Programación Lineal Entera. Programación Entera
|
|
|
- Juan Luis Moya Castro
- hace 9 años
- Vistas:
Transcripción
1 Programación Lineal Entera PE Programación Entera Modelo matemático, es el problema de programación lineal Restricción adicional de variables con valores enteros. Programación entera mita Algunas variables con valores enteros Programación entera binaria Solo variables binarias
2 Método de Ramificación y Acotamiento Un problema acotado de PEB, tiene un número finito de soluciones. Necesario eaminar sólo una fracción de las soluciones factibles. Divide y vencerás. Acotamiento de la solución y eliminación (sondeo) de los subconuntos de problema cuya cota no sea meor que la cota original. Eemplo: Ramificación y Acotamiento Modelo de programación entera binaria Maimizar Z = 9 es entero, para =,,,.
3 Eemplo: Ramificación y Acotamiento Se relaa el problema original como un problema de PL. Se obtiene la cota inicial. 9 Z Maimizar = Se aplica SIMPLEX y se obtiene la solución óptima: (,,, ) = (/,,, ) con Z = ½. Para el problema original de PEB Z ½. Como los coeficientes de la función obetivo son enteros Z debe de dar un valor entero. Cota inicial es: Z. Eemplo: Ramificación y Acotamiento Primera iteración del algoritmo. PEB. Se fia el valor de una variables =, para un subconunto =, para el otro subconunto Se obtiene las cotas para los sub-problemas generados relaando estos como PL. Z Maimizar = 9 Z Maimizar = Sub-problema : ( = ). Sub-problema : ( = ). Se aplica SIMPLEX y se obtiene la solución óptima de cada sub-problema. Sub: (,,, ) = (,,, ) con Z = 9. Sub: (,,, ) = (, /,, /) con Z = /.
4 Eemplo: Ramificación y Acotamiento Primera iteración del algoritmo Las cotas obtenidas para cada sub-problema son: Sub: Z 9 Sub: Z 9 (,,,) (/,,,) (,/,,/) Eemplo: Ramificación y Acotamiento Pasos para cada iteración: Ramificación: Entre los sub-problemas restantes (no sondeados), se elige el de creación más reciente. (Los empates se rompen con el que tenga la meor cota) Se ramifica el nodo en ese sub-problema, fiando la siguiente variable. Acotamiento: Cada sub-problema se relaa a PL y acota con simple redondeando hacia abao el valor de Z. Sondeo: En cada nuevo sub-problema, se aplican las tres pruebas de sondeo y se descarta el que cumpla cualquier prueba de sondeo.
5 Eemplo: Ramificación y Acotamiento Pruebas de sondeo (eliminación) de un subproblema: Prueba : cota Z* (solución de apoyo actual) Prueba : El sub-problema relaado como PL no tiene soluciones factibles. Prueba : La solución óptima del sub-problema relaado como PL es entera. Si es meor que Z* se convierte en la nueva Z* y se aplica de nuevo la prueba, a todos los sub-problemas no sondeados con la nueva z*. Eemplo: Ramificación y Acotamiento Primera iteración del algoritmo Al aplicar las tres pruebas de sondeo a los dos subproblemas y. El Sub se sondeo por la prueba, S(): S() Z* = 9 (,,,) (/,,,) (,/,,/)
6 Eemplo: Ramificación y Acotamiento Segunda iteración del algoritmo con =. PEB. Se fia el valor de otra variables =, para un subconunto =, para el otro subconunto Se obtiene las cotas para los sub-problemas generados del sub, relaando estos como PL. Sub-problema : ( =, = ). Sub-problema : ( =, = ). Maimizar Z = 9 Maimizar Z = Se aplica SIMPLEX y se obtiene la solución óptima de cada sub-problema. Sub: (,,, ) = (,, /, ) con Z =, /. Sub: (,,, ) = (,,, /) con Z = /. Eemplo: Ramificación y Acotamiento Segunda iteración del algoritmo Las cotas obtenidas para cada sub-problema son: Sub: Z Sub: Z Ambos problemas quedan sin sondear. El sub tiene una cota más grande que el sub S() (/,,,) Z*= 9 (,,,) (,/,,/) (,,/,) (,,,/)
7 Eemplo: Ramificación y Acotamiento Tercera iteración del algoritmo con =, =. PEB. Se fia el valor de otra variables =, para un subconunto =, para el otro subconunto Se obtiene las cotas para los sub-problemas generados del sub, relaando estos como PL. Sub-problema : ( =, =, = ). Sub-problema : ( =, =, = ). Maimizar Z = Maimizar Z = Se aplica SIMPLEX y se obtiene la solución óptima de cada sub-problema. Sub: (,,, ) = (,,, /) con Z =. Sub: No hay solución factible. Eemplo: Ramificación y Acotamiento Tercera iteración del algoritmo Las cotas obtenidas para cada sub-problema son: Sub: Z Sub: No hay solución factible Los sub-problemas de los nodos (,) y (,,) permanecen bao consideración, pero el último es de creación más reciente, por lo que se selecciona para ramificar. Z*= 9 S() (,,,) (/,,,) (,/,,/) (,,/,) (,,,/) S() (,,,/) 7
8 Eemplo: Ramificación y Acotamiento Cuarta iteración del algoritmo con =, =, =. PEB. Se fia el valor de otra variables =, para un subconunto =, para el otro subconunto Se obtiene las cotas para los sub-problemas generados del sub, relaando estos como PL. Sub-problema 7: ( =, =, =, =). Sub-problema 8: ( =, =, =, =). Se aplica SIMPLEX y se obtiene la solución óptima de cada sub-problema. Sub7: (,,, ) = (,,, ) con Z =. Sub8: No hay solución factible. Eemplo: Ramificación y Acotamiento Cuarta iteración del algoritmo Las cotas obtenidas para cada sub-problema son: Sub7: Z Sub8: No hay solución factible Aplicando las pruebas de sondeo, la Sub7 pasa la prueba y la sub8 pasa la prueba. La solución factible en sub7 es meor que la de apoyo Z* = 9, por lo que la nueva Z* =. Se aplica la prueba de sondeo con Z* a los sub-problemas sin sondear. Sub cota = Z* =, este sub queda sondeado por la prueba. (/,,,) S() S() Z*= 9 S() (,,,) Z* = (,,,) S() (,,/,) (,,,/) (,/,,/) S() (,,,/) 8
RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA
RELACIÓN DE PROBLEMAS DE CLASE DE PROGRAMACIÓN LINEAL ENTERA SIMPLEX Y LINEAL ENTERA a Resuelve el siguiente problema con variables continuas positivas utilizando el método simple a partir del vértice
PLE: Ramificación y Acotamiento
PLE: Ramificación y Acotamiento CCIR / Depto Matemáticas TC3001 CCIR / Depto Matemáticas PLE: Ramificación y Acotamiento TC3001 1 / 45 La compañía TELFA fabrica mesa y sillas. Una mesa requiere 1 hora
Resumen de técnicas para resolver problemas de programación entera. 15.053 Martes, 9 de abril. Enumeración. Un árbol de enumeración
5053 Martes, 9 de abril Ramificación y acotamiento () Entregas: material de clase Resumen de técnicas para resolver problemas de programación entera Técnicas de enumeración Enumeración completa hace una
Tema 6: Programación entera: Bifurcación y planos de corte.
Tema 6: Programación entera: Bifurcación y planos de corte. Obetivos del tema. Índice Problemas de programación lineal entera. Método de bifurcación y acotación para un PPLE Mixta. Técnicas de preprocesamiento
PROGRAMACIÓN LINEAL ENTERA
PROGRAMACIÓN LINEAL ENTERA Programación lineal: hipótesis de perfecta divisibilidad Así pues decimos que un problema es de programación lineal entera, cuando prescindiendo de las condiciones de integridad,
Programación Lineal Entera
Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción
Tema No. 3 Métodos de Resolución de Modelos de Programación Lineal. El Método Gráfico y Método Simplex Autoevaluación y Ejercicios Propuestos
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÁREA DE TECNOLOGÍA DEPARTAMENTO DE GERENCIA INVESTIGACIÓN DE OPERACIONES PROFESOR: Dr. JUAN LUGO MARÍN Tema No. 3 Métodos de Resolución de Modelos
Con miras a conocer la metodología que se aplica en el Método SIMPLEX, tenemos a continiacion un ejemplo:
Método Simplex. Este método fue creado en el año 1947 por el estadounidense George Bernard Dantzig y el ruso Leonid Vitalievich Kantorovich, con el objetivo de crear un algoritmo capaz de crear soluciones
Fundamentos de Investigación de Operaciones Asignación y Vendedor Viajero
Fundamentos de Investigación de Operaciones y Vendedor Viajero 23 de mayo de 2004 Si bien la resolución del problema de transporte mediante tableau parece ser muy expedita, existen ciertos tipos de problemas
PROBLEMA 1. Considere el siguiente problema de programación lineal:
PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el
Universidad Autónoma de Sinaloa
Universidad Autónoma de Sinaloa Facultad de Ciencias Sociales Licenciatura en Economía Programa de estudios Asignatura: Investigación de operaciones. Clave: Eje de formación: Básica EFBCII Área de Conocimiento:
Un programa entero de dos variables. 15.053 Jueves, 4 de abril. La región factible. Por qué programación entera? Variables 0-1
15.053 Jueves, 4 de abril Un programa entero de dos variables Introducción a la programación entera Modelos de programación entera Handouts: material de clase maximizar 3x + 4y sujeto a 5x + 8y 24 x, y
CAPITULO 1: PERSPECTIVE GENERAL DE LA
CONTENIDO CAPITULO 1: PERSPECTIVE GENERAL DE LA INVESTIGACION DE OPERACIONES 1 1.1 Modelos matemáticos de investigación de operaciones. 1 1.2 Técnicas de investigación de operaciones 3 1.3 Modelado de
Programación Lineal. El método simplex
Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación
Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera
Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema
Tema 3: El Método Simplex. Algoritmo de las Dos Fases.
Tema 3: El Método Simplex Algoritmo de las Dos Fases 31 Motivación Gráfica del método Simplex 32 El método Simplex 33 El método Simplex en Formato Tabla 34 Casos especiales en la aplicación del algoritmo
Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.
Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto
Programación Lineal y Optimización Segundo Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011
Matrícula: Nombre: Programación Lineal y Optimización Segundo Examen Parcial Respuesta: : Profr. Eduardo Uresti, Enero-Mayo 2011 1. Suponga que tiene una empresa que produce tres tipos de productos (P
OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA. Tema 2 Programación Lineal
OPTIMIZACIÓN Y SIMULACIÓN PARA LA EMPRESA Tema 2 Programación Lineal ORGANIZACIÓN DEL TEMA Sesiones: Introducción, definición y ejemplos Propiedades y procedimientos de solución Interpretación económica
Universidad Tec Milenio: Profesional HG04002 Análisis de Decisiones I
Tema # 10 El método de las M s como solución de problemas de programación lineal 1 Objetivo de aprendizaje del tema Al finalizar el tema serás capaz de: Resolver modelos de programación lineal mediante
Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual
7. Programación lineal y SIMPLEX Definición de problemas de programación lineal. Método gráfico. Método del SIMPLEX. Método de las dos fases. Análisis de sensibilidad y problema dual Programación Lineal
Programación entera: Ejemplos, resolución gráfica, relajaciones lineales. Investigación Operativa, Grado en Estadística y Empresa, 2011/12
Programación entera: Ejemplos, resolución gráfica, relajaciones lineales Prof. José Niño Mora Investigación Operativa, Grado en Estadística y Empresa, 2011/12 Esquema Programación entera: definición, motivación,
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO
MÉTODO SIMPLEX MÉTODO DE SOLUCIÓN GRÁFICO Investigación de Operaciones 1 AVISO Traer para la siguiente clase laptop para desarrollar ejercicios con winqsb, tora, qsb, y otros. Investigación de Operaciones
Universidad Tec Milenio: Profesional IO04001 Investigación de Operaciones I. Tema # 9
IO04001 Investigación de Operaciones I Tema # 9 Otras aplicaciones del método simplex Objetivos de aprendizaje Al finalizar el tema serás capaz de: Distinguir y aplicar la técnica de la variable artificial.
RESOLUCIÓN INTERACTIVA DEL SIMPLEX
RESOLUCIÓN INTERACTIVA DEL SIMPLEX Estos materiales interactivos presentan la resolución interactiva de ejemplos concretos de un problema de P.L. mediante el método Simplex. Se presentan tres situaciones:
Problema de Programación Lineal
Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,
Desarrollo de un nuevo algoritmo para resolver programas lineales enteros y su aplicación práctica en el desarrollo económico.
Desarrollo de un nuevo algoritmo para resolver programas lineales enteros y su aplicación práctica en el desarrollo económico. 7071 Febrero, 2014 Resumen Es importante señalar que en un entorno social
Programación Entera. P.E pura: Todas las variables de decisión tienen valores enteros.
Clase # 7 Programación Entera. Programación entera es programación lineal con la restricción adicional de que los valores de las variables de decisión sean enteros. P.E pura: Todas las variables de decisión
315 M/R Versión 1 Integral 1/13 2009/1 UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA
35 M/R Versión Integral /3 29/ UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADÉMICO ÁREA INGENIERÍA MODELO DE RESPUESTA (VERSION.2) ASIGNATURA: Investigación de Operaciones I CÓDIGO: 35 MOMENTO: Prueba
7 Código: MAT 2 Duración del Ciclo en Semanas: 2 Duración /Hora Clase: 50 Académico:
Nombre de la Asignatura: MATEMÁTICA 2 a) Generalidades Número de Orden: Pre- Requisito (s): 7 Código: MAT 2 Duración del Ciclo en Semanas: 16 MAT 1 Ciclo 2 Duración /Hora Clase: 50 Académico: minutos Área:
El método simplex 1. 1 Forma estándar y cambios en el modelo. 2 Definiciones. 3 Puntos extremos y soluciones factibles básicas. 4 El método simplex.
El método simplex Forma estándar y cambios en el modelo. Definiciones. Puntos extremos y soluciones factibles básicas. 4 El método simplex. Definiciones y notación. Teoremas. Solución factible básica inicial.
Jesús Getán y Eva Boj. Marzo de 2014
Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj 1 / 18 Jesús Getán y Eva Boj 2 / 18 Un Programa lineal consta de: Función objetivo. Modeliza
Unidad 5 Utilización de Excel para la solución de problemas de programación lineal
Unidad 5 Utilización de Excel para la solución de problemas de programación lineal La solución del modelo de programación lineal (pl) es una adaptación de los métodos matriciales ya que el modelo tiene
Resolución de Problemas
Introducción Resolución de Problemas La resolución de problemas es una capacidad que consideramos inteligente Somos capaces de resolver problemas muy diferentes Encontrar el camino en un laberinto Resolver
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad III Metodologías para la Solución
NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA: DEPARTAMENTO: ADMINISTRACIÓN
CODIGO: 092-4883 HORAS SEMANALES 4 HORAS TEORICAS: 2 UNIVERSIDAD DE ORIENTE COMISIÓN CENTRAL DE CURRÍCULA PROGRAMA DE ASIGNATURA NOMBRE DE LA ASIGNATURA: MÉTODOS CUANTITATIVOS PARA ADMINISTRACIÓN. ESCUELA:
DECISIONES GERENCIALES II Bibliografía Básica
DECISIONES GERENCIALES II Bibliografía Básica Métodos Cuantitativos para los Negocios. Barry Render y Otros (libro texto) Métodos Cuantitativos para Administración. Frederick Hiller y otros. Investigación
Tema 3. El metodo del Simplex.
Tema 3. El metodo del Simplex. M a Luisa Carpente Rodrguez Departamento de Matematicas.L. Carpente (Departamento de Matematicas) El metodo del Simplex 2008 1 / 28 Objetivos 1 Conocer el funcionamiento
Contenido Objetivos Ceros de Polinomios. Ceros de Polinomios. Carlos A. Rivera-Morales. Precálculo 2
Carlos A. Rivera-Morales Precálculo 2 Tabla de Contenido 1 Tabla de Contenido 1 2 eros reales : Discutiremos: el Teorema de los de Polinomios : Discutiremos: el Teorema de los de Polinomios uso de la Calculadora
Departamento de Matemáticas. ITAM Programación lineal (+ extensiones). Objetivos y panorama del c
Programación lineal (+ extensiones). Objetivos y panorama del curso. Departamento de Matemáticas. ITAM. 2008. Introducción Programación lineal http://allman.rhon.itam.mx/ jmorales La programación lineal
Introducción a la programación lineal y entera Una simple presentación
Introducción a la programación lineal y entera Una simple presentación Miguel Mata Pérez [email protected] Versión 0.1, 30 de septiembre de 2014 Resumen: Este trabajo es una presentación de la
PROGRAMACION ENTERA. M. en C. Héctor Martínez Rubin Celis 1
M. en C. Héctor Martínez Rubin Celis PROGRAMACION ENTERA En muchos problemas prácticos, las variables de decisión son realistas únicamente si estas son enteras. Hombres, máquinas y vehículos deben ser
Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut
Práctica N o 8 Desigualdades Válidas - Algoritmos de Planos de Corte - Algoritmos Branch & Cut 8.1 Para cada uno de los siguientes conjuntos, encontrar una desigualdad válida que agregada a la formulación
INDICE 1. Introducción a los Modelos y a la Ciencia de la Administración 2. Introducción a los Modelos de Programación Lineal
INDICE Prólogo V Al estudiante XVII 1. Introducción a los Modelos y a la Ciencia de la Administración 1 Introducción 2 Evolución de la ciencia de la administración 3 Construcción de modelos y ciencia de
3. Estudia si la solución ( 1, 1, 1) es factible y, si lo es, si es interior o de frontera.
MATEMÁTIAS II Grupo M APELLIDOS: NOMRE: onsidera el problema Max. 3x + 2y + z s.a 2x 2 + y 2 + z apple x + y + z x apple, z. Escribe el conjunto de oportunidades y razona si es compacto. 2. Podemos asegurar
Problemas de Programación Lineal: Método Simplex
Problemas de Programación Lineal: Método Simplex Ej. (3.1) (C) Los siguientes Tableaux fueron obtenidos en el transcurso de la resolución de PL en los cuales había que maximizar una Función Objetivo con
INTRODUCCIÓN A LA MODELACIÓN MATEMÁTICA Y OPTIMIZACIÓN
INTRODUCCIÓN A LA MODELACIÓN MATEMÁTICA Y OPTIMIZACIÓN Carlos Julio Vidal Holguín UNIVERSIDAD DEL VALLE FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA INDUSTRIAL Y ESTADÍSTICA 1. FORMULACIÓN DE MODELOS DE
Introducción a la Programación Lineal
UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla
4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD
4.3 INTERPRETACIÓN ECONÓMICA DE LA DUALIDAD El problema de programación lineal se puede considerar como modelo de asignación de recursos, en el que el objetivo es maximizar los ingresos o las utilidades,
PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP).
PROBLEMAS DE OPTIMIZACIÓN CON RESTRICCIONES. PROBLEMA DE PROGRAMACIÓN NO- LINEAL (NLP. Optimización con restricciones La presencia de restricciones reduce la región en la cual buscamos el óptimo. Los criterios
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA ESCUELA DE CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMA DE CIENCIAS BASICAS
UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA PROGRAMA DE CIENCIAS BASICAS 102016 METODOS DETERMINISTICOS GLORIA LUCIA GUZMÁN ARAGÓN (Director Nacional) GERMAN MENDOZA Acreditador BOGOTA Julio de 2010 1 ASPECTOS
Programación Lineal Continua
Elisenda Molina Universidad Carlos III de Madrid [email protected] 8 de octubre de 2008 Esquema 1 Formulación y Ejemplos 2 3 Ejemplo: Producción de carbón Una empresa minera produce lignito y antracita.
INSTITUTO POLITÉCNICO NACIONAL SECRETARIA ACADEMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS
PROGRAMA DE ESTUDIO ESCUELA: UPIICSA CARRERA: INGENIERÍA EN TRANSPORTE ESPECIALIDAD: COORDINACIÓN: INVESTIGACIÓN DE OPERACIONES DEPARTAMENTO: CIENCIAS BÁSICAS DE LA INGENIERÍA ASIGNATURA: INVESTIGACIÓN
3.1 ESPACIO DE SOLUCIONES EN FORMA DE ECUACIÓN
El método símplex El método gráfico del capítulo 2 indica que la solución óptima de un programa lineal siempre está asociada con un punto esquina del espacio de soluciones. Este resultado es la clave del
FACULTAD DE INGENIERÍAS Y ARQUITECTURA ESCUELA ACADÉMICO PROFESIONAL DE INGENIERÍA DE SISTEMAS E INFORMÁTICA PROGRAMACIÓN LINEAL SÍLABO
I. DATOS GENERALES: SÍLABO ESCUELA PROFESIONAL : INGENIERÍA DE SISTEMAS E CÓDIGO CARRERA PRO. : 02 ASIGNATURA : CÓDIGO DE ASIGNATURA : 02-212 CÓDIGO DE SÍLABO : 0221231012014 Nro. DE HORAS TOTALES : 5
UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL.
UNIVERSIDAD DIEGO PORTALES. FACULTAD DE INGENIERIA. ESCUELA DE INGENIERIA INDUSTRIAL. Optimización, Pauta Solemne 2. Semestre Primavera 2011 Profesores: Paul Bosch, Fernando Paredes, Pablo Rey Tiempo:
Investigación de Operaciones 1
Investigación de Operaciones 1 Clase 10 Pablo Andrés Maya Mayo, 2014 Pablo Andrés Maya () Investigación de Operaciones 1 Mayo, 2014 1 / 15 Clasificación de los modelos de optimización Pablo Andrés Maya
PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX
Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,
CAPÍTULO 4. EL MÉTODO DEL SIMPLEX. 4.1. Introducción a los problemas de P.L...2. 4.2. Caracterización de los problemas de P.L...2
CAPÍTULO 4. EL MÉTODO DEL SIMPLEX 4.1. Introducción a los problemas de P.L....2 4.2. Caracterización de los problemas de P.L....2 4.3. El algoritmo del Simple....7 4.3.1. Costes reducidos y test de optimalidad....
El Problema del Transporte
ASIGNATURA PROGRAMACIÓN LINEAL El Problema del Transporte Maestro Ing. Julio Rito Vargas Avilés Octubre 2014 1 Problema de Transporte Es un caso especial de problema de programación lineal (PPL), para
1. RESOLVER el siguiente problema de programación lineal. max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500
1. RESOLVER el siguiente problema de programación lineal max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500 x 2 0 2 RESOLVER el siguiente problema de P.L.: max z = 2x 1 + 3x 2 2x 3
[email protected] Matemáticas
al Método al Método Matemáticas al Método En esta lectura daremos una introducción al método desarrollado por George Bernard Dantzig (8 de noviembre de 1914-13 de mayo de 2005) en 1947. Este método se
SÍLABO DE INVESTIGACION DE OPERACIONES II
SÍLABO DE INVESTIGACION DE OPERACIONES II I. INFORMACIÓN GENERAL: I.1. Facultad: Ingeniería I.2. Carrera Profesional Ingeniería Industrial I.3. Departamento: ----- I.4. Requisitos: Investigación de Operaciones
Fundamentos de Investigación de Operaciones Investigación de Operaciones 1
Fundamentos de Investigación de Operaciones Investigación de Operaciones de agosto de 200. Estandarización Cuando se plantea un modelo de LP pueden existir igualdades y desigualdades. De la misma forma
MODELADO, OPTIMIZACIÓN Y PLANIFICACIÓN DE UNA RED DE DISTRIBUCIÓN DE GAS NATURAL.
Universidad Complutense de Madrid Universidad Nacional de Educación a Distancia Master en Ingeniería de Sistemas y Control MODELADO, OPTIMIZACIÓN Y PLANIFICACIÓN DE UNA RED DE DISTRIBUCIÓN DE GAS NATURAL.
INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS
ESCUELA: UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA Y CIENCIAS SOCIALES Y ADMINISTRATIVAS. CARRERA: INGENIERÍA EN INFORMÁTICA. ACADEMIAS: INVESTIGACIÓN DE OPERACIONES. COORDINACIÓN: DEPARTAMENTO
INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE ESTUDIOS PROFESIONALES EN INGENIERÍA Y CIENCIAS FÍSICO MATEMÁTICAS
ESCUELA: UNIDAD PROFESIONAL INTERDISCIPLINARIA DE INGENIERÍA Y CIENCIAS SOCIALES Y ADMINISTRATIVAS CARRERA: CIENCIAS DE LA INFORMÁTICA LÍNEA CURRICULAR: COORDINACIÓN: DEPTO. DE CIENCIAS DE LA INGENIERÍA.
Unidad II: Análisis de Redes
Unidad II: Análisis de Redes 2.1 Conceptos Básicos Un problema de redes es aquel que puede representarse por: LA IMPORTANCIA DE LOS MODELOS DE REDES: Muchos problemas comerciales pueden ser resueltos a
INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal Capitulo 2 Modelación y formulación
INDICE Parte I Inducción a la programación lineal Capitulo 1 Origen y definición de la programación lineal 3 Introducción 1 1.1 Concepto de solución óptima 4 1.2 Investigación de operaciones 6 1.2.1 Evolución
Optimización y la Programación Lineal: Una Introducción
Reporte de Investigación 2007-07 Optimización y la Programación Lineal: Una Introducción Responsables: Marchena Williams Ornelas Carlos Supervisor: Francisco M. González-Longatt Línea de Investigación:
1. Hallar el número de operaciones en la evaluación de un polinomio p n (x) = a 0 + a 1 x + + a n x n por el método estándar y el de Horner.
Interpolación. Hallar el número de operaciones en la evaluación de un polinomio p n () = a + a + + a n n por el método estándar y el de Horner.. Hallar el polinomio de interpolación de Lagrange y de Newton
BREVE MANUAL DE SOLVER
BREVE MANUAL DE SOLVER PROFESOR: DAVID LAHOZ ARNEDO PROGRAMACIÓN LINEAL Definición: Un problema se define de programación lineal si se busca calcular el máximo o el mínimo de una función lineal, la relación
Distancia entre vértices en multigrafos de isogenias de curvas elípticas
1 / 17 Distancia entre vértices en multigrafos de isogenias de curvas elípticas D. Sadornil 1 F. Sebé 2 J. Tena 3 M. Valls 2 1 UC, 2 UdL, 3 UVa Julio 2012 Definicion Una curva elíptica sobre F q es un
UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO SUBPROGRAMA DE DISEÑO ACADÉMICO AREA: INGENIERÍA / CARRERA: INGENIERÍA DE SISTEMAS PLAN DE CURSO
I. Identificación UNIVERSIDAD NACIONAL ABIERTA VICERRECTORADO ACADEMICO SUBPROGRAMA DE DISEÑO ACADÉMICO AREA: INGENIERÍA / CARRERA: INGENIERÍA DE SISTEMAS PLAN DE CURSO Nombre: INVESTIGACIÓN DE OPERACIONES
PROGRAMACIÓN LINEAL PROGRAMACIÓN LINEAL.
PROGRAMACIÓN LINEAL. La programación lineal es una técnica de modelado (construcción de modelos). La programación lineal (PL) es una técnica matemática de optimización, es decir, un método que trata de
PROBLEMAS TEÓRICO-PRÁCTICOS EJERCICIOS PARA ORDENADOR
PROGRAMACIÓN MATEMÁTICA PROBLEMAS TEÓRICO-PRÁCTICOS EJERCICIOS PARA ORDENADOR CURSO 2002/2003 DEPARTAMENT DE MATEMÀTICA ECONÒMICO EMPRESARIAL COLECCIÓN DE EJERCICIOS TEÓRICO-PRÁCTICOS TEMA 1 - INTRODUCCIÓN
Lo que se hace entonces es introducir variables artificiales ADAPTACIÓN A OTRAS FORMAS DEL MODELO.
Clase # 8 Hasta el momento sólo se han estudiado problemas en la forma estándar ADAPTACIÓN A OTRAS FORMAS DEL MODELO. Maximizar Z. Restricciones de la forma. Todas las variables no negativas. b i 0 para
OPTIMIZACIÓN CON SOLVER
OPTIMIZACIÓN CON SOLVER SÁNCHEZ ALVAREZ, ISIDRO ([email protected]) LÓPEZ ARES, SUSANA ([email protected]) Departamento de Economía Cuantitativa - Universidad de Oviedo La relevancia de los
UNIDAD 4 Programación Lineal
MATEMÁTICAS APLICADAS A LAS C. SOCIALES 2 Unidad 4 UNIDAD 4 Programación Lineal TEORÍA (Editorial Editex) Repaso de 1º Inecuaciones lineales con dos incógnitas (Repaso de 1º)(Pág. 80) Actividad resuelta:
Tema 3: Método del Simplex Revisado.
Investigación Operativa 28/9 Tema 3: Método del Simplex Revisado. El método revisado o método del simples con multiplicadores: Conceptos básicos. Vector de Multiplicadores. Se basa en los mismos principios
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,
UNIDAD 6. Programación no lineal
UNIDAD 6 Programación no lineal En matemática Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas a un conjunto de restricciones sobre un conjunto
PROGRAMACIÓN LINEAL INGENIERÍA DE SISTEMAS FACULTAD DE CIENCIAS BÁSICAS E INGENIERÍA
FACULTAD DE CIENCIAS BÁSICAS E INGENIERÍA Pág. 2 CRÉDITOS El módulo de estudio de la asignatura Programación Lineal del Programa Ingeniería de Sistemas es propiedad de la Corporación Universitaria Remington.
APUNTES SOBRE EL MÉTODO SÍMPLEX DE PROGRAMACIÓN LINEAL. Adriel R. Collazo Pedraja
APUNTES SOBRE EL MÉTODO SÍMPLEX DE PROGRAMACIÓN LINEAL Adriel R. Collazo Pedraja 2 INTRODUCCIÓN Este trabajo tiene como propósito proveer ayuda al estudiante para que pueda comprender y manejar más efectivamente
3. Métodos clásicos de optimización lineal
3. Métodos clásicos de optimización lineal Uso del método Simplex El problema que pretende resolverse es un problema de optimización lineal sujeto a restricciones. Para el modelo construido para el problema
TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1
TEMA 3: CINÉTICA HOMOGÉNEA. REACCIONES SIMPLES CQA-3/1 CARACTERÍSTICAS DE LAS REACCIONES HOMOGÉNEAS Todas las sustancias reaccionantes se encuentran en una sola fase Velocidad de reacción: Objetivo principal
(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX
(2.c) RESOLUCIÓN DE MODELOS LINEALES. ALGORITMO DEL SIMPLEX FORMA CANÓNICA DE UN SISTEMA Ax = b Forma Standard y Base factible (repaso). Expresión de las v. básicas en función de las no básicas. Forma
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION
BENEMÉRITA UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD CIENCIAS DE LA COMPUTACION PROGRAMA DE LA MATERIA CORRESPONDIENTE A LA LICENCIATURA EN CIENCIAS DE LA COMPUTACIÓN. Coordinación: NOMBRE DE LA MATERIA:
Aula Virtual Análisis de Circuitos D.C. Facultad Tecnológica Universidad Distrital Francisco José de Caldas.
http:///wpmu/gispud/ Forma general Circuito 109. Forma general transformación de fuentes. 3.3TRANSFORMACIÓN DE FUENTES Ejercicio 47. Transformación de fuentes. A partir del circuito y aplicando el método
Optimización de Procesos. Vicente Rico Ramírez Departamento de Ingeniería Química Instituto Tecnológico de Celaya
Optimización de Procesos Vicente Rico Ramírez Departamento de Ingeniería Química Instituto Tecnológico de Celaya Índice de Contenido Introducción. La Ingeniería a de Procesos. Modelación n y Grados de
Ejercicios de Programación Lineal
Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UCM Curso 8/9 Una compañía de transporte dispone de camiones con capacidad de 4 libras y de 5 camiones con capacidad de
Valuación de opciones financieras mediante la teoría de la dualidad de la programación lineal
Miscelánea Matemática 54 (2012) 99 120 SMM Valuación de opciones financieras mediante la teoría de la dualidad de la programación lineal J. Agustín Cano Garcés [email protected] Departamento de Matemáticas
PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables
Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K
Modelado de flujo en redes. Jhon Jairo Padilla A., PhD.
Modelado de flujo en redes Jhon Jairo Padilla A., PhD. Conceptos básicos Demanda o volumen de Demanda: Es el tráfico que están requiriendo los usuarios de una red. Para transportar el volumen de demanda
C a l ses P P y y NP C a l se P C a l se N P N P [No N n o -De D te t rmin i i n s i ti t c i Polynomial-tim i e]
Análisis y Diseño de Algoritmos Introducción Análisis y Diseño de Algoritmos Concepto de algoritmo Resolución de problemas Clasificación de problemas Algorítmica Análisis de la eficiencia de los algoritmos
Programación Lineal y Optimización Segundo Examen Parcial :Solución Profr. Eduardo Uresti, Verano 2009
Programación Lineal y Optimización Segundo Examen Parcial : Profr. Eduardo Uresti, Verano 2009 Matrícula: Nombre: 1. Suponga que se tiene disponible la siguiente información salida de LINDO a un problema
Pasos en el Método Simplex
Pontificia Universidad Católica Escuela de Ingeniería Departamento de Ingeniería Industrial y de Sistemas Clase 20 El Método Simplex ICS 1102 Optimización Profesor : Claudio Seebach 16 de octubre de 2006
