CONJUNTOS CONJUNTOS NUMÉRICOS
|
|
|
- María Luisa Acosta Cuenca
- hace 9 años
- Vistas:
Transcripción
1 CONJUNTOS CONJUNTOS NUMÉRICOS 1. CONJUNTOS Un conjunto es una colección de elementos de cualquier índole. Describimos el conjunto escribiendo sus elementos entre llaves y separados por comas. Por ejemplo, las letras vocales pueden formar un conjunto: {a, e, i, o, u} Si el conjunto consta de infinitos elementos, habría que describirlos de forma adecuada. Por ejemplo, todos los números que sean mayores que : {números reales mayores que } ó {x / x > } Comentamos esta segunda forma. El símbolo / significa tal que o tales que. De modo que es el conjunto de los elementos x tales que x es mayor que. O sea, cualquier número mayor que. Para referirnos al conjunto sin tener que escribirlo completo, le damos un nombre, consistente en una letra mayúscula. Parece adecuado elegir V para el de las vocales: V = {a, e, i, o, u} Los integrantes de un conjunto se llaman elementos. sí, a es uno de los elementos de V. Esto se expresa mediante el símbolo que se lee pertenece a o perteneciente a es elemento de. De modo que es correcto escribir: a V El conjunto de todos los números reales se designa siempre por la letra R. sí, el conjunto anterior, de todos los números reales mayores que, al que podemos designar por la letra, por ejemplo, se describiría más precisamente así: = {x R / x > } Con ello, es cierto que 6 y que. Pero no pertenece a, puesto que no es mayor que (si hubiésemos elegido como condición para pertenecer a que los números fuesen mayores o iguales que, entonces sí que sería un elemento de ). Para escribir que no pertenece a lo hacemos así:. Hay un conjunto especial que no contiene ningún elemento. Se le conoce como conjunto vacío y su símbolo es, siempre:.. REPRESENTCIÓN GRÁFIC Una forma sencilla de representar gráficamente un conjunto es mediante un óvalo que encierre todos sus elementos. Esto es un diagrama de Venn. Por ejemplo: V a o e i u Esto funciona bien para conjuntos sencillos. Para el conjunto anterior puede que no sea muy apropiado un diagrama de Venn y haya que recurrir a otras formas. Por ejemplo, usando una recta donde representamos todos los números reales, sería: IES Fernando de Herrera Prof. R. Mohigefer Página 1 de 5
2 Hemos utilizado dos tipos de gráficos para. En el primero, un paréntesis en el resalta que. unque sí pertenece a cualquier número mayor que, por cercano que esté a. En el segundo, un punto hueco designa lo mismo. Para un conjunto = {x R / x }, usaremos un corchete o un punto relleno para recalcar que está dentro del conjunto dibujado: [ 3. SUCONJUNTOS Si todos los elementos de un conjunto están también en otro conjunto, se dice que es subconjunto de o que está incluido en. Se escribe simbólicamente:. O, también: (en el lado abierto del símbolo está el conjunto que tiene más elementos). Por ejemplo, si = {1,, 3} y = {1,, 3, 4, 5, 6}, se tiene que. Gráficamente: Observar que la relación de inclusión lo es de conjunto a conjunto, mientras que la de pertenencia lo es de elemento a conjunto. Siendo y los anteriores, es correcto escribir (lo que implica, necesariamente, que ). Pero es incorrecto decir que (porque no es un conjunto, con lo cual no puede ser subconjunto de ), o que (porque no es uno de los elementos de, que son, exclusivamente: 1,, 3, 4, 5 y 6). 4. OPERCIONES CON CONJUNTOS Hay tres operaciones principales, y una cuarta operación derivada de las tres primeras. Veámoslas. a) UNIÓN. l unir dos conjuntos, formamos un nuevo conjunto con todos los elementos que estén en uno u otro de los dos conjuntos originales, aunque estén repetidos. El símbolo de la operación es. Por ejemplo, la unión de = {1,, 3} con C = {1, 3, 4, 5} es: C = {1,, 3, 4, 5} Gráficamente, sería toda la zona coloreada, incluida la zona común C b) INTERSECCIÓN. La intersección de dos conjuntos es un nuevo conjunto formado por todos los elementos comunes a ambos. El símbolo de la operación es. sí, para el ejemplo anterior, C = {1, 3}. Gráficamente, es la zona de color más fuerte. IES Fernando de Herrera Prof. R. Mohigefer Página de 5
3 c) CONJUNTO COMPLEMENTRIO. Dado un conjunto su conjunto complementario consta de todos los elementos que no están en. Para poder construirlo, hay que tener claro cuáles son todos los elementos, de manera que hay que tener definido un conjunto, denominado conjunto universal que contiene a todos los elementos con los que estemos trabajando. El complementario de se designa de cualquiera de las tres formas siguientes:, C ó '. Por ejemplo, si tomamos como conjunto universal del las letras: L = {a, b, c,, z} y V son las vocales, entonces V = {b, c, d, f,, z}, es decir, las consonantes. Gráficamente V está coloreado. b c d f g h j k l m a i n ñ p e q r s t o u v w x y z d) DIFERENCI DE CONJUNTOS. Dados dos conjuntos y, la diferencia menos, que se designa por es un conjunto formado por todos los elementos de que no estén en. Por ejemplo, si = {1,, 3} y C = {1, 3, 4, 5}, entonces C = {}. Gráficamente, es la zona coloreada: V L C Observar que =. Por eso decimos que esta última operación de conjuntos se deriva de las tres anteriores. Ejemplo. Si = {a, b, c, d, e} y = {a, e, i, o, u}, entonces = {a, e}; = {a, b, c, d, e, i, o, u}; = {b, c, d}; = {i, o, u}. Si el conjunto universal es el formado por todas las letras, entonces = {f, g, h, i,, z} y = {b, c, d, f, g, h, j,, ñ, p,..., t, v,..., z}. 5. CONJUNTOS NUMÉRICOS Clasificamos los números en varios conjuntos. Números naturales: Se designan siempre por N. Son todos los números positivos (incluido el cero, que es tanto positivo como negativo, y es el único número al que le ocurre esto) y que no tienen decimales: N = {0, 1,, 3, 4, 5, 6, 7, 8, 9, 10, 11, }. Tiene infinitos elementos. Números enteros: Se designan por Z. Son todos los números sin decimales, tanto positivos como negativos: Z = {, 3,, 1, 0, 1,, 3, }. Observar que todos los números naturales son, también, enteros. Por tanto, N Z. Números racionales: Se designan por Q. Son todos los números que pueden escribirse como fracción. Por ejemplo 0,5 = 1/ = /4. O, también, 3 = 3/1 = 6/. De esta manera, todo número entero, también es racional. Por tanto, Z Q. Tener en cuenta que el número racional no es la fracción, porque hay infinitas fracciones que expresan la misma cantidad. Tampoco es la expresión decimal, porque, si bien es única, podemos escribir la misma cantidad en forma de fracción. El número racional es la cantidad que expresan, y puede escribirse tanto por su expresión decimal, como hicimos con 0.5, o con infinitas fracciones, tales como 1/ = /4 = 3/6 = IES Fernando de Herrera Prof. R. Mohigefer Página 3 de 5
4 No podemos escribir el conjunto de los números racionales como hicimos antes con N ó Z, enumerando sus elementos en orden, puesto que dada una fracción determinada, no hay otro número racional que sea el que le sigue: entre dos números racionales cualesquiera siempre hay otro número racional (basta sumarlos y dividir el resultado entre ). Por tanto, entre dos números racionales, por próximos que estén, hay infinitos números racionales. sí Q = {números que pueden expresarse en forma de fracción} Desde una fracción, podemos convertir un número racional a su expresión decimal dividiendo numerador entre denominador. Por otra parte, es posible reconocer si un número es racional, o si no lo es, viendo cuál es su expresión decimal: los números racionales son aquéllos, y sólo aquéllos cuya expresión decimal es: Finita: Tiene un número finito (no infinito) de decimales. Por ejemplo, 3, que tiene cero decimales. O también 7.56, que consta de dos decimales. Infinita periódica: La expresión decimal se dice periódica si hay un grupo de decimales que se repite constantemente, hasta el infinito. Por ejemplo: 4,13 = 4, ; 5,3117 = 5, El primer número tiene una expresión decimal infinita periódica pura, puesto que el período comienza justo detrás de la coma decimal. El segundo es, en cambio, periódico mixto. Pero ambos son periódicos y pueden expresarse como fracción. Concretamente, ,13 = y 5,3117 = Todo número cuya expresión decimal no sea ni finita ni infinita periódica no puede ser racional; es decir, no puede escribirse en forma de fracción. Números irracionales: Se designan por I. Son los que no se pueden escribir en forma de fracción. Por lo dicho antes, su expresión decimal consta de infinitos decimales y no son periódicos. La inmensa mayoría de los números son irracionales. sí: I = {números que no se pueden escribir en forma de fracción} Son irracionales números muy importantes: o = 3, (lo solemos abreviar a 3,14 ó 3,1416, pero son aproximaciones, puesto que debe tener infinitos decimales no periódicos). o e =, Número que aparece en multitud de fenómenos naturales, tanto físicos como biológicos, estadísticos o financieros. 1 5 o = = 1, conocido como número de oro o número áureo o proporción áurea. Número que aparece en muchas figuras geométricas y tal que se suele atribuir la mejor forma posible, desde el punto de vista estético, a aquellos objetos que siguen la proporción áurea. o Toda raíz que no dé exacta:, 3, 5, Números reales: Se designan por R. Comprenden a todos los números, racionales o irracionales. Concretamente: R = Q I. De esta forma: N Z Q R; I R; R = Q I; Q I =. Observar que no hay ningún número que sea racional e irracional al mismo tiempo, porque ello significaría que se puede expresar como fracción y que no se puede expresar como fracción. demás, 0 N Z Q R. IES Fernando de Herrera Prof. R. Mohigefer Página 4 de 5
5 6. RECT REL Los números se representan sobre una recta. En ella, se marcan el 0 y el 1. intervalos regulares se ponen marcas, que corresponden al, 3, etc. El sentido creciente es hacia la derecha, y solemos recordarlo con una punta de flecha Para representar decimales, dividimos las unidades (por ejemplo, el espacio entre 0 y 1, ó entre 1 y, ó entre y 3) en diez partes iguales (con 9 marcas divisorias). Cada una corresponde a una décima. En el gráfico siguiente, las marcas que están entre 0 y 1, de izquierda a derecha representan al: 0 (la primera, la que correspondía ya al 0), 0.1, 0., 0.3, 0.4, 0.5 (la que hemos resaltado poniéndola algo mayor), 0.6, 0.7, 0.8, 0.9, 1.0 = 1. Las que están entre y 3 son.0,.1,.,.3,.4,.5,.6,.7,.8,.9 y 3.0. Las que están entre y 1 son, de izquierda a derecha:.0, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1., 1.1 y 1.0. Observar que todo número que esté en la recta a la derecha de otro, es mayor que ese otro (recordar que la flecha marca el sentido creciente): Si queremos llegar a las centésimas, dividiríamos el espacio entre dos décimas consecutivas (por ejemplo, entre.1 y.) en diez partes iguales (con 9 marcas intermedias). Cada una de ellas sería (empezando en.1 y terminando en.):.10,.11,.1,.13,.14,.15,.16,.17,.18,.19 y.0. Hemos destacado el.18: También podemos representar fracciones sin necesidad de dividir numerador y denominador para obtener su expresión decimal. En una fracción, el denominador designa en cuántas partes iguales se divide cada unidad (el espacio entre 0 y 1, o entre 1 y, etc). El numerador señala cuántas de esas partes tomamos. sí, en el siguiente gráfico, b = 13/4, porque cada unidad se ha dividido en 4 partes iguales mediante tres marcas intermedias equidistantes. sí, desde 0 y hacia la derecha, al llegar a 1 hemos recorrido 4 de esas partes (1 = 4/4); al, 8 de esas partes ( = 8/4); en 3 llevamos 1 de esas partes iguales (cada una de ellas es 1/4), por lo que 3 = 1/4. El número b está sobre una parte más, luego es 13/4. De la misma forma, a = 7/3: Del 0 al 1, cada marca representa 1/3, /3 y 3/3 = 1; l llegar a estamos en = 6/3. Una marca más a la izquierda es, entonces, 7/3. 3 a 0 1 b IES Fernando de Herrera Prof. R. Mohigefer Página 5 de 5
Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación.
NÚMEROS REALES Conjuntos Los conjuntos se emplean en muchas áreas de las matemáticas, de modo que es importante una comprensión de los conjuntos y de su notación. Un conjunto es una colección bien definida
TEMA 1 CONJUNTOS NUMÉRICOS
TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones
SISTEMA DE NUMEROS REALES
SISTEMA DE NUMEROS REALES 1.1 Conjuntos Es una agrupación de objetos distintos (pero con algunas características en común), los que reciben el nombre de elementos. Generalmente se nombra a un conjunto
Los Conjuntos de Números
Héctor W. Pagán Profesor de Matemática Mate 40 Debemos recordar.. Los conjuntos de números 2. Opuesto. Valor absoluto 4. Operaciones de números con signo Los Conjuntos de Números Conjuntos importantes
En una recta numérica el punto que representa el cero recibe el nombre de origen.
1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la
Conjunto de Números Racionales.
Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números
Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales)
Materia: Matemática de Octavo Tema: Conjunto Q (Números Racionales) Vamos a recordar los conjuntos numéricos estudiados hasta el momento. (1.) Conjunto de los números Naturales Son aquellos que utilizamos
Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto.
TEORÍ DE CONJUNTOS. Un conjunto es un grupo, una colección de objetos; a estos objetos se les llama miembros o elementos del conjunto. Ejemplos: Los libros de una biblioteca. Los alumnos de una escuela.
Contenido 1. Definición Tipos de fracciones Fracción igual a la unidad 9 4. Fracción propia Fracción impropia Frac
FRACCIÓN Contenido 1. Definición... 3 2. Tipos de fracciones..... 8 3. Fracción igual a la unidad 9 4. Fracción propia... 10 5. Fracción impropia... 11 6. Fracciones decimales... 14 7. Fracciones equivalentes...
Números Naturales. Los números enteros
Números Naturales Con los números naturales contamos los elementos de un conjunto (número cardinal). O bien expresamos la posición u orden que ocupa un elemento en un conjunto (ordinal). El conjunto de
Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }
LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden
El estudiante de Pitágoras
COLEGIO INTEGRADO SIMÓN BOLÍVAR GUÍA PARA EL ESTUDIANTE MBP354 FORMATO 1 ASIGNATURA: ARITMÉTICA DOCENTE: CLAUDIA RODRIGUEZ PERIODO: SEGUNDO VALORACIÓN TEMA:NUMEROS RACIONALES. I ESTUDIANTE: FECHA: GRADO:SEPTIMO
1. NUMEROS REALES a. Los Números Reales
1. NUMEROS REALES a. Los Números Reales Los números reales comprenden todo el campo de números que utilizamos en las matemáticas, a excepción de los números complejos que veremos en capítulos superiores.
FRACCIONES. Las partes que tomamos ( 3 ó 5 ) se llaman numerador y las partes en que dividimos el queso ( 8 ) denominador.
FRACCIONES Una fracción, en general, es la expresión de una cantidad dividida por otra, y una fracción propia representa las partes que tomamos de un todo. El ejemplo clásico es el de un queso que partimos
Teoría de Conjuntos y Conjuntos Numéricos
Teoría de Conjuntos y Conjuntos Numéricos U N I V E R S I D A D D E P U E R T O R I C O E N A R E C I B O D E P A R T A M E N T O DE M A T E M Á T I C A S P R O F A. Y U I T Z A T. H U M A R Á N M A R
Concepto de fracción. Unidad fraccionaria. Concepto de fracción. Representación de fracciones
Unidad fraccionaria Concepto de fracción La unidad fraccionaria es cada una de las partes que se obtienen al dividir la unidad en n partes iguales. Concepto de fracción Una fracción es el cociente de dos
CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.
CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad
Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }
Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan
Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos o negativos), sin decimales. Incluye a los naturales.
Tema 1: Números Reales 1.1 Conjunto de los números Naturales (N): 0, 1, 2, 3. Números positivos sin decimales. Sirven para contar. Enteros (Z):..., -3, -2, -1, 0, 1, 2, 3,... Números enteros (positivos
Fracciones numéricas enteras
Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El
NOCIONES PRELIMINARES (*) 1
CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras
LOS CONJUNTOS NUMÉRICOS
1 Los números I Para empezar Cuenta la historia que la falange macedonia, el famoso e invencible ejército de Alejandro Magno, infundía temor a sus enemigos con su sola presencia. Los soldados avanzaban
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS.
TEMA 2: TEORÍA DE CONJUNTOS Y CONJUNTOS NUMÉRICOS. TEORÍA DE CONJUNTOS. Definiciones. Se define un conjunto como una colección de objetos o cosas, se nombran con letras mayúsculas (A, B...). Cada uno de
CLASIFICACION DE LOS NUMEROS
CLASIFICACION DE LOS NUMEROS NÚMEROS NATURALES En el desarrollo de las culturas fue evolucionando esta forma primitiva de representar objetos o cosas reales a través de símbolos naciendo así el primer
INTRODUCCIÓN. Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora.
CAPÍTULO 1 INTRODUCCIÓN Construcción con tijeras y papel Para las siguientes dos actividades necesitaras: regla, lápiz, tijeras, calculadora. La caja1. De una hoja de papel vamos a recortar un cuadrito
CONJUNTO Y TIPOS DE CONJUNTOS
CONJUNTO Y TIPOS DE CONJUNTOS Ejemplos 1. Determine cuáles de los siguientes conjuntos corresponden a conjuntos vacíos. a) El conjunto de los números naturales mayores que 3 y menores que 6. b) El conjunto
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide
Inecuaciones con valor absoluto
Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:
Fabio Prieto Ingreso 2003
Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien
16/11/2015. Tema 1º Números reales 1.0) Conceptos previos. 1.1) Fracciones. Números racionales. 1.2) Operaciones con números racionales.
Irracionales (I) 16/11/01 1.) Operaciones con números racionales. 1.) Expresiones fraccionarias y decimal de un número racional. Irracional 1.) Representación de números racionales 1.10) Intervalos y semirrectas.
Lección 11: Fracciones. Equivalencia y orden
GUÍA DE MATEMÁTICAS I LECCIÓN Lección : Fracciones. Equivalencia y orden Fracciones equivalentes No siempre podemos trabajar con unidades divididas decimalmente; con frecuencia nos conviene partir de otra
Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.
2009 Tema 05: Números Decimales, Fracciones y Porcentajes Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León. mgdl 0/0/2009 INDICE: 0. UNIDADES DECIMALES: 02. DESCOMPOSICIÓN
Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales
1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro
Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos
12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las
CAPÍTULO 4: VARIABLES Y RAZONES
Capítulo 4: Variables y razones CAPÍTULO 4: VARIABLES Y RAZONES Fecha: 33 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Fecha: Caja de herramientas 2014 CPM Educational
1. El sistema de los números reales
1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte
Lección 2: Notación exponencial
GUÍA DE MATEMÁTICAS III Lección 2: Notación exponencial En la lección anterior hemos visto cómo trabajar con números reales y cómo para facilitar el trabajo con ellos es conveniente utilizar aproximaciones,
FICHAS DE ESTUDIO No.1. Definición del conjunto N NOMBRE FECHA
21 FICHAS DE ESTUDIO No.1. UNIDAD 1: NUMEROS NATURALES Lámina 1.1 Definición del conjunto N NOMBRE FECHA I OBJETIVOS: Al concluir esta Guía podrás: 1. Identificar los elementos del conjunto de los números
TEMA 1. Las cuentas de andar por casa
TEMA 1. Las cuentas de andar por casa 1.-Los distintos tipos de números Módulo 3 1.1. Los números naturales El conjunto de los números naturales está formado por: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9,...}
El concepto de número
Los Números Reales El concepto de número El concepto de número es una de las más importantes abstracciones de la mente humana. Los números han surgido a lo largo de la historia como herramienta para resolver
FRACCIONES. numerador. denominador. Tres cuartos. Cuatro séptimos. Un medio. Once veinteavos. Tres quintos. Cuatro sextos. Ocho décimos.
Código Centro 80080 C/ Valderribas, 7 C.P. 8007 Tfno/fax 989 FRACCIONES Una fracción es un número representado por otros dos separados por una línea recta horizontal. Al número de abajo le llamamos denominador
Números Racionales. Repaso para la prueba. Profesora: Jennipher Ferreira Curso: 7 B
Números Racionales Repaso para la prueba Profesora: Jennipher Ferreira Curso: 7 B Tipos de Fracciones Fracciones propias: Son aquellas en las que el denominador es mayor al numerador, y su valor es menor
TEMA 4: LAS FRACCIONES
TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio
Guía del estudiante. Clase 16 Tema: Números racionales - orden en los racionales y representación decimal. Lectura. Colombia Biodiversa Amenazada
MATEMÁTICAS Grado Séptimo Bimestre III Semana Número de clases 16-19 Clase 16 Tema: Números racionales - orden en los racionales representación decimal Lectura Colombia Biodiversa Amenazada Colombia ocupa
SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números
SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D
Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.
Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones
CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS
CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.
Factorización de polinomios FACTORIZACIÓN DE POLINOMIOS
FACTORIZACIÓN DE POLINOMIOS 1. Polinomios Un monomio es el producto de un número real por una o más letras que pueden estar elevadas a exponentes que sean números naturales. La suma de los exponentes de
OPERACIONES CON NÚMEROS REALES
NÚMEROS REALES Por número real llamaremos a un número que puede ser racional o irracional, por consiguiente, el conjunto de los números reales es la unión del conjunto de números racionales y el conjunto
GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos
GUÍAS DE ESTUDIO Código PGA-02-R02 1 INSTITUCIÓN EDUCATIVA CASD Programa de alfabetización, educación básica y media para jóvenes y adultos UNIDAD DE TRABAJO Nº 1 PERIODO 1 1. ÁREA INTEGRADA: MATEMÁTICAS
Los números enteros. Dado que los enteros contienen los enteros positivos, se considera a los números naturales son un subconjunto de los enteros.
Los números enteros Con los números naturales no era posible realizar diferencias donde el minuendo era menor que el que el sustraendo, pero en la vida nos encontramos con operaciones de este tipo donde
UNIDAD 6: FRACCIONES ÍNDICE. 6.1 Conocimiento de fracciones: Términos de las fracciones Representación. 6.1.
UNIDAD 6: FRACCIONES ÍNDICE 6. Conocimiento de fracciones: 6.. Términos de las fracciones. 6.. Representación 6.. Interpretación 6. Lectura y escritura de fracciones. 6. Comparación de fracciones. 6..
3.2. Conceptos generales. (A) Una fracción es el cociente, razón o división de dos números enteros. El dividendo se llama
3. NÚMEROS RACIONALES. 3.1. Introducción. Expresiones comunes tales como "un tercio de cerveza", "medio litro de agua", "tres cuartos de kilo de carne", "son las doce cuarto",... no pueden ser representadas,
1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:
LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función
Unidad II. Conjuntos. 2.1 Características de los conjuntos.
Unidad II Conjuntos 2.1 Características de los conjuntos. Es la agrupación en un todo de objetos bien diferenciados en el la mente o en la intuición, por lo tanto, estos objetos son bien determinados y
Colegio Universitario Boston. Funciones
70 Concepto de Función Una función es una correspondencia entre dos conjuntos, tal que relaciona, a cada elemento del conjunto A con un único elemento del conjunto Para indicar que se ha establecido una
Los números racionales: Q
Los números racionales: Q Qué fracción del área total está coloreada en cada una de las figuras de al lado? (a) (b) Juan leyó 2/5 de las páginas de un libro el lunes, el martes estaba ocupado y sólo pudo
COLEGIO NUESTRO SEÑOR DE LA BUENA ESPERANZA
COLEGIO NUESTRO SEÑOR DE L UEN ESPERNZ signatura: NÁLISIS MTEMÁTICO 11º Profesor: Lic. EDURDO DURTE SUESCÚN TLLER OPERCIONES CON CONJUNTOS OPERCIONES CON CONJUNTOS En aritmética se suma, resta y multiplica,
Recordemos que utilizaremos, como es habitual, la siguiente notación para algunos conjuntos de números que son básicos.
Capítulo 1 Preliminares Vamos a ver en este primer capítulo de preliminares algunos conceptos, ideas y propiedades que serán muy útiles para el desarrollo de la asignatura. Se trata de resultados sobre
Ejercicios de inecuaciones y sistemas de inecuaciones
Ejercicios de inecuaciones y sistemas de inecuaciones 1) Resuelve la siguiente inecuación (pag 67, ejercicio 4a)): 3(x 5) 5 > 7(x + 1) (2x + 3) Si nos fijamos se trata de una inecuación de primer grado
La lección de hoy es sobre Simplificar Expresiones Radicales. El cuál es la expectativa para el aprendizaje del estudiante S.L.E LA.1.A1.
S.L.E. LA.1 A1.8 Simplifying Radical Expressions. La lección de hoy es sobre Simplificar Expresiones Radicales. El cuál es la expectativa para el aprendizaje del estudiante S.L.E LA.1.A1.8 Una expresión
1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos:
Repaso Prueba-01 Clase-14 1) Recuerde la definición de cada uno de los siguientes conjuntos numéricos: i) Números naturales: IN = { iii) Los números enteros: Z = { iv) Los números Racionales: Q = { v)
TEMA 1: NÚMEROS REALES
TEMA 1: NÚMEROS REALES 3º ESO Matemáticas Apuntes para trabajo del alumnos en el aula. 1. Fracciones. Números racionales Si se multiplican o dividen el numerador y el denominador de una fracción por un
UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.
UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad
MATEMÁTICAS BÁSICAS. Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño
MATEMÁTICAS BÁSICAS Autora: Jeanneth Galeano Peñaloza Edición: Oscar Guillermo Riaño Universidad Nacional de Colombia Departamento de Matemáticas Sede Bogotá Enero de 2014 Universidad Nacional de Colombia
TEMA 1: NÚMEROS REALES 1.1 Numeros racionales Ejemplo:
TEMA : NÚMEROS REALES. Numeros racionales Ejemplo: 4... Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible. En nuestro caso Otro ejemplo de número racional
UNIDAD 8 INECUACIONES. Objetivo general.
8. 1 UNIDAD 8 INECUACIONES Objetivo general. Al terminar esta Unidad resolverás inecuaciones lineales y cuadráticas e inecuaciones que incluyan valores absolutos, identificarás sus conjuntos solución en
TEMA 2 POTENCIAS NOMBRE Y APELLIDOS... HOJA 1 - FECHA...
Nueva del Carmen,. 011 Valladolid. Tel: 1 Fax: 1 Matemáticas º ESO TEMA POTENCIAS NOMBRE Y APELLIDOS... HOJA 1 - FECHA... Comenzamos a trabajar con potencias. Son muy fáciles si las cogemos el tranquillo
PASAPALABRA BLOQUE NÚMEROS
EMPIEZA POR A 1) Rama de las Matemáticas que se encarga del estudio de los números y sus propiedades: ARITMÉTICA 2) Valor de una cifra, independientemente del lugar que ocupe o del signo que la precede:
Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito
OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes
POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.
1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.
Aritmética de Enteros
Aritmética de Enteros La aritmética de los computadores difiere de la aritmética usada por nosotros. La diferencia más importante es que los computadores realizan operaciones con números cuya precisión
Revisora: María Molero
57 Capítulo 5: INECUACIONES. Matemáticas 4ºB ESO 1. INTERVALOS 1.1. Tipos de intervalos Intervalo abierto: I = (a, b) = {x a < x < b}. Intervalo cerrado: I = [a, b] = {x a x b}. Intervalo semiabierto por
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS
INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS NIVELATORIO DE MATEMÁTICAS BÁSICAS Guía 1 Conjuntos Numéricos COMPETENCIA Reconocer los diferentes conjuntos numéricos,
Introducción. El uso de los símbolos en matemáticas.
Introducción El uso de los símbolos en matemáticas. En el estudio de las matemáticas lo primero que necesitamos es conocer su lenguaje y, en particular, sus símbolos. Algunos símbolos, que reciben el nombre
operaciones inversas Para unificar ambas operaciones, se define la potencia de exponente fraccionario:
Potencias y raíces Potencias y raíces Potencia operaciones inversas Raíz exponente índice 7 = 7 7 7 = 4 4 = 7 base base Para unificar ambas operaciones, se define la potencia de exponente fraccionario:
TEORIA DE CONJUNTOS. 2.-Subconjunto: A es subconjunto de B si todo elemento de A lo es también de B.
TEORI DE CONJUNTOS Definiciones: 1.- Conjunto: es una lista, clase o colección de objetos bien definidos, objetos que, pueden ser cualesquiera: números, personas, letras, etc. Estos objetos se llaman elementos
Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes :
Las fracciones Si partimos una pizza en ocho trozos iguales y comemos dos de ellos, decimos que hemos comido de la pizza dos octavas partes : En un partido de baloncesto, que está dividido en cuatro tiempos
Lección 8: Potencias con exponentes enteros
GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como
UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES
UNIDAD 7: NÚMEROS DECIMALES Y OPERACIONES ÍNDICE 7.1 Unidad decimal. 7.2 Escritura, lectura y descomposición de números decimales. 7.2.1 Escritura de números decimales. 7.2.2 Lectura de números decimales.
Números fraccionarios y decimales
Unidad didáctica Números fraccionarios y decimales 1.- Las fracciones. a Una fracción es un número racional, escrito en la forma, tal que b 0 y representa una parte b de un total. El denominador (el número
UNIDAD DIDÁCTICA : LOS NÚMEROS DECIMALES Autora: Isabel Mª Picón Jaramillo
UNIDAD DIDÁCTICA : LOS NÚMEROS DECIMALES Autora: Isabel Mª Picón Jaramillo Alumno/a, nombre: Fecha de comienzo Fecha de finalización Entra en Descartes y dentro de aplicaciones, en el bloque de álgebra;
CONJUNTOS. Consideremos, por ejemplo, los siguientes conjuntos:
CONJUNTOS En una Teoría Intuitiva de Conjuntos, los conceptos de conjunto y pertenencia son considerados primitivos, es decir, no se definen de un modo formal; se les acepta como existentes de manera axiomática,
Los números, operaciones y sus propiedades
Los números, operaciones y sus propiedades Números Reales En principio podemos definir a los números reales como aquellos números que tienen expansión decimal periódica o tienen expansión decimal no periódica.
GUION TÉCNICO AUDIO. El Conjunto De Los Números Reales. realidad, es una ciencia resultado de más de 4 mil años de
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. El Conjunto De Los Números Reales. Hablar de matemáticas, no es solo referirse a números. En realidad, es
Unidad Didáctica I: El conjunto de los números reales
Unidad Didáctica I: El conjunto de los números reales Concepto de número racional Cuando en una determinada situación se hace necesaria la partición de objetos (unidades), los números enteros se manifiestan
T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor?
T P Números Racionales Q Si a b pertenecen a los enteros, a b SIEMPRE pertenece a los enteros? Exploren las distintas posibilidades (positivos negativos Den ejemplos de acuerdo con cada caso posible Qué
Dos inecuaciones se dice que son equivalentes cuando ambas tienen las mismas soluciones.
10. INECUACIONES Definición de inecuación Una inecuación es una desigualdad entre dos expresiones algebraicas. 2x + 3 < 5 ; x 2 5x > 6 ; x x 1 0 Inecuaciones equivalentes Dos inecuaciones se dice que son
SUBCONJUNTO: es subconjunto de si todo elemento de lo es también de, esto es:
Materia: Matemática de Octavo Tema: Teoría de Conjuntos CONJUNTO: De nuestra experiencia de la vida diaria adquirimos, intuitivamente la noción de "conjunto". Por ello en matemática se considera este concepto
John Venn Matemático y filósofo británico creador de los diagramas de Venn
Georg Cantor Matemático Alemán creador de la teoría de conjuntos John Venn Matemático y filósofo británico creador de los diagramas de Venn August De Morgan Matemático ingles creador de leyes que llevan
Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima.
NÚMEROS DECIMALES 1. DÉCIMA, CENTÉSIMA Y MILÉSIMA. 1.1. CONCEPTO. Si dividimos la unidad en 10 partes iguales, cada una de ellas es una décima. Si dividimos la unidad en 100 partes iguales, cada una de
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
TEORÍA DE CONJUNTOS A ={ 1, 2, 3, 4, 5, 6 }
TEORÍA DE CONJUNTOS CONJUNTOS Y TÉCNICAS DE CONTEO DEFINICIÓN Y NOTACIÓN DE CONJUNTOS El término conjunto juega un papel fundamental en el desarrollo de las matemáticas modernas; Además de proporcionar
2º Se lee número que hay antes de la coma, se añade la palabra coma y luego se lee la parte decimal
Qué son los decimales? Los decimales son una manera distinta de escribir fracciones con denominadores como 10, 100 y 1,000. Tanto los decimales como las fracciones indican una parte de un entero. Un decimal
SESIÓN 10 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS
SESIÓN 0 DERIVACIÓN DE FUNCIONES TRIGONOMÉTRICAS DIRECTAS I. CONTENIDOS:. Derivadas de funciones trigonométricas directas. Ejercicios resueltos. Estrategias Centradas en el Aprendizaje: Ejercicios propuestos
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
CONJUNTOS NUMÉRICOS Los conjuntos numéricos Conjuntos numéricos
CONJUNTOS NUMÉRICOS Estudiemos los conjuntos numéricos sin su estructura y la forma como poco a poco se van formando nuevos conjuntos por la necesidad de resolver algunos problemas. 0.1. Los conjuntos
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos
Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.
