Tabla III ln
|
|
|
- Miguel Ángel Cano Alarcón
- hace 9 años
- Vistas:
Transcripción
1 Crecimiento y decrecimiento exponencial Existe una gran variedad de problemas de aplicación relacionados con las funciones exponenciales y logarítmicas. ntes de tomar en consideración estas aplicaciones, será útil aprender a resolver una ecuación exponencial. como 2 x x 35 ln 2 x ln 35 x ln 2 ln 35 Por qué? x ln 35 ln 2 Si B, entonces : ln ln B Se puede obtener una aproximación al valor de x usando la tabla III del apéndice. Los números de esta tabla suministran los valores de ln x aproximados hasta milésimos. (En la mayor parte de los casos, ln x es irracional.) En esa misma tabla, tenemos: ln 2 = unque ln 35 no se suministra (directamente) en la tabla, podemos encontrarlo aplicando la segunda ley de los logaritmos. hora, tenemos: ln 35 ln3.5 0 ln 3.5 ln 0 x Tabla III ln 35 ln Como tosca verificación, observamos que 5.3 es un valor razonable, ya que 2 5 = 32. Observe que los valores encontrados en la tablas de logaritmos son sólo aproximaciones. Para evitar complicaciones. Empero, usaremos el signo igual (=) VERIFIQUE SU COMPRENSION Resuelva para x cada ecuación expresada con logaritmos naturales. Señale la solución aproximada usando la tabla III.. 4 x = x = 5 3. x x = x = x = 4 l principio de la Sección, desarrollamos la fórmula y = (0,000)2 x, que nos da el número de bacterias presentes en un cultivo, después de x horas de proliferación; 0,000 es el número inicial de bacterias. Cuánto tardará este cultivo de bacterias en llegar a 00,000? Para contestar este pregunta, hagamos y = 00,000 y resolvamos la ecuación para x.
2 Tardará aproximadamente 3.3 horas. 0,0002 x 00,000 2 x 0 Dividim os entre0,000 x ln 2 ln 0 x ln 0 ln En el ejemplo anterior, se usaron funciones exponenciales y logarítmicas para resolver un problema de crecimiento exponencial. Muchos problemas que implican el crecimiento exponencial o el decrecimiento exponencial se pueden resolver usando la fórmula general: y f x e kx que muestra en qué forma depende del tiempo x la cantidad de una sustancia determinada y. Como f 0, la propia representa la cantidad inicial de la sustancia, en tanto que k es una constante. En una situación dada, significa que y es un valor creciente (aumenta) con el tiempo. Para sustancia decrece (disminuye). (Compare usted las gráficas de y e x y de y e x ). También el citado problema de las bacterias se ajusta a esta fórmula general, como se puede observar al sustituir 2 e ln2 en la ecuación y 0,0002 x : y 0,0002 x 0,000 e ln 2 x 0,000e ln2x k 0 k 0, la EJEMPLO Una sustancia radiactiva se desintegra (y se convierte en otro elemento químico) de acuerdo con la fórmula: y e 0.2x, donde y es la cantidad remanente después de x años. (a) Si tenemos la cantidad inicial = 80 gramos. qué cantidad quedará después de 3 años? (b) La vida media de una sustancia radiactiva es el tiempo que tarda en descomponerse la mitad de la misma. Encuentre la vida media de esta sustancia. en la que = 80 gramos. Solución (a) Como = 80. tenemos: x 3. y 80e 0.2x. Necesitamos resolver esta ecuación para la cantidad y, cuando
3 y 80e 0.2x 80e e 0.6 Tabla II Habrá alrededor de 43.9 gramos después de 3 años. (b) Esta pregunta se refiere al tiempo x en el que sólo queda la mitad de la cantidad inicial. En consecuencia, la vida media x constituye la solución de 40 80e 0.2x. Dividimos ambos lados entre 80: 2 e0.2x Tomamos el logaritmo natural de ambos lados, o convertimos la expresión en la forma logarítmica, para obtener: siguiente: 0.2x ln 2. Como ln ln ln 2 ln 2, resolvemos la ecuación para x de la manera 2 La vida media aproximadamente años. 0.2x ln 2 x ln El carbono 4, representado mediante 4 C, es un isótopo radiactivo de dicho elemento, que tiene una vida media de alrededor de 5750 años. Encontrando qué cantidad de 4 C contienen los restos de lo que fue un organismo vivo, es posible determinar qué porcentaje representa de la cantidad original de 4 C, en el momento de la muerte. Una vez que se tiene esta información, la fórmula y e kx nos permite calcular la antigüedad de los restos. La fecha correspondiente se obtiene al resolver la ecuación para la constante k. Dado que la cantidad de 4 C después de 5750 años será Explique cada paso de esta solución 2, obtenemos lo siguiente: 2 e5750k 2 e5750k 5750k ln 2 ln 0.5 k 5750
4 Sustituimos k por este valor en 4. después de x años: y e kx para obtener la siguiente fórmula de la cantidad residual del carbono y e ln 0.5 / 5750 x EJEMPLO 2 Se encuentra que el esqueleto de un animal contiene la cuarta parte de la cantidad original de 4 C. Qué antigüedad tiene el esqueleto? Solución Sea x la antigüedad del esqueleto. Entonces: 4 e ln 0.5 / e ln 0.5 / 5750x ln 0.5 x ln ln 4 ln 4 x 5750 ln 0.5,500 El esqueleto tiene alrededor de,500 años de antigüedad. EJERCICIOS Resuelva para k. Deje cada respuesta expresado en logaritmos naturales = = 50e 5. 3 e4 k 6. 2 e00k 7. Un cultivo de bacterias crece de acuerdo con la fórmula y 0,000e 0.6x, donde x es el tiempo, expresado en días. Calcule el número de bacterias que habrá después de semana. e 2k e 0k 8. Calcule el número de bacterias que hay en el cultivo del Ejercicio 7, después de que ha proliferado durante 2 horas. 9. Cuánto tiempo se necesitará para que se triplique el cultivo de bacterias del Ejercicio 7? 20. Cuánto tiempo hará falta para que el número de bacterias del Ejercicio 7 llegue a,000,000? 2. Cierta sustancia radiactiva se descompone de acuerdo con la fórmula exponencial S S o e 0.04t donde S o es la cantidad inicial de la sustancia y S es la cantidad de dicha sustancia que queda después de t años. Si al principio hay 50 gramos de la sustancia radiactiva, cuánto tiempo se necesitará para que se descomponga la mitad?
5 22. Demuestre usted que, cuando se resuelve para t la fórmula del Ejercicio 2, el resultado es t 25ln S S o 23. Una sustancia radiactiva está desintegrándose de acuerdo con la fórmula, donde x es el tiempo, en años. Se tiene la cantidad inicial = 0 gramos y, después de 5 años, quedan 8 gramos. (a) Encuentre el valor de k. Deje la respuesta expresada en logaritmo natural. (b) Calcule la cantidad restante después de 0 años. (c) Calcule la vida media, aproximando hasta el décimo más cercano de un año. y e kx 24. La vida media del radio es de 690 años, aproximadamente. Un laboratorio tiene 50 miligramos de radio. (a) Utilice la vida media al resolver para k la ecuación. Deje la respuesta expresada en logaritmo natural. (b) proximando a las decenas de años más cercanas, cuánto tiempo se necesitará para que sólo queden 40 miligramos? y e kx 25. Supongamos que 5 gramos de una sustancia radiactiva se descomponen a razón de 4 gramos por cada 30 segundo. Cuál es su vida media, aproximada hasta la décima de segundo más cercana? 26. Cuánto tiempo se necesita para que se desintegren las dos terceras partes del material radiactivo del Ejercicio 25? proxime su respuesta a la décima de segundo más cercana. 27. Cuando se estudió por primera vez el crecimiento demográfico de cierta ciudad, tenía una población de 22,000 habitantes. Se encontró que la población P, en función del tiempo (en años), crecía de acuerdo con la fórmula exponencial P 22,000 Cuánto tiempo tardará en duplicarse la población? t 28. Cuánto tiempo hará falta para que se triplique la población de la ciudad mencionada en el Ejercicio 27? 29. Se ha descubierto que una momia egipcia contiene el 60% de su 4 C. Con aproximación al siglo más cercano, qué antigüedad tiene la momia? (Observación: si es la cantidad original de 4 C, la cantidad 3 restante será 5 ) 30. Un esqueleto contiene la centésima parte de la cantidad original de 4 C. proximando el valor al milenio más cercano, cuál es la antigüedad del esqueleto? 3. Responda la misma pregunta del Ejercicio 30, si sólo queda una millonésima del 4 C.
1.4. Importancia de los logaritmos 1.5. Los problemas de negocios
1.4. Importancia de los logaritmos 1.5. Los problemas de negocios Desde su descubrimiento, es imposible a día de hoy concebir muchos descubrimientos sin la portación que han hecho los logaritmos. John
FUNCIONES EXPONENCIALES y LOGARITMICAS FUNCIONES EXPONENCIALES
Ingeniería en Sistemas de Información 01 FUNCIONES EXPONENCIALES LOGARITMICAS La función eponencial FUNCIONES EXPONENCIALES La función eponencial es de la forma, siendo a un número real positivo. El dominio
Considerar la ecuación 3 x 31. Para resolverla podemos aplicar logaritmos (vulgares o naturales) a ambos miembros de la ecuación
Aplicaciones de los logaritmos Sugerencias para quien imparte el curso Consideramos muy conveniente resolver, junto con los alumnos, ejemplos como los que se muestran enseguida Considerar la ecuación 3
Documento 6 : Modelos exponenciales
Unidad 4: Funciones reales de una variable real Tema: Modelos cuadráticos. Capacidades. C..: Manejar conceptos y propiedades de las funciones exponenciales y logarítmicas y resolver situaciones problemáticas
Funciones exponencial y logarítmica
Capítulo 5 Funciones exponencial y logarítmica 5.1. Introducción Dos de la funciones más importantes que se presentan en el estudio de las aplicaciones de la matemática son la función exponencial y = a
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 10. Funciones exponencial, logarítmica y trigonométricas
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN El dominio de la función f(x) x / x es: a) + b) c) [0, ) 9 El período de la función f(x) cos (x + π) es: a) π b) π c) π/ Una sustancia radiactiva
Análisis Matemático I (Biólogos)
Análisis Matemático I (Biólogos) Primer cuatrimestre 006 Práctica : Función logarítmica y función exponencial Notación: Indicaremos con log x al logaritmo de x en base 10, y con ln x al logaritmo de x
7. EXPONENCIALES Y LOGARITMOS
7. EXPONENCIALES Y LOGARITMOS En esta Unidad estudiaremos y analizaremos las funciones y ecuaciones eponenciales y logarítmicas. Comenzaremos con las funciones eponenciales para luego continuar con ecuaciones
2. La función exponencial natural En los ejercicios anteriores has trabajado con la función exponencial x
Concepto clave 2. La función eponencial natural En los ejercicios anteriores has trabajado con la función eponencial f ( ) ca, en la cual c es una constante y a es cualquier cantidad mayor que uno o mayor
126 Ecuaciones diferenciales
26 Ecuaciones diferenciales 3.. Aplicaciones de ecuaciones diferenciales de primer orden La actividad científica busca principalmente proporcionar explicaciones racionales y sistemáticas de los procesos
Ecuaciones Diferenciales Ordinarias
Nivelación de Matemática MTHA UNLP EDO 1 Ecuaciones Diferenciales Ordinarias 1. Introducción Una ecuación diferencial ordinaria es una ecuación de la forma: F (x, y, y,..., y (n) ) = 0 que expresa una
PROBLEMAS DE CRECIMIENTO Y DECRECIMIENTO.
UNIVERSIDAD DE ORIENTE NUCLEO BOLIVAR UNIDAD DE RECURSOS BASICOS DEPARTAMENTO DE CIENCIAS AREA DE MATEMATICAS PROBLEMAS DE CRECIMIENTO Y DECRECIMIENTO. PROF: INTEGRANTES: Cristian Castillo María Hernández
Erika Riveros Morán. Funciones Exponenciales y Logarítmicas. Si, y se llama FUNCION EXPONENCIAL DE BASE a, a la función
Definición: Funciones Exponenciales y Logarítmicas Si, y se llama FUNCION EXPONENCIAL DE BASE a, a la función Su gráfica queda determinada por los valores de la base a Por ejemplo: Si ( ) 1 Del gráfico
GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 15
GUIA DE TRABAJO PRACTICO Nº 5 PAGINA Nº 86 GUIAS DE ACTIVIDADES Y DE TRABAJO PRACTICO N 5 OBJETIVOS: Lograr que el Alumno: Interprete las Funciones Eponenciales Distinga Modelos Matemáticos epresados mediante
GUÍA DE APRENDIZAJE. 2. Supone que el número (aproximado) de bacterias en un cultivo en un tiempo (medido en horas) está dado por:
GUÍA DE APRENDIZAJE Prof: Víctor Manuel Reyes Feest N 14 Contenido: Aplicación de Derivadas I.-Resuelve los problemas aplicando derivadas. 1. Se hace un cultivo aislado, con esporas de pan en un medio
ECUACIONES LOGARÍTMICAS Y EXPONENCIALES
www.matesronda.net José A. Jiménez Nieto ECUACIONES LOGARÍTMICAS Y EXPONENCIALES 1. ECUACIONES LOGARÍTMICAS Ecuaciones logarítmicas son aquellas en las que la incógnita figura en un logaritmo. Para resolver
Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3
EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0
ECUACIONES LOGARÍTMICAS Y EXPONENCIALES
www.matesronda.net José A. Jiménez Nieto ECUACIONES LOGARÍTMICAS Y EXPONENCIALES. ECUACIONES LOGARÍTMICAS Ecuaciones logarítmicas son aquellas en las que la incógnita figura en un logaritmo. Para resolver
3 Aplicaciones de primer orden
CAPÍTULO 3 Aplicaciones de primer orden 3.3 Crecimiento de poblaciones En esta sección veremos dos modelos de ED que sirven para representar la forma en que evoluciona el número P.t/ de habitantes de una
Módulo 4: Modelos exponenciales y logarítmicos. Autor: José Luis Gómez Muñoz Revisó: Carlos Daniel Prado Pérez
Módulo 4: Modelos exponenciales y logarítmicos Autor: José Luis Gómez Muñoz Revisó: Carlos Daniel Prado Pérez El frasco con bacterias En un frasco a las cero horas hay 00 bacterias. Si la población de
1. Simplificar las siguientes expresiones. 2. Simplificar y escribir como un producto de potencias: 3. Escribir en forma exponencial
. Simplificar las siguientes epresiones. 7 ( ) ( 8) b. + + 79 ( ) ( ) c. ( )( )( ) d. ( ) ( ) e. + f. 8 + 8 + 7 6 g. y ( + y ) ( + y ) ( y ) 0 y 8 h.. Simplificar y escribir como un producto de potencias:
GESTIÓN ACADÉMICA GUÍA DIDÁCTICA
PÁGINA: 1 de 8 Nombres y Apellidos del Estudiante: Docente: Área: Matemáticas Grado:9º Periodo: 3º GUIA # 2 Duración: 10 HORAS Asignatura: Matemáticas ESTÁNDAR: Identifico y utilizo la potenciación, la
Materia: Matemáticas de 4to año. Tema: Logaritmos naturales y base 10. Marco Teórico
Materia: Matemáticas de 4to año Tema: Logaritmos naturales y base 10 Marco Teórico Aunque una función de registro puede tener cualquier número positivo como base, en realidad sólo hay dos bases que se
GUÍA DE APRENDIZAJE. 2. Supone que el número (aproximado) de bacterias en un cultivo en un tiempo (medido en horas) está dado por:
GUÍA DE APRENDIZAJE Profesor: Víctor Manuel Reyes Feest N 10 Contenido: Derivadas y su aplicación. I.-Resuelve los problemas aplicando derivadas. 1. Se hace un cultivo aislado, con esporas de pan en un
Análisis Matemático I (Lic. en Cs. Biológicas)
Análisis Matemático I (Lic. en Cs. Biológicas) Primer cuatrimestre de 015 Práctica : Función logarítmica y función eponencial Notación: Para a > 0 indicaremos al logaritmo en base a de por log a. Usaremos
Práctica 08 Funciones y Ecuaciones Exponenciales y Logarítmicas
Instituto Tecnológico de Costa Rica Escuela de Matemática Matemática General Práctica 08 Funciones y Ecuaciones Exponenciales y Logarítmicas I. Determine el dominio máximo de las siguientes funciones:
3 Aplicaciones de ED de primer orden
CAPÍTULO 3 Aplicaciones de E de primer orden 3.2 ecaimiento radioactivo Si observamos cierta cantidad inicial de sustancia o material radioactivo, al paso del tiempo se puede verificar un cambio en la
1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido
E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
Forma de las funciones exponenciales (Crecientes, Decrecientes)
Función exponencial Forma de las funciones exponenciales (Crecientes, Decrecientes) La aparición de las funciones exponenciales surge naturalmente cuando se estudian diversos fenómenos relacionados con
Funciones Exponenciales y Logarítmicas
Funciones Exponenciales y Logarítmicas 0.1 Funciones exponenciales Comencemos por analizar la función f definida por f(x) = x. Enumerando coordenadas de varios puntos racionales, esto es de la forma m,
Descuento Compuesto MATEMÁTICA FINANCIERA. Descuento Compuesto: Gráfica Parcial. Descuento Compuesto
Descuento Compuesto MATEMÁTICA FIACIERA DESCUETO COMPUESTO Luis Alcalá USL Segundo Cuatrimeste 206 El sistema de descuento compuesto se caracteriza por calcular el descuento con base en cada período Supongamos
MATE 3172: SEGUNDO EXAMEN PARCIAL SEMESTRE2 AÑO
MATE 3172: SEGUNDO EXAMEN PARCIAL SEMESTRE2 AÑO 2013-2014 1. Determine los interceptos y las asíntota de la gráfica de la función racional dada por. intercepto-x intercepto-y asíntota horizontal asíntota
Marco Teórico. Materia: Matemáticas de 4to año. Tema: Función logarítmica
Materia: Matemáticas de 4to año Tema: Función logarítmica Marco Teórico Cada expresión exponencial se puede escribir en forma logarítmica. Por ejemplo, la ecuación x = 2 y se escribe de la siguiente manera:
Una función de la forma donde a 1 siendo "a" la base y "X" el exponente
Materia: Matemáticas de 4to año Tema: Propiedades de las Funciones Exponenciales Marco Teórico En esta lección aprenderá sobre las funciones exponenciales, una familia de funciones distintas a las otras
Variables separables
Definición: Variables separables Si el segundo miembro de una ecuación expresada de la forma: puede expresar como una función que depende solamente de x, multiplicada por una función que depende solamente
Ecuaciones exponenciales y logaritmicas
Ecuaciones exponenciales y logaritmicas Cuando hacemos preguntas relacionadas a funciones exponenciales o logaritmicas generalmente obtendremos una ecuación logarimica o exponencial. Elevé el número 3
FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
www.matesronda.net José A. Jiménez Nieto FUNCIONES EXPONENCIALES Y LOGARÍTMICAS 1. FUNCIONES EXPONENCIALES. Una función se llama eponencial si es de la forma y = a, donde la base a es un número real cualquiera
Guía de Ejercicios: Funciones exponenciales y logarítmicas
Guía de Ejercicios: Funciones exponenciales y logarítmicas Área Matemática Resultados de aprendizaje Aplicar la función exponencial y logarítmica en diversos contextos. Contenidos 1. Aplicación de la Función
Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial Ordinaria
Universidad Diego Portales Segundo Semestre 007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial
el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1
el blog de mate de aida 4º ESO: apuntes de funciones elementales pág. 1 FUNCIONES LINEALES 1.- FUNCIÓN CONSTANTE Una función constante es aquella en la cual el valor de la variable dependiente siempre
Parte III Introducción. Ecuación Compensadora. Modelos de Crecimiento Ejercicios
Parte III Introducción. Ecuación Compensadora. Modelos de Crecimiento Ejercicios Ecuación compensadora Ejercicio : Con la siguiente información sobre Andalucía, calcule el saldo migratorio (inmigrantes
ECUACIONES DIFERENCIALES SEPARABLES
ECUACIONES DIFERENCIALES SEPARABLES Objetivos 1. Modelar situaciones mediante el uso de ecuaciones diferenciales de variables separables. 2. Asociar los resultados del tratamiento matemático del modelo
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES #23 y #24
MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES #23 y #24 (Tomado de: Stewart, James. "Precálculo". Quinta edición, secciones 4.1, 4.2 y 4.3) Funciones Exponenciales De nición
CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García
INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica
OPCIÓN A. 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que 2 x y determínala mediante un intervalo.
EXAMEN: TEMAS 1 y BCT 1º 30/11/010 OPCIÓN A 1. (1 punto) Representa en la recta real el conjunto de valores reales x tales que x 1 3 1 y determínala mediante un intervalo. En primer lugar, desarrollamos
RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I
RESUMEN DE FUNCIONES. MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES I 1.- INTRODUCCIÓN Definición: Una función real de variable real es una aplicación entre dos subconjuntos de los números reales, de modo
FUNCIONES TRIGONOMÉTRICAS, EXPONENCIALES Y LOGARÍTMICAS
FUNCIONES TRIGONOMÉTRICAS, EPONENCIALES LOGARÍTMICAS Página 0 PARA EMPEZAR, REFLEIONA RESUELVE Problema Modificando la escala, representa la función: : tiempo transcurrido y: distancia al suelo correspondiente
Tutorial MT-m4. Matemática Tutorial Nivel Medio. Función exponencial y logarítmica I
12345678901234567890 M ate m ática Tutorial MT-m4 Matemática 2006 Tutorial Nivel Medio Función exponencial y logarítmica I Matemática 2006 Tutorial Función exponencial y logarítmica Marco Teórico 1. Función
ESTUDIO LOCAL DE LA FUNCIÓN
ESTUDIO LOCAL DE LA FUNCIÓN Dominio : x Calcular máximo, mínimo, Punto de Inflexión, intervalos crecimiento y decrecimiento e intervalos de curvatura de la y = (x 1) 3 y = 3 (x 1) 2 ; y = 0 3 (x 1) 2
PREPARACIÓN PRUEBA DE ACCESO A CICLOS DE GRADO SUPERIOR
MATEMÁTICAS - PROFESOR: CARLOS MARTÍN ARTEAGA PREPARACIÓN PRUEBA DE ACCESO A CICLOS DE GRADO SUPERIOR SOLUCIONES 15 1.- Resuelve las siguientes preguntas: a) Indique cuál es el lugar geométrico de los
EJERCICIOS RESUELTOS DE CINÉTICA
UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA CICLO BÁSICO DEPARTAMENTO DE QUÍMICA CÁTEDRA: QUÍMICA II EJERCICIOS RESUELTOS DE CINÉTICA Profesora Neida Núñez Maracaibo, Agosto 2015 Ejercicios de Cinética
Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5
Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/2006 - HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 1) A continuación diremos de qué tipo son las ecuaciones diferenciales ordinarias (e.
Regla de la Potencia para la Integración
Regla de la Potencia para la Integración Ejercicios. Calcule cada integral y compruebe los resultados derivando 1. Si comparamos con la definición entonces y Si derivamos obtenemos 2. Para que tenga la
GUÍA DE APRENDIZAJE N 7. Contenido: Función exponencial y logarítmica. 1. Dada la función exponencial, y su gráfica
GUÍA DE APRENDIZAJE Profesor: Víctor Manuel Reyes Feest N 7 Contenido: Función exponencial y logarítmica. 1. Dada la función exponencial, y su gráfica 6 y 5 4 3 1 x 1 1 3 4 5 6 7 8 1 Determina: a. Dominio
FUNCIONES EXPONENCIALES Y LOGARÍTMICAS
FUNCIONES EXPONENCIALES Y LOGARÍTMICAS CARACTERÍSTICAS DE LAS FUNCIONES EXPONENCIALES Su expresión algebraica es y = a x donde a > 0 y siempre a 1 Dominio: Dom(f) = IR Recorrido: Im(f) = IR + Es una función
Examen de Matemáticas I (Biotecnología) Octubre 2012
Examen de Matemáticas I (Biotecnología) Octubre 2012 1) a) Dibujar aproximadamente las funciones 2 x 2 x y ln( x 1), y e, y y e, 1 t e b) Indicar el valor de la derivada de la última función en los puntos
EJERCICIOS PROPUESTOS. El (0, 1) es el único punto que tienen en común. Crece más rápidamente y 10 x.
2 FUNCINES EJERCICIS PRPUESTS 2. Representa las siguientes funciones. a) y 6 x b) y 0 x Tienen algún punto en común? Cuál crece más rápidamente? y = 0 x El (0, ) es el único punto que tienen en común.
14 Funciones exponenciales y logarítmicas
ACTIVIDADES DE AMPLIACIÓN Funciones eponenciales y logarítmicas. Se considera la función eponencial f() k ; k 0. Averigua, en cada uno de los siguientes casos, cómo es la base de la función con respecto
FUNCIONES EXPONENCIAL Y LOGARÍTMICA
FUNCIONES EXPONENCIAL Y LOGARÍTMICA 1. Crecimiento exponencial. La función exponencial. 1.1 La Función Exponencial. Una función exponencial es una expresión de la forma siguiente:,,. Donde es una constante
CURSO DE MATEMÁTICA. Repartido Teórico 4
CURSO DE MATEMÁTICA. Repartido Teórico 4 Mariana Pereira Noviembre, 2007 1. Ecuaciones Diferenciales Una ecuación diferencial es una ecuación donde la incógnita es una fución de una variable, y la ecuación
Funciones Elementales II
Funciones Elementales II UNIDAD DIDÁCTICA 5 o de Bachillerato CCSS Diana Barredo Blanco Profesora de Matemáticas Autor: Diana Barredo o Bachiller (CCSS). COMPOSICIÓN DE FUNCIONES. COMPOSICIÓN DE FUNCIONES..
ETS Minas: Métodos matemáticos Ejercicios resueltos Tema 1 Preliminares
ETS Minas: Métodos matemáticos Ejercicios resueltos Tema Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 006/07 Agosto 006,
GUIAS DE ESTUDIO FINALES (PRIMERO Y SEGUNDO SEMESTRES) CICLO ESCOLAR QUINTO GRADO
MATEMÁTICAS PRIMER SEMESTRE 1. Hallar el dominio de una función 4x a) y 3 x b) y x 10 4x c) y x 2 4 2. Graficar funciones exponenciales a) graficar y = 3 x+2 para x en (-2,-1,0,1,2,3) b) graficar y = 2
x= 3 y y=f(x)
4.10 Gráficas de funciones logarítmicas. Empecemos por recordar las que ya hicimos en la sección 4.8, en esta sección trazamos la función logaritmo base 2 de x, conociendo su inversa y reflejándola sobre
5 GUÍA DE APRENDIZAJE Contenido: Función
Prof: Víctor Manuel Reyes Feest 5 GUÍA DE APRENDIZAJE Contenido: Función 1.-En diferentes instantes en la vida de un niño, el número medio de millones de glóbulos rojos por mm 3 de sangre, está dado por
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA
INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA La matemática es la ciencia del orden y la medida, de bellas cadenas de razonamientos, todos sencillos y fáciles. René Descartes
TEMA 5 FUNCIONES ELEMENTALES II
Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas
La función exponencial se define con una base constante cuyo exponente es el valor variable, es decir:
Función Exponencial La función exponencial se define con una base constante cuyo exponente es el valor variable, es decir: Con Gráfica función exponencial a) Si la función es creciente en. b) Si la función
CRITERIOS EVALUACIÓN MATEMÁTICAS
CRITERIOS DE EVALUACIÓN ÁREA MATEMÁTICAS NIVEL 6º EDUCACIÓN PRIMARIA Identifica situaciones en las cuales se utilizan los números. Comprende las reglas de formación de números en el sistema de numeración
E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones
E.T.S. Minas: Métodos Matemáticos Soluciones Tema 3: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre
Etapa 3 Funciones Exponenciales y Logarítmicas
Etapa 3 Funciones Exponenciales y Logarítmicas Encuadre (Coevaluación) Con ayuda de la guía de aprendizaje coloca en el recuadro las competencias genéricas, atributos y competencias disciplinares correspondientes
Funciones exponencial, logarítmica y trigonométricas
Funciones exponencial, logarítmica y trigonométricas E S Q U E M A D E L A U N I D A D.. Definición página 9. Función exponencial página 9.. Representación gráfica y propiedades de la función exponencial
es un ejemplo de una ecuación diferencial de tercer orden, mientras que
Ecuaciones diferenciales de primer orden Los cursos básicos de cálculo deferencial e integral tienen como objetivo principal que el estudiantes resuelva ecuaciones diferenciales. En este módulo repasaremos
FUNCIÓN EXPONENCIAL Y LOGARITMICA
FUNCIÓN EXPONENCIAL Y LOGARITMICA Son funciones transcendentales porque no satisface una ecuación polinómica cuyos coeficientes sean a su vez polinomios; En otras palabras, una función trascendente es
Lección 5: Porcentajes
Lección 5: Porcentajes En las lecciones anteriores estudiamos relaciones de proporcionalidad directa e inversa. En esta lección estudiaremos una relación de proporcionalidad directa especial: los porcentajes.
REGLA DE L'HÔPITAL. En cursos anteriores, al estudiar límites de funciones, aparecen las indeterminaciones e
REGLA DE L'HÔPITAL En cursos anteriores, al estudiar límites de funciones, aparecen las indeterminaciones e y se aprenden los artificios necesarios para resolverlas. Generalmente, surgen en límites de
Observación: El método de Euler, es el método de Taylor de orden 1.
METODO DE TAYLOR TEOREMA DE TAYLOR DE ORDEN N Sea y(t) una función tal que sea n veces continuamente diferenciable en el intervalo [a,b] y existe y (N+1) existe en [a, b] Para todo t k + [a, b] abrá un
Funciones exponenciales y logarítmicas
Funciones exponenciales y logarítmicas - Funciones exponenciales y sus gráficas Un terremoto de 85 grados en la escala de Richter es 00 veces más potente que uno de 65, por qué?, cómo es la escala de Richter?
La función exponencial: La función exponencial: OBJETIVO: Función exponencial. Elementos de la función exponencial.
-0-0 SESIÓN CONTENIDOS: Función eponencial. Elementos de la función eponencial. Gráfico de funciones eponenciales en el plano cartesiano. OBJETIVO: Determina intervalos de crecimiento decrecimiento, dominio
tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x
UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos
Universidad Torcuato Di Tella
Universidad Torcuato Di Tella Matemática I Modalidad Semestral Práctica : Funciones Primer Semestre - 205 Práctica 2: Funciones 2 Ejercicio. Determinar cuál de las siguientes curvas son gráficos de funciones.
Clase 2: Ecuaciones exponenciales y logarítmicas
Clase 2: Ecuaciones exponenciales y logarítmicas Reconocer la relación entre el logaritmo y la exponencial. Calcular expresiones que involucran logaritmo mediante representación del argumento como potencia
Proyecto Guao Sistema de Ecuaciones Logarítmicas
Sistema de Ecuaciones Logarítmicas Marco Teórico: Para resolver sistemas de ecuaciones logarítmicas tomaremos en cuenta la definición y las propiedades de los logaritmos. Para la resolución del sistema
TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES
TEMA 2: ÁLGEBRA 1. TEOREMA DEL RESTO Y APLICACIONES Dado un polinomio P(x) y un número real a, el resto de la división de P(x) entre (x a) es P(a) (es decir, el resultado de sustituir el valor de x por
TEMA 7. FUNCIONES ELEMENTALES
TEMA 7. FUNCIONES ELEMENTALES 8.1. Funciones cuya gráfica es una recta. - Función constante. - Función de proporcionalidad. - Función lineal. - Pendiente. 8.2. Función cuadrática. - Representación gráfica
PROPUESTA A. c) Demuestra, usando el Teorema de Rolle, que la ecuación anterior no puede tener más de tres raíces reales distintas.
PROPUESTA A 1A. a) Enuncia el Teorema de Bolzano y el Teorema de Rolle. (1 punto) b) Demuestra, usando el Teorema de Bolzano, que existen al menos tres raíces reales distintas de la ecuación, x 5 5x +
Aplicaciones de funciones exponenciales y logarítmicas
Universidad de Costa Rica Escuela de Matemática Proyecto MATEM MA025 Matemática Elemental http://matem.emate.ucr.ac.cr/ Tel.: 25 4528 Aplicaciones de funciones exponenciales y logarítmicas Recopilado por:
AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones).
AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 1 (Aplicaciones). 1. La policía descubre el cuerpo de una profesora de ecuaciones diferenciales. Para resolver
El cálculo integral fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow.
INTRODUCCION El cálculo integral fue usado por primera vez por científicos como Arquímedes, René Descartes, Isaac Newton, Gottfried Leibniz e Isaac Barrow. Los trabajos de este último y los aportes de
PLAN DE MEJORAMIENTO GRADO NOVENO 2013 MATEMÁTICAS FRANKLIN EDUARDO PÉREZ QUINTERO EJERCICIOS DE SISTEMAS DE ECUACIONES LINEALES
PLAN DE MEJORAMIENTO GRADO NOVENO 013 EJERCICIOS DE SISTEMAS DE ECUACIONES LINEALES 1. Resuelve estos sistemas por el método de sustitución:. Resuelve los siguientes sistemas por el método de igualación:
Matemáticas CCSS LÍMITES DE FUNCIONES 1. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS. Ejercicio nº 1.- Ejercicio nº 2.
LÍMITES DE FUNCIONES. INTRODUCCIÓN BÁSICA: A) LÍMITES SOBRE GRÁFICAS Ejercicio nº.- Ejercicio nº.- Página B) LÍMITES APOYÁNDONOS EN LAS GRÁFICAS B.) FUNCIONES POLINÓMICAS De grado : a ) 3 + b ) 3 + c )
(1.5 p.) 2) Hallar el polinomio de Taylor de grado 3 de la función g(x) = e 1 x2 centrado en x 0 = 1 y usarlo para dar una aproximación de e 5/4.
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Examen final 0 de enero de 0.75 p. Se considera la función escalar de una variable real fx = lnlnx. lnx a Calcular el
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Capítulo 6. Logaritmos y funciones logarítmicas
Capítulo 6 Logaritmos y funciones logarítmicas Así como la resta es la operación inversa a la suma y la división lo es a la multiplicación, pues son operaciones que deshacen lo que las otras hicieron,
Métodos Numéricos: Ejercicios Resueltos Tema 1: Preliminares
Métodos Numéricos: Ejercicios Resueltos Tema : Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07 Febrero 2007, versión.
SOLUCIÓN GENERAL Y SOLUCIÓN PARTICULAR DE UNA ECUACIÓN DIFERENCIAL
SOLUCIÓN GENERAL Y SOLUCIÓN PARTICULAR DE UNA ECUACIÓN DIFERENCIAL Propósito Al finalizar esta sección, quien imparte el curso habrá logrado que los estudiantes: Distingan la solución general de una solución
