DIVISIÓN POR FRACCIONES
|
|
|
- Paula Carmona Fernández
- hace 9 años
- Vistas:
Transcripción
1 DIVISIÓN POR FRACCIONES División por fracciones introduce tres métodos que ayudan a los estudiantes como se dividen por fracciones. En general, piense en la división 8 como, en 8, cuantos grupos de hay? Similarmente, significa, en, cuantos cuartos hay? Para más información vea el recuadro de Apuntes de matemáticas de las Lecciones 7.. y 7.. del teto Core Connections en español, Curso. Para más ejemplos y práctica, vea los materiales del Punto de comprobación 8B en Core Connections en español, Curso. Los primeros dos ejemplos demuestran como dividir por fracciones usando un diagrama. Ejemplo Use el modelo rectangular para dividir:. Paso : Paso : Usando el rectángulo, primero tenemos que dividirlo en dos partes iguales. Cada parte representa la. Sombree la. Después divida el rectángulo original en cuatro partes iguales. Cada sección representa. En la sección sombreada,, hay cuartos. Paso : Escriba la ecuación. = Ejemplo En, cuantas hay? En hay una sombreada Es decir, qué es? y la mitad de la otra (es mitad de una mitad). Start Empiece with con.. Entonces: = (uno y mitad de la mitad) 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso
2 Problemas Use el modelo rectangular para dividir Respuestas. 8 tercios setos. mitades cuartos. uno cuartos 8 setos tres cuartos cuartos. cuartos mitades 5. tercios novenos mitades novenos En los próimos dos ejemplos use denominadores comunes para dividir por una fracción. Eprese las dos fracciones con un denominador común, después divida el primer numerador por el segundo. Ejemplo Ejemplo o o 8 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso
3 Otra manera de dividir fracciones es usar el Uno Gigante del trabajo previo con fracciones para crear el Uno Súper Gigante. Para usar el Uno Súper Gigante, escriba una división en forma de fracción, con una fracción como numerador y denominador. Use el recíproco del denominador para el numerador y denominador en el Uno Súper Gigante, multiplique las fracciones y simplifique el resultado cuando sea posible. Ejemplo 5 Ejemplo 6 = = = = 8 = 9 = Ejemplo 7 Ejemplo 8 = = 8 9 = Comparado con: = 0 9 = 0 9 = 9 Problemas Complete cada división. Use cualquier método Respuestas CPM Educational Program. All rights reserved. Core Connections en español, Curso
4 ORDEN DE LAS OPERACIONES 6.. Cuando a los estudiantes se les da una epresión como + por primera vez, algunos estudiantes piensan que la respuesta es y algunos piensan que la respuesta es. Por esta razón los matemáticos decidieron en un método para simplificar una epresión que usa más de una operación para que todos estuvieran de acuerdo en una respuesta. Hay un grupo de reglas que se deben seguir que establece una manera consistente para que todos puedan evaluar epresiones. Estas reglas se llaman Orden de las operaciones y se deben seguir para llegar a una respuesta correcta. Para más información vea el recuadro de Apuntes de matemáticas de la Lección 6.. del teto Core Connections en español, Curso. El primer paso es organizar la epresión numérica en partes llamadas términos, que son números singulares o productos de números. Una epresión numérica está formada de una suma o diferencia de términos. Ejemplos de términos numéricos:, (6), 6(9 ),, (5 + ) y 6 6. Para el problema arriba, +, los términos están circulados a la derecha. + Cada término es simplificado por separado, dando + 8. Y después en términos se suman: + 8 =. De este modo, + =. Ejemplo Para evaluar una epresión: + (6 ) + 0 Circule cada término en la epresión. Simplifique cada termino hasta que sea un solo número siguiendo los pasos a continuación: Simplifique la epresión entre paréntesis. Evalué cada parte eponencial (ej., ). Multiplique y divida de izquierda a derecha. Finalmente, combine los términos sumando o restando de la izquierda a la derecha. + (6 ) () () CPM Educational Program. All rights reserved. Core Connections en español, Curso
5 Ejemplo (5 + ) 5 a. Circule los términos. b. Simplifique lo entre paréntesis. c. Simplifique los eponentes. d. Multiplique y divida de izquierda a derecha. Por último, suma y reste de izquierda a derecha. a (5 + ) 5 b (9) 5 c (9) 5 d Ejemplo a. Circule los términos. b. Multiplique y divida de izquierda a derecha, incluyendo eponentes. Suma y reste de izquierda a derecha. a b Problemas Circule los términos, luego simplifique cada epresión (9 ) 7. 6(7 + ) (8 + ) ( 5) (7 7) + 8. (5 ) + (9 + ). + 9() 6 + (6 ) (7 ) (9 ) ( + ) 8. 6 (6 + ) + (5 ) 9. + ( 5 ) + (5 ) 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso
6 Respuestas CPM Educational Program. All rights reserved. Core Connections en español, Curso
7 AZULEJOS ALGEBRAICOS Y PERÍMETRO 6.. Las epresiones algebraicas pueden ser representadas por los perímetros de los azulejos algebraicos (rectángulos y cuadrados) y combinaciones de azulejos algebraicos. Las dimensiones de cada azulejo se muestran a lo largo de sus lados y el azulejo es nombrado por su área que se muestra en el azulejo en las figuras a la derecha. Cuando se usan los azulejos, el perímetro es la distancia alrededor del eterior de la figura. Para más información, vea el recuadro de Apuntes de matemáticas en la Lección 6.. del teto Core Connections es español, Curso. Ejemplo Ejemplo P = 6 + unidades P = unidades 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso
8 Problemas Determine el perímetro de cada figura Respuestas. + un.. + un un un un un un un. 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso
9 COMBINAR TÉRMINOS SEMEJANTES 6.. Las epresiones algebraicas también pueden ser simplificadas por combinando (sumando o restando) términos que tienen los mismos variables elevados a las mismas potencias, hacia un término. La habilidad de combinar términos semejantes es necesario para la resolución de ecuaciones. Para más información, vea el recuadro de Apuntes de matemáticas en la Lección 6.. del teto Core Connections en español, Curso. Ejemplo Combine términos semejantes para simplificar la epresión Todos estos términos tienen una como un variable, así que se combinan en un solo término, 5. Ejemplo Simplifique la epresión Los términos con una pueden ser combinados. Los términos sin variables (los constantes) también pueden ser combinados Note que en la forma simplificada el término con el variable aparece antes del término constante. Ejemplo Simplifique la epresión Note que los términos con los mismos variables pero con diferentes eponentes no están combinados y están en una lista en orden de disminución de poder del variable, en forma simplificada, con el término constante al último. 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso
10 Ejemplo Los azulejos algebraicos, como se muestra en la sección Azulejos algebraicos y perímetro, son usados como modelos de cómo combinar términos semejantes. El cuadrado grande representa, el rectángulo representa y el cuadrado pequeño representa uno. Solamente podemos combinar azulejos que son semejantes: cuadrados grandes con cuadrados grandes, rectángulos con rectángulos y cuadrados pequeños con cuadrados pequeños. Si queremos combinar + + y , visualice los azulejos para ayudarle a combinar los términos semejantes: ( cuadrados grandes) + ( rectángulos) + ( cuadrados pequeños) + ( cuadrados grandes) + 5 (5 rectángulos) + 7 (7 cuadrados pequeños) La combinación de los dos conjuntos de azulejos, escrito algebraicamente, es: Ejemplo 5 A veces es útil tomar una epresión que está escrita horizontalmente, circule los términos con sus signos y rescriba términos semejantes en las columnas verticales antes de combinarlos: Problemas ( 5 + 6) + ( + 9) Combine los siguientes conjuntos de términos. Este procedimiento puede ser más fácil para identificar los términos además del signo de cada término.. ( ) + ( + + ). ( + + ) + ( + + 7). (8 + ) + ( ). ( ) ( + + ) 5. ( 7 + ) + ( 5) 6. ( 7) ( + 9) 7. (5 + 6) + ( ) c + c ( c ) a + a a + 6a + a + Respuestas c + c + 0. a a + a + 0 CPM Educational Program. All rights reserved. Core Connections en español, Curso
FRACCIONES EQUIVALENTES 3.1.1
FRACCIONES EQUIVALENTES 3.. Fracciones que nombran el mismo valor se llaman fracciones equivalentes, como 2 3 = 6 9. Un método para encontrar fracciones equivalentes es usar la identidad multiplicativa
PROBLEMAS DE DIAMANTE 2.1.1
PROBLEMAS DE DIAMANTE 2.1.1 En cada Problema de diamante, el producto de los dos números a los lados (izquierda y derecha) es el número arriba y la suma es el número de abajo. producto ab Los Problemas
CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS
CAPÍTULO 3: PORCIONES Y NÚMEROS ENTEROS Fecha: Caja de herramientas 2014 CPM Educational Program. All rights reserved. 22 Capítulo 3: Porciones y números enteros Fecha: 23 2014 CPM Educational Program.
CAPÍTULO 4: VARIABLES Y RAZONES
Capítulo 4: Variables y razones CAPÍTULO 4: VARIABLES Y RAZONES Fecha: 33 2014 CPM Educational Program. All rights reserved. Core Connections en español, Curso 2 Fecha: Caja de herramientas 2014 CPM Educational
Curso º ESO. UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón
2º ESO UNIDADES 6 Y 7: EXPRESIONES ALGEBRAICAS Y ECUACIONES Departamento de Matemáticas IES Fray Bartolomé de las Casas de Morón OBJETIVOS CONTENIDOS PROCEDIMIENTOS Lenguaje algebraico. Normas y Traducción
MULTIPLICAR FRACCIONES CON UN MODELO DE ÁREA 5.1.1, 5.1.4, 5.2.2
MULTIPLICAR FRACCIONES CON UN MODELO DE ÁREA 5.1.1, 5.1.4, 5.. La multiplicación de fracciones es revisada usando un área de modelo rectangular. Las líneas que dividen el rectángulo para representar una
RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE y 9.1.2
RESOLUCIÓN DE DESIGUALDADES CON UNA VARIABLE 9.1.1 9.1.2 Para resolver una desigualdad con una variable, debes convertirla primero en una ecuación (un enunciado matemático con un signo = ) resolverla.
Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos
PROBABILIDAD SIMPLE 1.1.2,
PROBABILIDAD SIMPLE..2,.2..2.3 Resultado: Cualquier resultado posible o real de la acción considerada, como sacar un 5 en un cubo numverado estándar o salir cruz al arrojar una moneda. Evento: Un resultado
GUÍAS DE ESTUDIO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS
GUÍAS DE ESTUDIO Código PGA-0-R0 1 INSTITUCIÓN EDUCATIVA CASD PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS UNIDAD DE TRABAJO Nº PERIODO 1 ÁREA INTEGRADA: MATEMÁTICAS. ASIGNATURA:
ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA
ESCRITURA Y GRAFICACIÓN DE ECUACIONES LINEALES EN UNA SUPERFICIE PLANA La pendiente es un número que indica lo inclinado (o plano) de una recta, al igual que su dirección (hacia arriba o hacia abajo) de
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS
DESCRIPCIÓN Y CLASIFICACIÓN DE POLÍGONOS 1.1.1 1.1.2 Las figuras geométricas, como los polígonos, aparecen en muchos lugares. En estas lecciones, los alumnos estudiarán más atentamente los polígonos y
PRISMAS VOLUMEN Y ÁREA DE SUPERFICIE y 9.1.2
PRISMAS VOLUMEN Y ÁREA DE SUPERFICIE 9.1.1 y 9.1.2 VOLUMEN DE UN PRISMA El volumen es un concepto tridimensional. Mide la cantidad de espacio interior de una figura tridimensional basado en una unidad
Guía del estudiante. Actividad 1. Si la base de un triángulo es b y su altura es h: 1. Escriba la expresión algebraica que representa su área:
MATEMÁTICAS Grado Séptimo Bimestre IV Semana 1 Número de clases 1-4 Clase 1 Tema: Expresiones algebraicas valor numérico. Lenguaje común, lenguaje algebraico, simplificación de expresiones algebraicas
DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3
Capítulo DESCRIPCIÓN DE FUNCIONES..2..3 El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir
UNA ECUACIÓN es una igualdad de dos expresiones algebraicas.
UNA EXPRESIÓN ALGEBRAICA es una combinación de números, variables (o símbolos) y operaciones como la suma, resta, multiplicación, división, potenciación y radicación. Ejemplos. UNA ECUACIÓN es una igualdad
Operaciones de números racionales
Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste
1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE REFUERZO Página 25
1. ESQUEMA - RESUMEN Página. EJERCICIOS DE INICIACIÓN Página 6. EJERCICIOS DE DESARROLLO Página 17 5. EJERCICIOS DE REFUERZO Página 5 1 1. ESQUEMA - RESUMEN Página 1.1. EXPRESIONES ALGEBRAICAS. 1.. VALOR
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. 1º ESO
COLEGIO EL LIMONAR. MÁLAGA DEPARTAMENTO DE MÁTEMÁTICAS RELACIONES DE EJERCICIOS. º ESO RELACIÓN 5: ALGEBRA Lenguaje algebraico, monomios polinomios EXPRESIÓN ALGEBRAICA Es un conjunto de números letras
Ecuaciones de primer grado
Matemáticas Unidad 16 Ecuaciones de primer grado Objetivos Resolver problemas que impliquen el planteamiento y la resolución de ecuaciones de primer grado de la forma x + a = b; ax = b; ax + b = c, utilizando
4 Ecuaciones e inecuaciones
Ecuaciones e inecuaciones INTRODUCCIÓN Comenzamos esta unidad diferenciando entre identidades y ecuaciones, y definiendo los conceptos asociados a cualquier ecuación: miembros, términos, coeficientes,
PENDIENTE MEDIDA DE LA INCLINACIÓN
Capítulo 2 PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL. Mate 3041 Profa. Milena R. Salcedo Villanueva
NÚMEROS RACIONALES Y REPRESENTACIÓN DECIMAL Mate 3041 Profa. Milena R. Salcedo Villanueva 1 FRACCIONES Una fracción tiene dos términos: numerador y denominador Denominador indica las veces que se divide
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
Tutorial MT-b11. Matemática Tutorial Nivel Básico. Inecuaciones e intervalos
12345678901234567890 M ate m ática Tutorial MT-b11 Matemática 2006 Tutorial Nivel Básico Inecuaciones e intervalos Matemática 2006 Tutorial Inecuaciones e intervalos I. Definición y Propiedades de las
Sumar y restar radicales
Sumar y restar radicales Radicales semejantes Decimos que dos radicales son semejantes si tienen el mismo índice y el mismo radicando. Ejemplos: Los siguientes pares de radicales son semejantes. 5 y y
Guía Nº 1(B) ALGEBRA
Liceo Industrial Benjamín Dávila Larraín Unidad Técnica Pedagógica Guía Nº (B) ALGEBRA I. Identificación Docente Verónica Moya R. Claudia Paez Subsector/Módulo Matemática Email docente Aprendizaje Esperado
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO
RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011
Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Álgebra Resumen de la sesión anterior. Se añadió que
NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS
NOMENCLATURA DE CUADRILÁTEROS Y ÁNGULOS 8.3.1 8.3.4 Un cuadrilátero es cualquier polígono de cuatro lados. Hay seis casos especiales de cuadriláteros con la que los estudiantes deben estar familiarizados.
Matemáticas Grado 4 Identificar, sumar y restar fracciones
Matemáticas Grado 4 Identificar, sumar y restar fracciones Estimado padre o tutor legal: Actualmente su hijo/a está aprendiendo a identificar partes fraccionarias de conjuntos y cómo sumar y restar fracciones
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
ECUACIONES DE PRIMER Y SEGUNDO GRADO
7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado
lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas
1. Fracciones Una fracción es una expresión del tipo a b, donde a y b son números naturales llamados numerador y denominador, respectivamente. 1.1. Interpretación de una fracción a) Fracción como parte
EXPRESIONES RACIONALES
EXPRESIONES RACIONALES a El conjunto de las fracciones b, donde a b son enteros (0, ±1, ±, ±, ) b 0, se le conoce como los números racionales. En matemática, la palabra racional se asocia a epresiones
TEMA 4: LAS FRACCIONES
TEMA : LAS FRACCIONES Hasta ahora has trabajado con números naturales, enteros y decimales, pero sigue habiendo situaciones que no podemos expresar con estos números, por ejemplo, cuando decimos: Medio
UNIDAD DE APRENDIZAJE I
UNIDAD DE APRENDIZAJE I Saberes procedimentales Interpreta y utiliza correctamente el lenguaje simbólico para el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones algebraicas.
Destrezas algebraicas: de lo concreto a lo abstracto MARIA DE L. PLAZA BOSCANA
Destrezas algebraicas: de lo concreto a lo abstracto MARIA DE L. PLAZA BOSCANA INTRODUCCION Hoy trabajaremos con los Algeblocks, un manipulativo que te ayudará a descubrir las reglas de enteros y a entender
Fracciones y fractales
C APÍTULO 0 Fracciones y fractales Resumen del contenido El tema del Capítulo 0 es la investigación de patrones en el diseño fractal. No se intimide si no ha visto fractales anteriormente. El propósito
Primaria Sexto Grado Matemáticas (con QuickTables)
Primaria Sexto Grado Matemáticas (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios
ÁNGULOS Halla la medida de los ángulos a, b, y/o c de cada figura a continuación. Justifica tus respuestas.
ÁNGULOS.... La aplicación de la geometría en situaciones cotidianas suele involucrar la medición de distintos ángulos. En este capítulo, comenzamos a estudiar las medidas de los ángulos. Después de describir
Soluciones - Tercer Nivel Infantil
SOCIEDAD ECUATORIANA DE MATEMÁTICA ETAPA CLASIFICATORIA "VII EDICIÓN DE LAS OLIMPIADAS DE LA SOCIEDAD ECUATORIANA DE MATEMÁTICA" Soluciones - Tercer Nivel Infantil 01 de abril de 2010 1. En un reloj de
PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4
PENDIENTE MEDIDA DE LA INCLINACIÓN 2.1.2 2.1.4 Los alumnos utilizaron la ecuación = m + b para graficar rectas describir patrones en los cursos anteriores. La Lección 2.1.1 es un repaso. Cuando la ecuación
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
OPERACIONES ALGEBRAICAS FUNDAMENTALES
OPERACIONES ALGEBRAICAS FUNDAMENTALES Monomio Un monomio es la representación algebraica más elemental sus componentes son: signo, coeficiente, literal (o literales exponente ( o exponentes, cada literal
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 3 Nombre: Ecuaciones Lineales Objetivo de la asignatura: En esta sesión el estudiante aplicará las principales propiedades de ecuaciones lineales con la finalidad
POLÍGONOS
POLÍGONOS 8.1.1 8.1.5 Después de estudiar los triángulos y los cuadriláteros, los alumnos ahora amplían su estudio a todos los polígonos. Un polígono es una figura bidimensional, cerrada, formada por tres
GUIA ALGEBRA PARTE I. Ejercicios básicos de aritmética EJERCICIOS
1 GUIA ALGEBRA PARTE I Ejercicios básicos de aritmética QUEBRADOS Fracciones mixtas ejemplo 3 4/5 Una fracción mixta es un número entero y una fracción combinados, como 1 3 / 4. Fracciones propias ejemplo
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Multiplicar y dividir números enteros y fraccionarios 2. Utilizar las propiedad conmutativas y asociativa Saberes declarativos A Concepto de base, potencia
Sillas rodeando mesas
Sillas rodeando mesas Unidad 5.3: El álgebra describe nuestro mundo Plan de enseñanza Usando el contexto de sillas alrededor de mesas cuadradas, los estudiantes interactuarán con tres patrones lineales
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
OPERACIONES CON POTENCIAS. Una potencia es un producto de factores iguales. Está formada por la base y el exponente.
OPERACIONES CON POTENCIAS Una potencia es un producto de factores iguales. Está formada por la base y el exponente. 3. 3. 3. 3 = 3 4 Exponente Base Se puede leer: tres elevado a cuatro o bien tres elevado
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
Prácticas para Resolver PROBLEMAS MATEMÁTICOS
Prácticas para Resolver PROBLEMAS MATEMÁTICOS 1 Prólogo El presente manual está dirigido a los estudiantes de las facultades de físico matemáticas de las Escuelas Normales Superiores que estudian la especialidad
LOS NÚMEROS ENTEROS. Para restar un número entero, se quita el paréntesis y se pone al número el signo contrario al que tenía.
Melilla Los números Enteros y operaciones elementales LOS NÚMEROS ENTEROS 1º LOS NÚMEROS ENTEROS. El conjunto de los números enteros Z está formado por los números naturales (enteros positivos) el cero
Los números enteros Z = {,-3, -2, -1, 0, 1, 2, 3, }
Los números enteros La unión de los números naturales y los enteros negativos forma el conjunto de los números enteros, que se designa con la palabra Z. Está constituido por infinitos elementos y se representan
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).
3.2.4 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.
APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.
FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,
Expresiones Algebraicas Racionales en los Números Reales
en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido cional nales Algebraica Racional ales : Contenido Discutiremos: qué es una expresión algebraica racional : Contenido
TEMA 3: FRACCIONES 1º ESO MATEMÁTICAS
TEMA : FRACCIONES 1º ESO MATEMÁTICAS Tema : Fracciones Fracciones equivalentes. Comparación de fracciones y ordenación Proporcionalidad, Porcentajes y escalas Operaciones con fracciones. + problemas 6
Lección 11: Fracciones. Equivalencia y orden
GUÍA DE MATEMÁTICAS I LECCIÓN Lección : Fracciones. Equivalencia y orden Fracciones equivalentes No siempre podemos trabajar con unidades divididas decimalmente; con frecuencia nos conviene partir de otra
La lección de hoy es sobre resolver valores absolutos por Inecualidades. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.
SEI.2.A1.1- Courtney Cochran-Solving Absolute Value Inequalities. La lección de hoy es sobre resolver valores absolutos por Inecualidades. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1
Guía 1: PATRONES DE REPETICIÓN
Guía : PATRONES DE REPETICIÓN Un patrón es una sucesión de elementos (orales, gestuales, gráficos, de comportamiento, numéricos) que se construye siguiendo una regla, ya sea de repetición o de recurrencia.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO.
UNIDAD 10: ECUACIONES DE SEGUNDO GRADO. 10.1 Estudio elemental de la ecuación de segundo grado. Expresión general. 10.2 Resolución de ecuaciones de segundo grado completas e incompletas. 10.3 Planteamiento
Matemáticas Grado 1 Fracciones: Parte de un entero
Matemáticas Grado 1 Fracciones: Parte de un entero Estimado padre o tutor legal: Actualmente su hijo/a está aprendiendo a describir una parte fraccionaria de una figura. Ésta es su oportunidad para ayudarle
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:
1) PRINCIPIO FUNDAMENTAL: Toda regla de escritura matemática debe facilitar la comprensión de los objetos matemáticos representados y su lectura.
APÉNDICE B REGLAS DE ESCRITURA REGLAS GENERALES 1) PRINCIPIO FUNDAMENTAL: Toda regla de escritura matemática debe facilitar la comprensión de los objetos matemáticos representados y su lectura. La comprensión
La Lección de hoy es sobre Simplificar Fracciones y Radicales. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.
Simplifying Radical Fractions-LA.1.A1.8-Beach Pam. La Lección de hoy es sobre Simplificar Fracciones y Radicales. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.8 Una fracción no
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS
MATEMÁTICAS PARA LA COMPUTACIÓN CAPÍTULO 1. SISTEMAS NUMÉRICOS MÁS EJEMPLOS DE OPERACIONES ARITMÉTICAS EN DIFERENTES SISTEMAS NUMÉRICOS. AUTOR: JOSÉ ALFREDO JIMÉNEZ MURILLO AVC APOYO VIRTUAL PARA EL CONOCIMIENTO
Potencias. Potencias con exponente entero. Con exponente racional o fraccionario
Potencias con exponente entero Potencias Con exponente racional o fraccionario Propiedades 1.a 0 = 1 2.a 1 = a 3.Producto de potencias con la misma base: Es otra potencia con la misma base y cuyo exponente
RESUMEN ALGEBRA BÁSICA
RESUMEN ALGEBRA BÁSICA TERMINO ALGEBRAICO: Es una expresión matemática que consta de un producto (o cociente) de un número con una variable elevado a un exponente (o con varias variables). TÉRMINO ALGEBRAICO
FRACCIONES. Para hallar la fracción de una cantidad se divide la cantidad entre el denominador y el resultado se multiplica por el numerador.
FRACCIONES FRACCION Una fracción es una epresión formada por dos números separados por una raa horizontal, al número de abajo se le llama denominador nos indica el número de partes iguales en que se divide
DEMOSTRACIONES VISUALES AUTORAS: PATRICIA CUELLO-ADRIANA RABINO Contenidos: Expresiones algebraicas - Identidades Propiedades de los números naturales
DEMOSTRACIONES VISUALES AUTORAS: PATRICIA CUELLO-ADRIANA RABINO Contenidos: Expresiones algebraicas - Identidades Propiedades de los números naturales Las demostraciones no están allí para convencernos
Ecuaciones Lineales en Dos Variables
Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma
Expresiones Algebraicas en los Números Reales
Operaciones con en los Números Reales Carlos A. Rivera-Morales Álgebra Tabla de Contenido Contenido Operaciones con Operaciones con : Contenido Operaciones con Discutiremos: qué es una: expresión algebraica
Representando las dimensiones y el área de un rectángulo
Representando las dimensiones y el área de un rectángulo Bitácora del Estudiante Realiza las siguientes actividades, mientras trabajas con el tutorial. 1. Jacinto Pluma Negra olvidó el ancho del rectángulo,
A)2011 B)2012 B)2013 D)2014 E)2015. C) a5 +b 5
ENCUENTRO # 6 TEMA: Fracciones algebraicas CONTENIDOS:. Máximo común divisor 2. Mínimo común múltiplo 3. Simplificación de fracciones algebraicas 4. Suma de fracciones algebraicas 5. Resta de fracciones
Colegio Decroly Americano Matemática 7th Core, Contenidos I Período
Matemática 7th Core, 2015-2016 Contenidos I Período 1. Sentido Numérico a. Identificar y escribir patrones. b. Escribir números en forma de exponentes. c. Escribir cantidades en notación científica. d.
INSTITUTO DE FORMACIÓN DOCENTE DE CANELONES DIVISIBILIDAD
DIVISIBILIDAD Definición de múltiplo Dados los números naturales a y b, se dice que a es múltiplo de b, si y solo si existe un número natural k, único, tal que a = b.k El número k se dice que es el cociente
UNIDAD III NÚMEROS FRACCIONARIOS
UNIDAD III NÚMEROS FRACCIONARIOS COMPETENCIAS E INDICADORES DE DESEMPEÑO Identifica los números fraccionarios y realiza operaciones con ellos. Identifica los porcentajes, decimales y fraccionarios y realiza
MATEMÁTICAS II CC III PARCIAL
UNIDAD DIDÁCTICA #3 CONTENIDO ECUACIONES LINEALES CON UNA INCOGNITA TIPOS DE ECUACIONES RESOLUCION DE ECUACIONES LINEALES INECUACIONES LINEALES 1 ECUACIONES LINEALES CON UNA INCOGNITA Una ecuación es una
Ficha de Repaso: Lenguaje Algebraico
Ficha de Repaso: Lenguaje Algebraico 1º) Traduce las siguientes afirmaciones al lenguaje algebraico: a) El doble de un número b) El cubo de un número c) El cuadrado de un número menos su doble d) Un número
La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1
La lección de hoy es sobre las expresiones algebraicas. El cuál es la expectativa para el aprendizaje del estudiante LA.1.A1.1 Las expresiones algebraicas consisten en uno o más números y variables, junto
TRIÁNGULOS RECTÁNGULOS ESPECIALES Y 6.1.1 y 6.1.2 TERNAS PITAGÓRICAS
TRIÁNGULOS RECTÁNGULOS ESPECIALES Y 6.1.1 6.1.2 TERNAS PITAGÓRICAS Eisten dos triángulos rectángulos especiales que suelen aparecer en matemáticas: el triángulo --90 el triángulo --90. Todos los triángulos
GUÍAS DE ESTUDIO. Programa de alfabetización, educación básica y media para jóvenes y adultos
GUÍAS DE ESTUDIO Código PGA-02-R02 1 INSTITUCIÓN EDUCATIVA CASD Programa de alfabetización, educación básica y media para jóvenes y adultos UNIDAD DE TRABAJO Nº 1 PERIODO 1 1. ÁREA INTEGRADA: MATEMÁTICAS
Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es.
Materia: Matemática de Séptimo Tema: Ángulos y pares de ángulos Objetivos de aprendizaje Entender e identificar ángulos complementarios. Entender e identificar ángulos suplementarios. Entender y utilizar
MATEMÁTICAS 1º DE ESO
MATEMÁTICAS 1º DE ESO LOMCE TEMA IV : LAS FRACCIONES. OPERACIONES Los siginificados de una fracción. Fracciones propias e impropias. Equivalencias de fracciones. Amplificación y simplificación. Fracción
SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números
SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D
Inecuaciones lineales y cuadráticas
Inecuaciones lineales y cuadráticas 0.1. Inecuaciones lineales Una inecuación lineal tiene la forma ax + b < 0 ó ax + b > 0 ó ax + b 0 ó ax + b 0. El objetivo consiste en hallar el conjunto solución de
Matemáticas Grado 5 Fracciones, decimales y porcentajes equivalentes
Matemáticas Grado 5 Fracciones, decimales y porcentajes equivalentes Estimado padre o tutor legal: Actualmente su hijo/a está aprendiendo a convertir entre fracciones, decimales y porcentajes. Ésta es
Resolución de problemas mediante ecuaciones.
Resolución de problemas mediante ecuaciones. 1.- La suma de un número con el doble de ese mismo número es 72. Cuál es ese número? 2.- Un señor compró 2 kilos de papas y 3 de tomates. El kilo de papas costaba
Desigualdades con Valor absoluto
Resolver una desigualdad significa encontrar los valores para los cuales la incógnita cumple la condición. Para ver ejemplos de las diferentes desigualdades que hay, haga Click sobre el nombre: Desigualdades
TRANSFORMACIONES DE f (x) = x 2 9.1.1 9.1.2. Ejemplo 1
Capítulo 9 TRANSFORMACIONES DE f () = 2 9.1.1 9.1.2 A fin de lograr un buen dominio de la modelación de datos relaciones en situaciones cotidianas, los alumnos deben ser capaces de reconocer transformar
a) Factoriza el monomio común. En este caso 6 se puede dividir de cada término:
Materia: Matemática de 5to Tema: Factorización y Resolución de ecuaciones 1) Factorización Marco Teórico Decimos que un polinomio está factorizado completamente cuando no podemos factorizarlo más. He aquí
T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor?
T P Números Racionales Q Si a b pertenecen a los enteros, a b SIEMPRE pertenece a los enteros? Exploren las distintas posibilidades (positivos negativos Den ejemplos de acuerdo con cada caso posible Qué
