compás.
Introducción. Este trabajo será realizado con los siguientes fines :
Introducción Este trabajo será realizado con los siguientes fines : Aprender mas sobre la geometría analítica. Tener mejores conceptos sobre ella ; los cuales me pueden ayudar con las pruebas ICFES. Otro
TEMA 89: Rectas Notables de un triángulo. 1-T 89--1ºESO Los Cuadriláteros. Pentágono y Hexágono
TEMA 89: Rectas Notables de un triángulo. 1-T 89--1ºESO Los Cuadriláteros. Pentágono y Hexágono I.- Planos, puntos, rectas, semirrectas y segmentos: Antes de ver muchos de los entresijos de las figuras
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:
Tema 2: Figuras geométricas
Tema 2: Figuras geométricas En este tema empezaremos a estudiar: 1. la circunferencia. 2. los triángulos. 3. los cuadriláteros. 4. los poĺıgonos. 1 2 La circunferencia (p. 31) El cerebro humano es muy
Por un punto P exterior a una recta r solo puede trazarse una recta paralela a ella e infinitas secantes.
72 CAPÍTULO 8: FIGURAS PLANAS 1. ELEMENTOS DEL PLANO 1.1. Puntos, rectas, semirrectas, segmentos. El elemento más sencillo del plano es el punto. El signo de puntuación que tiene este mismo nombre sirve
TORNEOS GEOMÉTRICOS 2015 Segunda Ronda 5º Grado SOLUCIONES
TORNEOS GEOMÉTRICOS 015 Segunda Ronda 5º Grado SOLUCIONES Problema 1- Un paralelogramo de 5 cm de área, tiene por vértices al centro de un hexágono regular y a otros tres vértices del hexágono, como muestra
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS. Universidad de Antioquia
TALLER # 4 DE GEOMETRÍA EUCLIDIANA SEMEJANZAS Y RELACIONES MÉTRICAS Universidad de Antioquia Profesor: Manuel J. Salazar J. 1. El producto de las medidas de las diagonales de un cuadrilátero inscrito es
1.- LÍNEAS POLIGONALES Y POLÍGONOS.
1.- LÍNEAS POLIGONALES Y POLÍGONOS. Línea poligonal.- Una línea poligonal está formada por varios segmentos consecutivos. Las líneas poligonales pueden ser abiertas o cerradas. Polígono.- Es la región
Polígonos Polígonos especiales: Cuadriláteros y triángulos
Polígonos Polígonos especiales: Cuadriláteros y triángulos 1) a) Busca información sobre polígonos equiláteros, equiángulares y regulares. Lista semejanzas y diferencias. b) Haz una lista de los polígonos
8 GEOMETRÍA DEL PLANO
EJEROS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. 6 A 145 15 105 160 130 En un triángulo, la suma de las medidas de sus ángulos es 180. Ap 180 90 6 8 El ángulo mide 8. En un hexágono,
*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.
*DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al
POLÍGONOS Y CIRCUNFERENCIA
5. POLÍGONOS Y CIRCUNFERENCIA EN ESTA UNIDAD VAS A APRENDER POLÍGONOS RECTA, SEMIRRECTA Y SEGMENTO LÍNEA POLIGONAL POLÍGONOS TRIÁNGULOS - Clasificación. - Puntos notables. - Recta de Euler. - Teorema de
Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos.
ÍNDICE Elementos fundamentales Ángulos Triángulos y cuadriláteros Áreas y volúmenes Poliedros ELEMENTOS FUNDAMENTALES DE GEOMETRÍA Conceptos fundamentales Punto Recta Plano Semirecta : porción de recta
5 Geometría analítica plana
Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles
Clasifi cación de polígonos
Clasifi cación de polígonos Cuándo un polígono es regular? Marca la opción correcta. Sus ángulos son iguales. Sus lados son iguales. Sus lados y sus ángulos son iguales. Sus diagonales son iguales. Escribe
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES REPARTIDO Nº 6. 3) Calcular la diagonal de un cuadrado de 7 cm de lado.
REPARTIDO Nº 6 1) Calcular la hipotenusa de un triángulo rectángulo sabiendo que los catetos miden 6 cm y 8 cm respectivamente. 2) Si la hipotenusa de un triángulo rectángulo mide 13 cm y uno de sus catetos
Módulo 17. Capítulo 4: Cuadriláteros. 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2.
Módulo 17 1. En las siguientes figuras (1 al 9) determine el valor de cada variable. Figura 1 Figura 2 Figura 3 Figura 4 Figura 5 Figura 6 210 Capítulo 4: Cuadriláteros Figura 7 Figura 8 Figura 9 2. En
UNIDAD 3. POLÍGONOS REGULARES.
UNIDAD 3.. OBJETIVOS Conocer las características y las propiedades de los polígonos regulares. Determinar los puntos y rectas notables de un triángulo. Construir polígonos inscritos en una circunferencia.
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 Página 160 PRCTIC Ángulos 1 Calcula la medida de X en cada figura: a) 180 139 40' b) 180 17 a) b) ^ 40 0' X^ ^ ^ X^ ^ 53 Calcula la medida de X en cada caso: a) ^ ^ 140 ^ 150 b) ^ X^ ^ c) ^ 33 ^
DIBUJO TÉCNICO II EJERCICIOS DE APOYO. Prof. Jesús Macho Martínez
DIBUJO TÉCNICO II EJERCICIOS DE APOYO Esta obra de Jesús Macho Martínez está bajo una Licencia Creative Commons Atribución-CompartirIgual 3.0 Unported 1º.- Deducir razonadamente el valor del ángulo α marcado
MÓDULO Nº 3. Nivelación. Matemática Módulo Nº3. Contenidos. Polígonos Circunferencia y Círculo Volúmenes
MÓDULO Nº 3 Nivelación Matemática 2005 Módulo Nº3 Contenidos Polígonos Circunferencia y Círculo Volúmenes Nivelación Polígonos Polígono Regular: Son aquellos polígonos que tienen todos sus lados y ángulos
Geometría Básica 49 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL
Geometría Básica 49 UNIVERSIDAD DE LOS ANDES - TÁCHIRA DEPARTAMENTO DE CIENCIAS CARRERA EDUCACIÓN BÁSICA INTEGRAL GEOMETRÍA 10 Prof. Alfonso Sánchez ENCUENTRO 6 TRIÁNGULOS Y CUADRILÁTEROS A los filósofos
donde n es el numero de lados. n APOTEMA: Es la altura de un triangulo formado por el centro del polígono regular y dos vértices consecutivos.
Polígonos regulares 1 POLIGONOS REGULARES DEFINICION: Un polígono regular es el que tiene todos sus lados y sus ángulos congruentes. DEFINICION: Un polígono esta inscrito en una circunferencia si sus vértices
CÁLCULO II ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B
ESCUELA MILITAR DE INGENIERÍA MISCELÁNEAS DE PROBLEMAS CÁLCULO II VECTORES. 1. Sean A = (1, 2), B = ( 1, 3) y C = (0, 4); hallar: a) A + B b) A B + C c) 4A 3B d) 4(A + B) 5C e) 1 2 (A B) + 1 4 C 2. Sean
PROF: Jesús Macho Martínez
DIBUJO TÉCNICO ELEMENTAL PROF: Jesús Macho Martínez 1º.- Trazar la perpendicular a r por el punto P. 2º.- Trazar la bisectriz del ángulo que forman r y s. P * r r s 3º.- Trazar las tangentes interiores
TEMA 5. CURVAS CÓNICAS.
5.1. GENERALIDADES. TEMA 5. CURVAS CÓNICAS. Se denominan secciones cónicas a aquellas superficies que son producidas por la intersección de un plano con una superficie cónica de revolución (una superficie
Recuerda lo fundamental
12 Figuras planas y espaciales Recuerda lo fundamental Curso:... Fecha:... TRIÁNGULOS Mediana de un triángulo es un segmento que...... Las tres medianas de un triángulo se cortan en el...... Las mediatrices
