GUIA DE TRIGONOMETRÍA
|
|
|
- Ana Belén Cano Sánchez
- hace 9 años
- Vistas:
Transcripción
1 GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en gos sexagesimales y ianes Un ángulo de 1 ián es aquel cuyo arco tiene longitud igual al io - 60º = ianes (una vuelta completa) - Un ángulo recto mide ianes (un cuarto de vuelta) - 180º = ianes (media vuelta) - Como 180º =, resulta que 1º = Un ángulo de 1 ian tiene 180 = 7,78 gos = 7º 17 Para transformar de una unidad a otra, usamos la regla de tres: 0 x 180 y ejemplo: 0º a 0º 180º y y = 18 Transformar el ángulo de gos a : 1) 1º ) º ) 80º ) 10º ) 00º 6) 0º 7) 60º 8) º ) 0º Transformar el ángulo de a gos: 1) ) ) ) Funciones trigonométricas Utilizaremos un triángulo rectángulo para definir las funciones trigonométricas: seno (sen), coseno (cos), tangente (tan), cotangente (cot), secante (sec) y cosecante (cosec) a c b En un triángulo rectángulo, estas funciones se definen como sigue: sen = cos = tan = cot = sec = cosec = Aquí podemos darnos cuenta que basta con conocer las funciones sen y cos para poder calcular las otras funciones, veamos por qué: tan = sen cos cot = cos sen sec = 1 cos cosec = 1 sen Aplica los contenidos de matemática común y calcula los valores de los ángulos de 0º, º y 60º Demostrar que: sen cos 1, usa los valores de los ángulos anteriores y después demuéstralo para cualquier valor del ángulo
2 Ejemplo: 1) Un ángulo agudo tiene 1º método: Usando triángulos sen Halla las restantes razones trigonométricas de este ángulo º método: Usando las identidades básicas Por teorema de Pitágoras buscamos el otro cateto del triángulo, es que es Ahora aplicamos las definiciones de las funciones trigonometricas y encontramos: sen c op tan c ad hip sec c ad c ad cos hip c ad cot c op hip cos ec c op Por la identidad sen cos 1 tenemos que: cos 1 sen cos 1 cos 1 16 cos cos Luego, usando estos dos valores, del seno y coseno, calculamos todas las demás funciones: sen tan cos así sucesivamente 7 1) Si cos, encuentra las otras funciones Entrega los valores simplificados y racionalizados ) Si cos 0,, encuentra las otras funciones ) Si tan, encuentra las otras funciones Angulos complementarios: En el triángulo rectángulo siguiente: sen sen( 0º ) cos cos cos(0º ) sen tan tan(0º ) cot En estas relaciones, se cumplen con dos ángulos que son complementarios, que suman 0º, y se dicen que estas funciones son cofunciones una de la otra 0 º Ejemplos de uso de las cofunciones: 1) Calcular sen 0º Sen 0º = sen (0º - 0º) =cos 60º = ½ ) Expresar los siguientes valores de funciones trigonometricas como el valor de la función de un ángulo positivo menor que º a) sen 7º sen 7º = sen (0º - 7º) = cos 18º b) cos 6º cos 6º = cos (0º - 6º) = sen º 1) Expresar el valor de la función trigonométrica en términos de un ángulo no mayor que º: a) sen 60º b) cos 8º c) tan,8º d) sen 7,6º ) Resolver los triángulos rectángulos para los datos dados Usa calculadora a) = º y c =16 b) a = 6 y b =,78 c) = º y a =16 d) = 71º, c = e) a = 1,7 ; c = 80 f) b = 18 ; c = 67 g) = 81º1 ; a =,6 B a C b c A
3 6 7 8 Desde un punto A en la orilla de un río, cuya anchura es de 0m, se ve un árbol justo enfrente Cuánto tendremos que caminar río abajo, por la orilla recta del río, hasta llegar a un punto B desde el que se vea el pino formando un ángulo de 60º con nuestra orilla? Una persona se encuentra en la ventana de su apartamento que está situada a 8m del suelo y observa el edificio de enfrente La parte superior con un ángulo de 0 gos y la parte inferior con un ángulo de depresión de gos Determine la altura del edificio señalado
4 Sobre un plano horizontal, un mástil está sujeto por dos cables, de modo que los tirantes quedan a lados opuestos Los ángulos que forman estos tirantes con respecto al suelo son 7 gos y 8 gos Si la distancia entra las cuñas es de 0 m cuánto cable se ha gastado?, cuál es la altura a la cual están sujetos los cables? 17 Desde lo alto de una torre de 00 m de altura se observa un avión con un ángulo de elevación de 1 gos y un automóvil en la carretera, en el mismo lado que el avión, con un ángulo de depresión de 0 gos En ese mismo instante, el conductor del automóvil ve al avión bajo un ángulo de elevación de 6 gos Si el avión, el auto y el observador se encuentran en un mismo plano vertical: calcule la distancia entre el avión y el automóvil, también calcule la altura a la que vuela el avión en ese instante
5
UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA
UNIVERSIDAD PONTIFICIA BOLIVARIANA FACULTAD DE INGENIERÍA INGENIERÍA ADMINISTRATIVA GUIA DE TRIGONOMETRÍA (Tomado de: wwwsectormatematicacl//nm_trigonometria_doc) Los ángulos se pueden medir en grados
GUIA DE TRIGONOMETRÍA
GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en grados sexagesimales y radianes Un ángulo de 1 radián es aquel cuyo arco tiene longitud igual al radio - 60º = radianes (una vuelta completa) - Un ángulo
UTILIZAMOS LA TRIGONOMETRÍA.
UTILIZAMOS LA TRIGONOMETRÍA. RAZONAMIENTO Y DEMOSTRACIÓN Determina las demás razones trigonométricas a través de un dato. Aplica las definiciones de razones trigonométricas en la solución de ejercicios
Razones trigonométricas en triangulo rectángulo EJEMPLO Nº 1 Solución: Se tienen los siguientes datos:
Razones trigonométricas en triangulo rectángulo La trigonometría, enfocada en sus inicios solo al estudio de los triángulos, se utilizó durante siglos en topografía, navegación y astronomía. Esta rama
Razones trigonométricas DE un ángulo agudo de un triángulo
RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO RAZONAMIENTO Y DEMOSTRACIÓN Calcula razones trigonométricas en un triángulo rectángulo. Demuestra identidades trigonométricas elementales Demuestra identidades
TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS
IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas
Ficha Expresa los siguientes ángulos en radianes, dejando el resultado en función de :
Ficha 1 1. Expresa los siguientes ángulos en radianes, dejando el resultado en función de : 2. Expresa los siguientes ángulos en grados sexagesimales y dibuja los ángulos centrales que tienen cada una
INSTITUCION EDUCATIVA MANUELA BELTRAN APROBADA SEGÚN RESOLUCION DE FUSION CON NUMERO 2049 DE SEPTIEMBRE DE 2002 y 2487 DE NOVIEMBRE DEL 2010
Versión: 02 Fecha: 01-01-2012 Página 1 de 7 Área: MATEMATICA Asignatura: TRIGONOMETRIA Curso(s): DECIMO Docente: ERNESTO CUADROS Período 2 : 1 de abril- 23 de junio /2013 Objetivos: (uno general y varios
El coseno del ángulo agudo Ĉ es la razón entre la longitud del cateto contiguo y de la. hipotenusa a 1. Razones trigonométricas inversas Secante de Ĉ
.- MEDIDA DE ÁNGULOS. El grado sexagesimal (º) es cada una de las 60 partes iguales en las que se divide la circunferencia (submúltiplos: el minuto y el segundo). El radián (rad) es la medida del ángulo
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS
RESOLUCIÓN DE TRIÁNGULOS FUNCIONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO (0º a 90º) DEFINICIÓN DE FUNCIONES TRIGONOMÉTRICAS ESTE TRIANGULO SERA EL MISMO PARA TODA LA EXPLICACIÓN RELACIÓN ENTRE LAS FUNCIONES
EJERCICIOS DE TRIGONOMETRÍA. 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:
Colegio María Inmaculada MATEMÁTICAS ACADÉMICAS 4º ESO EJERCICIOS DE TRIGONOMETRÍA 1) Expresa en radianes las medidas de los siguientes ángulos: 2) Expresa en grados sexagesimales los siguientes ángulos:
Ejercicios resueltos de trigonometría
Ejercicios resueltos de trigonometría 1) Resuelve los siguientes triángulos: 9m 40º 10m 120º 2) Desde lo alto de una torre, mirando hacia la izquierda, se ve un árbol que está a 10 metros de la base, y
Razones trigonométricas
RESUMEN TRIGONOMETRIA Para medir ángulos se utilizan las siguientes unidades: 1Grado sexagesimal ( ): Si se divide la circunferencia en 360 partes iguales, el ángulo central correspondiente a cada una
GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS
GUIA INFORMATIVA DE RAZONES TRIGONOMÉTRICAS Para el estudio de la Trigonometría es importante tomar en cuenta conocimientos básicos sobre: concepto de triángulo, su clasificación, conceptos de ángulos
ESTUDIANTE: 4 de marzo 2010
LICEO CANADIENSE SUR 3RO. BASICO SECCIÓN JORNADA MATEMÁTICA REPASO DE ANGULOS Y TRIÁNGULOS ESTUDIANTE: 4 de marzo 2010 Observaciones: 1 1. Ángulos: Este ángulo se llama porque 1 1 Este ángulo se llama
ASIGNATURA: MATEMÁTICA. Contenido: TRIGONOMETRÍA I TEORÍA
ASIGNATURA: MATEMÁTICA Contenido: TRIGONOMETRÍA I TEORÍA Docente: Teneppe María Gabriela Medida de ángulos: Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas
CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA
CUADERNILLO DE TRIGONOMETRÍA I.- SUBRAYE EL INCISO CORRESPONDIENTE A LA RESPUESTA CORRECTA 1.- CIENCIA QUE ESTUDIA LAS RELACIONES EXISTENTES ENTRE LOS ÁNGULOS Y LOS LADOS DE UN TRIÁNGULO: A) GEOMETRÍA
Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno
Trigonometría Básica Funciones Trigonométricas Básicas, Teorema del Seno y del Coseno Introducción a la Trigonometría Rama de la matemática que estudia las relaciones métricas entre los lados y los ángulos
Las funciones trigonométricas
Funciones trigonométricas de ángulos Las funciones trigonométricas Las funciones trigonométricas de ángulos se originaron de triángulos rectángulos que son los que tienen dos ángulos agudos y uno recto.
Capítulo 7. Trigonometría del triángulo rectángulo. Contenido breve. Presentación. Módulo 17 Medición de ángulos. Módulo 18 Ángulos notables
Capítulo 7 Trigonometría del triángulo rectángulo Contenido breve Módulo 17 Medición de ángulos Módulo 18 Ángulos notables La trigonometría se utiliza para realizar medidas indirectas de posición y distancias.
= + = 1+ Cuarta relación fundamental
1.- Determina las razones trigonométricas de los siguientes ángulos, relacionándolos con algunos ángulos notables (0º, 0º,, 60º, 90º, 180º, 70º, 60º), indicando en qué cuadrante se encuentran: a) 40º b)
1. Trigonometría 4º ESO-B. Cuaderno de ejercicios. Matemáticas JRM. Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1
1. Trigonometría 4º ESO-B Cuaderno de ejercicios Matemáticas JRM Nombre y apellidos... INTRODUCCIÓN A LA TRIGONOMETRÍA Página 1 RESUMEN DE OBJETIVOS 1. Razones trigonométricas de un ángulo agudo. OBJETIVO
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS Las Razones trigonométricas se definen comúnmente como el cociente entre dos lados de un triangulo rectángulo asociado a sus ángulos. SENO, COSENO Y TANGENTE Recordarás que eisten
Módulo 26: Razones trigonométricas
INTERNADO MATEMÁTICA 2016 Guía del estudiante Módulo 26: Razones trigonométricas Objetivo: Conocer y utilizar las razones trigonométricas para resolver situaciones problemáticas. Trigonometría Es la rama
Semana 7 Aplicación de las razones trigonométricas (parte 1)
Semana Matrices (parte 8 ) Semana 7 plicación de las raones trigonométricas (parte 1) Empecemos! La semana inicia con un tema muy interesante que te llevará a eplorar cómo el ser humano logró resolver
Medidas angulares: grados, radianes. La unidad que aprendimos en el colegio para medir los ángulos es el grado sexagesimal.
Medidas angulares: grados, radianes La unidad que aprendimos en el colegio para medir los ángulos es el grado sexagesimal. Una forma de definir un grado, es que una vuelta entera son 360 grados, media
Medida de ángulos. Para medir ángulos se utilizan las siguientes unidades:
Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza
TRIGONOMETRÍA. CONVERSIÓN DE UN SISTEMA A OTRO Tomando como base la equivalencia de un sistema a otro, podemos establecer la siguiente fórmula:
Cursos ALBERT EINSTEIN ONLINE Calle Madrid Esquina c/ Av La Trinidad LAS MERCEDES 9937172 9932305! www. a-einstein.com TRIGONOMETRÍA SISTEMAS DE MEDIDAS DE ÁNGULOS SISTEMA SEXAGESIMAL: Es el que considera
Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos
5 Las Funciones Trigonométricas Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos Triángulos Rectos Un triángulo es recto (triángulo rectángulo) si uno de sus ángulos internos mide 90 o. La suma
TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Deducimos las razones trigonométricas como:
TRIGONOMETRÍA. Es el estudio de los elementos de un triángulo; de sus lados y sus triángulos. Dado el siguiente triángulo rectángulo: Deducimos las razones trigonométricas como: Seno α = cateto opuesto
EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA 1)
Colegio Diocesano Asunción de Nuestra Señora Ávila Tema EJERCICIOS DE RELACIONES TRIGONOMÉTRICAS (TEMA ).- Dados los ángulos = º y = 7º, calcula: a) + b) c) d).- Dados los ángulos = º 7 y = 7º, calcula:
Medida de ángulos. Es la medida de un ángulo cuyo arco mide un radio. 2 rad = 360. rad = º rad
Medida de ángulos Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas se las llama lados y al origen común vértice. El ángulo es positivo si se desplaza
TEMAS 4 Y 5 TRIGONOMETRÍA
Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad
UNIDAD III TRIGONOMETRIA
UNIDAD III TRIGONOMETRIA 1 UNIDAD III TRIGONOMETRIA TEMARIO. 1. Relación del par ordenado en un plano bidimensional. 1.1. El plano coordenado 1.2. Localización de puntos en los cuatro cuadrantes 2. Ángulos
TEMAS 4 Y 5 TRIGONOMETRÍA
Temas 4 y 5 Trigonometría Matemáticas I º Bachillerato TEMAS 4 Y 5 TRIGONOMETRÍA UNIDADES DE MEDIDAS DE ÁNGULOS EJERCICIO a Pasa a radianes los siguientes ángulos: y 7 b) Pasa a grados los ángulos: 7 rad
Sin hacer uso de la calculadora, halla el valor exacto de las razones trigonométricas que faltan o del ángulo, sabiendo que 0 90 :
EJERCICIOS DE TRIGONOMETRÍA Ejercicio nº 1.- Halla las razones trigonométricas de los ángulos y del triángulo ABC sabiendo que es rectángulo. Ejercicio nº 2.- Sin hacer uso de la calculadora, halla el
RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS
RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS Y OBLICUÁNGULOS www.cedicaped.com CENTRO DE ESTUDIOS, DIDÁCTICA Y CAPACITACIÓN RESOLUCIÓN DE TRIÁNGULOS RECTÁNGULOS 1. DEFINICIÓN Se dice que un triángulo es rectángulo
3.5 cm. 4.2 cm. a. sen(α) = 9. b. sen(α) = 9 2. c. cot(α) = cm
COMPLEJO EDUCATIVO CANTON TUTULTEPEQUE GUIA DE TRABAJO Profesor Responsable: Santos Jonathan Tzun Meléndez. Grado: º Bachillerato. Asignatura: Matemática I Periodo: Fecha de Entrega: UNIDAD. UTILICEMOS
TRIGONOMETRÍA. π radianes. 1.- ÁNGULOS Y SUS MEDIDAS. 1.1 Los ángulos orientados
TRIGONOMETRÍA.- ÁNGULOS Y SUS MEDIDAS. Los ángulos orientados Son aquellos que además de tener una cierta su amplitud ésta viene acompañada de un signo que nos indica un orden de recorrido (desde la semirrecta
TEMA 4: Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas:
Matemáticas Curso 011/1 º E.S.O. TEMA : Trigonometría. 1.- Calcula las restantes razones trigonométricas de cada ángulo, si son conocidas: a) = ¼ está situado en el primer cuadrante b) cotg = - π/ π c)
TRABAJO PRÁCTICO Nº 4
TRIGONOMETRÍA TRABAJO PRÁCTICO Nº 4 Objetivos: Utilizar correctamente el sistema sexagesimal y radial, realizar el pasaje de un ángulo expresado en un sistema a otro. Aprehender las definiciones de las
TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández.
NEXA A LA NORMAL DE NAUCALPAN TRABAJO PARA LA TERCERA EVALUACION PARCIAL DE TRIGONOMETRIA Profra. Dulce Estrella Hernández Hernández. Contesta a mano en hojas blancas, incluye todos los procedimientos.
II. TRIGONOMETRÍA. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que existe ebtre dos líneas que se cortan.
II. TRIGONOMETRÍA La trigonometría se encarga del estudio de la medida de los triángulos, es decir de la medida de sus ángulos y sus lados. A. ÁNGULOS Y SUS MEDIDAS Un ángulo es la abertura que eiste ebtre
Introducción a la trigonometría y a las funciones trigonométricas. Shirley Bromberg Raquel Valdés
Introducción a la trigonometría y a las funciones trigonométricas Shirley Bromberg Raquel Valdés Un poquito de historia Trigonometría es una palabra de etimología griega, aunque no es una palabra griega.
GRADO: GRUPO ALUMNO(A)
COLEGIO CRISTIANA FERNÁNDEZ DE MERINO Trípoli No. 112, Col. Portales, México, D. F. Tel. 5604-3628, 5605-1509 MATEMATICAS TERCER GRADO SECCIÓN SECUNDARIA TRABAJO ESPECIAL DE REPASO ALUMNO(A) GRADO: GRUPO
SOLUCIONES TRIGONOMETRÍA19
SOLUCIONES EJERCICIOS DE TRIGONOMETRÍA Ejercicio nº 1.- Halla las razones trigonométricas de los ángulos y del triángulo ABC sabiendo que es rectángulo. Sea x la longitud de la hipotenusa; por el teorema
RELACIÓN DE TRIGONOMETRÍA
RELACIÓN DE TRIGONOMETRÍA ) Resuelve el triángulo ABC rectángulo en A del que se sabe que: a cm y ˆB 7º0' La hipotenusa mide 7 m y un cateto 8 m. Un cateto mide 0 cm, y su ángulo opuesto 0º. ) De un triángulo
T3 Trigonometría. Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son:
T Trigonometría Definiciones. Las razones trigonométricas del ángulo agudo,, de un triángulo rectángulo son: sen = cateto opuesto = a hipotenusa c hipotenusa cosec = = c cateto opuesto a cos = cateto adyacente
Unidad 3: Razones trigonométricas.
Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define
Trigonometría. 5. Calcula el valor de las siguientes expresiones, sin utilizar la calculadora: a) b) c) d)
Trigonometría 1. Razones trigonométricas de un ángulo agudo 1.1. Definiciones de seno de, coseno de y tangente de. 1.2. Relaciones entre las razones trigonométricas de un ángulo. 1.3. Razones trigonométricas
TALLER DE RAZONES TRIGONOMÉTRICAS Y TRIÁNGULO RECTANGULO LEY DE SENOS Y COSENOS.
TALLER DE RAZONES TRIGONOMÉTRICAS Y TRIÁNGULO RECTANGULO LEY DE SENOS Y COSENOS. Encuentra el valor numérico de las siguientes expresiones sin usar calculadora: Resuelve los siguientes problemas: 21. En
EJERCICIOS de TRIGONOMETRÍA
EJERCICIOS de TRIGONOMETRÍA GRADOS Y RADIANES: 1. Pasar los siguientes ángulos a radianes: a) b) 45º c) 60º d) 90º e) 180º f) 270º g) 360º ) 135º i) 235º j) 75º 2. Pasar los siguientes ángulos, epresados
RESOLUCIÓN DE TRIÁNGULOS
RESOLUCIÓN DE TRIÁNGULOS Triángulos rectángulos, isósceles o equiláteros 1.- Resuelve los triángulos rectángulos, en los que A=90º: a) b=3, c=3; b) a=5; B=37º; c) c=15, b=8. Sol: a) B=45º, C=45º, b=3 2
17. Trigonometría, parte I
Matemáticas II, 2012-II La definición de las funciones trigonométricas Dos triángulos rectángulos que tienen otro ángulo igual tienen los tres lados iguales. Por ello son triángulos semejantes. La siguiente
68 EJERCICIOS DE TRIGONOMETRÍA
68 EJERCICIOS DE TRIGONOMETRÍA Repaso Trigonometría elemental:. Completar en el cuaderno la siguiente tabla: Grados 05º 5º 0º 5º Radianes 4π/9 rad π/5 rad rad Ejercicios libro: pág. 9:, y 4; pág. 4:, y.
Teorema del Seno. Teorema del Coseno
Para ver una explicación de cada Teorema y algunos ejemplos de solución de triángulos y problemas de aplicación, haga Click sobre el nombre: Teorema del Seno Teorema del Coseno Teorema del Seno Para aclarar
Tutorial MT-b9. Matemática Tutorial Nivel Básico. Trigonometría en triángulo rectángulo
45678904567890 M ate m ática Tutorial MT-b9 Matemática 006 Tutorial Nivel Básico Trigonometría en triángulo rectángulo Matemática 006 Tutorial Trigonometría en triangulo rectángulo.un poco de historia:
TEMA 3. TRIGONOMETRÍA
TEMA 3. TRIGONOMETRÍA Definiciones: 0 30 45 60 90 180 270 360 Seno 0 1 0-1 0 Coseno 1 0-1 0 1 Tangente 0 1 0 0 Teorema del seno: Teorema del coseno: Fórmulas elementales: FÓRMULAS TRIGONOMÉTRICAS. Suma
Como el ángulo es mayor que 360º lo tratamos del siguiente modo:
MATEMÁTICAS 4º ESO EXAMEN DE TRIGONOMETRÍA RESUELTO EXAMEN RESUELTO Halla las razones trigonométricas de los siguientes ángulos: a) 740º Como el ángulo es maor que lo tratamos del siguiente modo: 740 60
TRIGONOMETRÍA. 1. Ángulos. 2. Razones trigonométricas de ángulos agudos
TRIGONOMETRÍA 1 Ángulos Hasta ahora se han considerado los ángulos como la porción del plano comprendida entre dos semirrectas con el origen común De esta manera, el ángulo está comprendido entre 0 y 360
Identidades Trigonométricas
Identidades Trigonométricas Unidad TR.4: Identidades trigonométricas Las identidades trigonométricas son útiles en la transformación de expresiones. Repaso Hemos estudiado la unidad del circulo ya que
6.- En un puerto de montaña aparece una señal de tráfico que señala una pendiente del 12 %. Cuál sería ese desnivel en grados?
TRIGONOMETRÍA 1.- En un triángulo rectángulo, la hipotenusa mide 8 dm y tgα 1' 43, siendo α uno de los ángulos agudos. Halla la medida de los catetos..- Si cos α 0' 46 y 180º α 70º, calcula las restantes
Tema 4 Trigonometría Índice
Tema 4 Trigonometría Índice 1. Medida de un ángulo... 2 2. Razones trigonométricas en triángulos rectángulos. (Ángulos agudos)... 2 3. Relaciones trigonométricas fundamentales... 3 4. Razones trigonométricas...
TEMA 4. TRIGONOMETRÍA.
TEMA 4. TRIGONOMETRÍA. 4.1. Semejanza. - Criterios de semejanza de triángulos. - Teorema del cateto. - Teorema de la altura. 4.2. Razones trigonométricas. - Razones trigonométricas de un ángulo agudo.
π = π rad º? 3 α.180
1 TEMA 5 RESOLUCIÓN DE TRIÁNGULOS Y FÓRMULAS TRIGONOMÉTRICAS 5.1 DEFINICIÓN DE ÁNGULO Y UNIDADES DE MEDIDA DE LOS ÁNGULOS Ángulo es la parte del plano comprendida entre dos semirrectas que se encuentran
1. Un ciclista tiene que subir una cuesta que tiene una inclinación de 12º. Qué altura habrá subido cuando haya recorrido 200m?
º ESO - AMPLIACIÓN DE MATEMÁTICAS EJERCICIOS DE TRIGONOMETRÍA. Un ciclista tiene que subir una cuesta que tiene una inclinación de º. Qué altura habrá subido cuando haya recorrido 00m?. Si α es un ángulo
Trigonometría. Guía de Ejercicios
. Módulo 6 Trigonometría Guía de Ejercicios Índice Unidad I. Razones trigonométricas en el triángulo rectángulo. Ejercicios Resueltos... pág. 0 Ejercicios Propuestos... pág. 07 Unidad II. Identidades trigonométricas
Tema 6: Trigonometría.
Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades
Los Modelos Trigonométricos
Los Modelos Trigonométricos Eliseo Martínez, Manuel Barahona 1. Introducción Normalmente, por motivos históricos, y de acuerdo al itinerario seguido por la humanidad en la invención de la trigonometría,
Ejercicios resueltos de trigonometría
Ejercicios resueltos de trigonometría 1) Resuelve los siguientes triángulos: a) 3 b) 1º 0º c) 15 0º 2) Desde lo alto de una torre de 0m se observa, cuando se mira hacia delante, un árbol. Cuando se mira
UNIDAD II. FUNCIONES TRIGONOMÉTRICAS. Tema. Funciones trigonométricas
UNIDAD II. FUNCIONES TRIGONOMÉTRICAS Tema. Funciones trigonométricas FUNCIONES TRIGONOMÉTRICAS Introducción: Las funciones trigonométricas surgen de una forma natural al estudiar el triángulo rectángulo
PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA
CURSO PRE FACULTATIVO II-01 PRACTICA DE GEOMETRIA TRIGONOMETRIA SEGUNDO PARCIAL CIRCUNFERENCIA 1. En una circunferencia de centro O, se traza el diámetro AB y se prolonga hasta el punto C a partir del
Matemáticas Física Curso de Temporada Verano Ing. Pablo Marcelo Flores Jara
Matemáticas Física Curso de Temporada Verano 2016 Ing. Pablo Marcelo Flores Jara [email protected] UNIDAD II: RESOLUCIÓN DE TRIÁNGULO CUALESQUIERA U OBLICUÁNGULOS Ing. Pablo Marcelo Flores Jara
COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS
COLEGIO COMPAÑÍA DE MARÍA SEMINARIO DEPARTAMENTO DE MATEMATICAS GUÍA N DE TRIGONOMETRÍA IV MEDIO DIFERENCIADO MATEMÁTICO )Completa la siguiente tabla que indica la relación entre valores en radianes y
FORMULARIO DE TRIGONOMETRIA PLANA Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas
FORMULARIO DE TRIGONOMETRIA PLANA 01.- Definicion de las seis razones trigonometricas 02.- Relaciones fundamentales entre las razones trigonometricas 03.- Razones trigonometricas de la suma de dos angulos
TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.
TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente
Según la figura los rayos OA y OB determinan un ángulo simbolizado AOB
UNIDAD : TRIGONOMETRÍA El termino Trigonometría procede del griego y significa medida de triángulos. Por lo tanto se considera la trigonometría como la rama de la matemática que estudia los elementos de
PROBLEMAS DE APLICACIÓN DE LAS RAZONES TRIGONOMÉTRICAS 2
1 PROBLEMAS DE APLICACIÓN DE LAS RAZONES TRIGONOMÉTRICAS 2 EJERCICIOS DE APLICACIÓN 1. Desde un punto en el suelo, un estudiante observa la parte más alta de una catedral con un ángulo de elevación de
Guía - 2 de Funciones: Trigonometría
Centro Educacional San Carlos de Aragón. Coordinación Académica Enseñanza Media. Sector: Matemática. Nivel: NM 4 Prof.: Ximena Gallegos H. Guía - de Funciones: Trigonometría Nombre(s): Curso: Fecha. Contenido:
UNIDAD DIDÁCTICA 6: Trigonometría
accés a la universitat dels majors de 25 anys acceso a la universidad de los mayores de 25 años UNIDAD DIDÁCTICA 6: Trigonometría ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4.
UNIDAD DIDÁCTICA 6: Trigonometría
UNIDAD DIDÁCTICA 6: Trigonometría 1. ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4. Funciones trigonométricas de un ángulo 5. Teorema de Pitágoras 6. Problemas sobre resolución
FUNCIONES TRIGONOMÉTRICAS
CONCEPTOS GENERALES FUNCIONES TRIGONOMÉTRICAS Las funciones trigonométricas resultan básicamente de realizar divisiones entre los lados de un triángulo. Su aplicación se extiende a parte de las ramas de
a1 3 siendo a 1 y a 2 las aristas. 2 a a1
Semejanza y Trigonometria. 77 Ejercicios para practicar con soluciones Dos rectángulos tienen sus lados proporcionales. Los lados del primero miden 6 y 8 cm respectivamente. Si el perímetro del segundo
"Unidad II" Razones trigonométricas. Ing. Arnoldo Campillo Borrego.
"Unidad II" Razones trigonométricas Ing. Arnoldo Campillo Borrego. 1 ÍNDICE Definición de funciones trigonométricas.pag. 3 Conversión de ángulos..pag. 3 Conversión de grados a radianes pag. 3 Conversión
Introducción a la trigonometría
UNIDAD 9: UTILICEMOS LA TRIGONOMETRIA. Introducción Introducción a la trigonometría La trigonometría es el método analítico para estudiar los triángulos y otras figuras. El estudio de la trigonometría
REPRESENTACIÓN DE FUERZAS. Hay dos tipos de magnitudes: ESCALARES y VECTORIALES
VECTORES REPRESENTACIÓN DE UERZAS Hay dos tipos de magnitudes: ESCALARES y VECTORIALES Las magnitudes ESCALARES quedan determinadas mediante una cantidad y su unidad correspondiente: L (Longitud) 5 m m
EJERCICIOS DE TRIÁNGULOS CON SOLUCIÓN
EJERCICIOS DE TRIÁNGULOS CON SOLUCIÓN 1. Uno de los catetos de un triángulo rectángulo mide 4,8 cm y el ángulo opuesto a este cateto mide 54º. Halla la medida del resto de los lados y de los ángulos del
TRIGONOMETRÍA. 2.- Calcula sen x, tg x, sec x, cosec x, y cotg x, si cos x =0,6 y tg x<0. Sol: senx=-0,8; tgx=-4/3, secx=5/3; cosecx=-5/4; cotgx=-3/4.
TRIGONOMETRÍA Trigonometría(pendientes 1ºBach.) 1.- Existe un ángulo "x" tal que sen x =1/ y cos x =1/4? Puede valer el seno de un ángulo 1/8?. Sol: no, si..- Calcula sen x, tg x, sec x, cosec x, y cotg
EJERCICIOS DE REPASO. TRIGONOMETRÍA I (Tomado de internet. Autor: Alfonso Sánchez Marín)
EJERCICIOS DE REPASO TRIGONOMETRÍA I (Tomado de internet. Autor: Alfonso Sánchez Marín) 1º.- Desde el puente de mando de un barco se observa un acantilado próimo con un ángulo de 40º. Si la distancia a
TRABAJO PRÁCTICO Nº 9. TRIGONOMETRÍA. 1º PARTE: REVISIÓN. Resolución de triángulos rectángulos.
Instituto Dr. Juan Segundo Fernández Área y curso: Matemática 4º año. TRABAJO PRÁCTICO Nº 9. TRIGONOMETRÍA Profesora: Graciela Bejar 1º PARTE: REVISIÓN. Resolución de triángulos rectángulos. Plantea y
EJERCICIOS MÓDULO 6. 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos:
Seminario Universitario Matemática EJERCICIOS MÓDULO 1) Graficar aproximadamente cada ángulo dado en un sistema de ejes cartesianos: a) 5 b ) 170 c ) 0 d ) 75 e) 10 f ) 50 g ) 0 h ) 87 i ) 08 j ) 700 k
Unidad 1: Trigonometría básica
Ejercicio Unidad : Trigonometría básica Obtén los radianes correspondientes a los siguientes grados: π rad rad 6 a) 80º 80º π rad b) 0º 0º π π rad ' rad 80º 80º 6 rad c) º º π π rad 0'79 rad 80º d) 00º
1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º.
MATEMÁTICAS NM TRIGONOMETRÍA 1. (D) La siguiente figura muestra un triángulo ABC, donde BC = 5 cm, B = 60º, C = 40º. a) Calcule AB. b) Halle el área del triángulo. 2. (D) La siguiente figura muestra una
EJERCICIOS Y PROBLEMAS DE TRIGONOMETRÍA
EJERCICIOS Y PROBLEMAS DE TRIGONOMETRÍA CÁLCULO DE LAS RAZONES TRIGONOMÉTRICAS PRINCIPALES DE UN ÁNGULO UTILIZANDO LOS DOS TEOREMAS FUNDAMENTALES DE LA TRIGONOMETRÍA: 1- Determina todas las razones trigonométricas
UNIDAD 2 ELEMENTOS BASICOS DE TRIGONOMETRÍA.
UNIDAD 2 ELEMENTOS BASICOS DE TRIGONOMETRÍA http://www.uaeh.edu.mx/virtual ELEMENTOS BASICOS DE TRIGONOMETRÍA. Introducción. La trigonometría es el área de las matemáticas que se encarga de calcular los
se nombra y sus elementos: vértices, ángulos y lados. Indicar que el vértice da nombre al lado. Proporcionalidad de sus lados.
Unidades Didácticas 6 y 7: Semejanza y Trigonometría 6.1 Semejanzas, homotecias y escalas. 7.1 Razones trigonométricas. Sistema sexagesimal-radianes. 7.2 Propiedades de las razones a partir de la circunferencia
TRIGONOMETRÍA. d) 0,71 rad. 5.- Calcula las diagonales de un rombo sabiendo que sus ángulos son 60º y 120º y que sus lados miden 6cm.
TRIGONOMETRÍA 1.- Pasa de grados a radianes y viceversa: a) 1º b) 1º c) π rad 4 d) 0,71 rad.- Calcula las razones trigonométricas del ángulo A del siguiente triángulo rectángulo..- Calcula las razones
Ejercicios de trigonometría.
Matemáticas 1ºBach CNyT. Ejercicios Tema 1. Trigonometría. Pág 1/15 Ejercicios de trigonometría. 1. Expresa en grados sexagesimales los siguientes ángulos: 1. 3 rad 2. 2π/5rad. 3. 3π/10 rad. 2. Expresa
UNIDAD 4: TRIGONOMETRÍA
UNIDAD 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS La palara tri-gono-metría significa medida de las figuras con tres esquinas, es decir, de los triángulos. La trigonometría estudia las relaciones entre
T R I G O N O M E T R Í A
T R I G O N O M E T R Í A 1. M E D I D A D E Á N G U L O S Existen varios sistemas de medida de ángulos. Los más comunes son el sistema sexagesimal y el radián. Sistema sexagesimal: Cada una de las 360
