ECONOMÍA INDUSTRIAL APLICADA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ECONOMÍA INDUSTRIAL APLICADA"

Transcripción

1 Licenciatura en Economía Deartamento de Estructura Económica Curso ECONOMÍ INDUSTRIL PLICD Tema 8. Publicidad maro Sanchis Llois Juan ntonio Mañez Castillejo

2 Tema 8: Publicidad Juan. Mañez Castillejo/ maro Sanchis Deartamentode EstructuraEconómica Universidadde Valencia October 24, 2002 Contents 1 Publicidad informativa y ublicidad ersuasiva Nivel ótimo de ublicidad ara un monoolista Estructura de mercado y ublicidad: oligoolio con n-emresas

3 1. Publicidad informativa y ublicidad ersuasiva tendiendo a su naturaleza y objetivos, odemos distinguir DOS TIPOS de ublicidad: - Publicidad informativa: informa sobre la existencia de un roducto y/o el lugar donde se uede comrar, el recio y otras condiciones de venta.ejemlo: roductos farmaceúticos. - Publicidad ersuasiva: intenta convencer a los consumidores de que determinado roducto es mejor o diferente a otro (intenta crear arti cialmente nuevas necesidades. Los efectos de la ublicidad sobre la cometencia en el mercado son distintos según sea su naturaleza: - La ublicidad informativa aumenta el grado de cometencia en el mercado. - La ublicidad ersuasiva reduce la elasticidad de la demanda de cada emresa y or tanto aumenta el oder de mercado de las emresas.. En la ráctica la ublicidad suele ser mezcla de informacióny ersuasión, lo que di culta su análisis. 2. Nivel ótimo de ublicidad ara un monoolista Suuestos: 1.- Función de demanda del monoolista q=q(;) siendo :recio : gasto en ublicidad y

4 dq d < 0 dq > 0! los gastos en ublicidad tienen un efecto d ositivo sobre la demanda. 2.- El coste marginal de roducción c es contante y el gasto en ublicidad lo consideramos como un gasto jo. Esto imlica que la función de bene cios de la emresa es: Y =( c)q(;) 3.- La emresa debe eliger recio y gasto en ublicidad que maximizan sus bene cios El roblema de maximización de bene cios de la emresaviene dado or Y max =( c)q(;) ; CPO! d Q d =q+( =0 (2.1) CPO! d Q d =( c)@q 1=0 artir de la CPO P (2.1) dividiendo or c y si de nimos elasticidad recio odemos exresar (2.3) (2.3)

5 c = 1 " (2.4) artir de la CPO si dividimos or c si multilicamos y dividimos la arte derecha de la igualdad orq y q 1 q si de nimos la elasticidad con resecto al gasto en ventas R= q odemos exresar (2.5) como (2.5) q y el volumen de c = R (2.6) artir de (2.4) y usando (5.6) odemos obtener la relación de Dorfman-Steiner R =1 " = R "! cuanto más sensible sea la demanda al gasto en ublicidad mayor será el gasto en ublicidad con resecto al volumen total de ventas; y!cuanto menor sea la sensibilidad de la demanda a variaciones en el recio mayor será el gasto en ublicidad con resecto al volumentotal de ventas.

6 3. Estructura de mercado y ublicidad: oligoolio con n-emresas Objetivo: estudiar como varía la intensidaddel gasto en ublicidad cuando se incrementa el número de emresas Suuestos: ² El recio del roducto está dado y es el mismo ara todas las emresas ² La función de demanda de la emresai = (; i ; r ) i : gasto en ublicidad de la emresai r : gasto en ublicidad de los rivales = i + r gasto total en ublicidad de la industria r = 0!variación conjetural nula: las emresas toman como dados los gastos en ublicidad de las otras emresas Las emresas deben elegir el gasto en ublicidad que maximiza sus bene cios tomando como dados los gastos en ublicidad de las otras : Y max =( c i i i) (; i ; r ) i C.P.O. dq i d i =( c i 1=0 dividiendo or ( c i =1

7 ( c i )@ = 1 multilicando or i ( c i i = i (3.1) si de nimos i como la elasticidad de la demanda de la emresaicon resecto al gasto en ublicidad y = (ventas) entonces odemos exresar (3.1) como c i i= i Por lo tanto el ratio gastos en ublicidad sobre ventas deende:! del margen de bene cios (margen recio-coste)! de la sensibilidad de la demanda de la emresa a los gastos en ublicidad ( i). su vez, los gastos en ublicidad i afectan a la demanda de la emresa or dos vias:! a través de la cuota de mercado de la emresa (s i )! a través de la demanda total de mercado(q) Para ver esto, recordemos que la cuota de mercado de la emresai ess i = Q =s i Q). Vamos a descomoner i en dos sumandos: i iq) i (de modo que i i Q s i i

8 i i Q s i Q s i i s i Q i i i s i Q (Puesto que = i + r, si r no cambia, segundo sumando or ; multilicando y dividiendo i i s = s+a i Q i donde i i s i! elasticidad de la cuota de mercado en relación a los gastos de ublicidad de la emresai. a i = i!cuota de ublicidad de la de la demanda de mercado con resecto al valor global de ublicidad. Por tanto, i= s+a i c i ( s+a i i )= La intensidad de los gastos ublicitarios deende de! el margen recio coste (bene cios) de la emresa! la sensibilidad de la cuota de mercado a los gastos ublicitarios de la emresa! la sensibilidad de la demanda de mercado a la ublicidad en general

9 Cómo afectael número de emresas ala intensidad ublicitaria? Si el recio está dado, la cuota de mercado de la emresa viene dada or el gasto en ublicidad de la emresai s i =a i = i y or lo tanto i i µ i i = = i 2 i = i µ = s i i 9 >= >; i i = i s i s=1 i =1 s i y asi ues odemos reescribir c i ( s+ a i )= i como c i (1 s i + s i )= i Suongamos quec i =cara todoi(todas las emresas tienen los mismos costes marginales! emresas simétricas) s i =a i = Q = 1 N Recordemos el resultado obtenido en el modelo de Cournot aras i = 1 N ara todoi c = 1 N" donde" es la elasticidad recio de la demanda. Por tanto odemos exresar c (1 s i+ s i )= i

10 como µ = i N" N N (N 1)+ N 2 " = i El ratio gasto en ublicidad sobre ventas deende!del numero de emresas,! de la elasticidad recio de la demanda y! de la elasticidad de la demanda total al gasto total en ublicidad. Para estudiar el efecto dendebemos jar los valores de y" y observar qué ocurre ara distintos valores de N. Los estudios emíricos no encuentran una relación monotónica entre i yn y la mayoría encuentran que cuando se asa de una situación de monoolio a una situación de oligoolio con un número reducido de emresas i se incrementa ero a medida que aumenta el numero de emresas en el oligoolio i se reduce. Evidencia emírica: Cuadro 8.1 (Cabral, ág. 148): automóviles, roductos alimenticios y roductos de higiene son casos tíicos de elevada sensibilidada los gastos en ublicidad y/o altos márgenes. Cuadro 8.2 (Cabral, ág. 149): Comaración del ratio gastos en ublicidad/volumen de ventas usando datos de un estudio llevado a cabo en diversos mercados australianos. La relación se cumle ara café instantáneo, cerveza y jabones ero no ara el resto de los sectores. Una osible exlicación es que estamos midiendo la ublicidad como un stock cuando en realidad la ublicidad debería considerarse como una variable ujo! los gastos en ublicidad en cada uno de los eriodos contribuyen a la creación de un valor de marca.

11 ² SUTTON (1991) Enfoque distinto al análisis tradicional de los gastos ublicitarios. En muchos mercados, los gastos ublicitarios son barreras de entrada cuyo nivel viene determinado endógenamente or el juego estratégico entre las emresas instaladas y las entrantes.

JUEGOS ESTÁTICOS T. 4 VARIABLE CONTINUA Y APLICACIONES ECONÓMICAS. Universidad Carlos III de Madrid

JUEGOS ESTÁTICOS T. 4 VARIABLE CONTINUA Y APLICACIONES ECONÓMICAS. Universidad Carlos III de Madrid JUEGOS ESTÁTICOS T. 4 VARIABLE CONTINUA Y APLICACIONES ECONÓMICAS Universidad Carlos III de Madrid VARIABLE CONTINUA n En muchos juegos las estrategias uras que ueden elegir los jugadores no son, 3 o cualquier

Más detalles

MICROECONOMÍA I NOTAS DE CLASE

MICROECONOMÍA I NOTAS DE CLASE MICROECONOMÍA I UNIA 5: La cometencia imerfecta 5.1.- Monoolio NOTAS E CLASE 5.1.1.- Equilibrio en un modelo monoólico Un mercado monoólico se caracteriza or la existencia de barreras a la entrada, que

Más detalles

Tema 9. La fijación de precios con poder de mercado. Microeconomía Intermedia 2011/12. Tema 9 1

Tema 9. La fijación de precios con poder de mercado. Microeconomía Intermedia 2011/12. Tema 9 1 Tema 9 La fijación de recios con oder de mercado Microeconomía Intermedia 0/. Tema 9 . Conceto de discriminación de recios. iscriminación de recios de rimer grado 3. iscriminación de recios de segundo

Más detalles

Tema 1. La compra y la venta (Ref: Capítulo 9 Varian)

Tema 1. La compra y la venta (Ref: Capítulo 9 Varian) Tema. La comra y la venta (ef: aítulo 9 Varian) Autor: Joel Sandonís Versión:.0.4 (Javier Lóez) Deartamento de Fundamentos del Análisis Económico Universidad de Alicante Microeconomía Intermedia Introducción

Más detalles

ECONOMÍA INDUSTRIAL APLICADA

ECONOMÍA INDUSTRIAL APLICADA Licenciatura en Economía Departamento de Estructura Económica Curso 00-003 ECONOMÍA INDUSTRIAL APLICADA Tema 5. Fusiones horizontales e integración vertical Amparo Sanchis Llopis Juan Antonio Mañez Castillejo

Más detalles

INTRODUCCIÓN A LA ECONOMÍA. Ramón Fuentes Pascual Carmen Martínez Mora

INTRODUCCIÓN A LA ECONOMÍA. Ramón Fuentes Pascual Carmen Martínez Mora INTRODUCCIÓN A LA ECONOÍA Ramón Fuentes Pascual Carmen artínez ora Título: Introducción a la economía Autor: Ramón Fuentes Pascual y Carmen artínez ora I.S.B.N.: 84-8454-8-6 Deósito legal: A-73- Edita:

Más detalles

El beneficio de la empresa

El beneficio de la empresa 14/03/013 Tema 3 Microeconomía II Alfonso Rosa García Grado en Administración y Dirección de Emresas Modalidad emiresencial Alfonso Rosa García Tlf. 968 7866 - [email protected] Universidad atólica an Antonio

Más detalles

Tema 7. La competencia perfecta. Microeconomía Intermedia 2011/12. Tema 7 1

Tema 7. La competencia perfecta. Microeconomía Intermedia 2011/12. Tema 7 1 Tema 7 a cometencia erfecta Microeconomía Intermedia 011/1. Tema 7 1 1. Características de la cometencia erfecta. a maximización del beneficio a c/: la f. de demanda de inuts 3. a maximización del beneficio

Más detalles

Tema 3: El monopolio y la conducta del monopolio (Ref: Capítulos 24 y 25 Varian)

Tema 3: El monopolio y la conducta del monopolio (Ref: Capítulos 24 y 25 Varian) Tema 3: El monoolio la conducta del monoolio Ref: Caítulos 4 5 Varian Autor: Joel Sandonís Versión:.0.5 Javier Lóez Deartamento de Fundamentos del Análisis Económico Universidad de Alicante Microeconomía

Más detalles

Ejercicios de Derivadas parciales., simplificar:

Ejercicios de Derivadas parciales., simplificar: Ejercicios de Derivadas arciales Pregunta Si: ( ( (, simlificar: E Nos iden: E (I Tenemos: ( ( ( De donde: Reemlaando en (I: E ( ( ( Simlificando: E 6 Pregunta, demostrar ue: k, Dada la función: f(, ln(

Más detalles

PRÁCTICA 4. De las dos primeras CPO operando y simplificando se obtiene la condición de tangencia:

PRÁCTICA 4. De las dos primeras CPO operando y simplificando se obtiene la condición de tangencia: .- Determine la exresión de la demanda del bien x ara la siguiente función de utilidad: Para calcular la del bien x hay que resolver el roblema de maximización de la utilidad condicionada a la renta disonible

Más detalles

TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO

TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO TEMA 10 ANÁLISIS COSTE-VOLUMEN-BENEFICIO 1 10.1. INTRODUCCIÓN Qué es el análisis C-V-B? Modelo que estudia la relación existente entre costes, recios, volúmenes de venta y beneficios, tomando ara el análisis

Más detalles

Oferta y demanda. Oferta y demanda. Excedente del consumidor. Disposición a pagar. Tema 2

Oferta y demanda. Oferta y demanda. Excedente del consumidor. Disposición a pagar. Tema 2 Oferta y demanda Tema 2 Oferta y demanda La oferta y la demanda son los instrumentos más imortantes de la Teoría Económica Vamos a ver los asectos más básicos de la oferta y la demanda, así como el análisis

Más detalles

La Teoría del Consumidor. Elección ocio-consumo Oferta de Trabajo

La Teoría del Consumidor. Elección ocio-consumo Oferta de Trabajo La Teoría del Consumidor Elección ocio-consumo Oferta de Trabajo Modificamos el roblema del consumidor La renta del consumidor es el valor de mercado de su dotación inicial, (, ). Por el momento, suonemos

Más detalles

286. Microeconomía II Cátedra Prof. Enrique Bour Facultad de Ciencias Económicas Universidad de Buenos Aires Guía de Trabajos Prácticos

286. Microeconomía II Cátedra Prof. Enrique Bour Facultad de Ciencias Económicas Universidad de Buenos Aires Guía de Trabajos Prácticos II. Teoría del Consumidor EJERCICIO Considere a un individuo que maximiza la siguiente función de utilidad: ux (, x) x a - = x a, 0< a 0. a. Derive

Más detalles

Departamento de Ingeniería Matemática- Universidad de Chile

Departamento de Ingeniería Matemática- Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-4 Matrices elementales SEMANA 2: MATRICES Como veremos la resolución de sistemas de ecuaciones via

Más detalles

TEMA 6. La maximización de beneficios y la oferta competitiva. Introducción a la Microeconomía,

TEMA 6. La maximización de beneficios y la oferta competitiva. Introducción a la Microeconomía, ÓN A LA MICR ROECON NOMÍA INTRO ODUCCI TEMA 6 La maximización de beneficios y la oferta competitiva, José M. astor (coord.), M. az Coscollá, M. Ángeles Díaz, M. Teresa Gonzalo y Mercedes Gumbau 1 Bibliografía

Más detalles

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN 4.. Introducción Se denomina ecuación diferencial ordinaria a toda ecuación en la que aarecen una o varias derivadas de una función. Cuando las derivada

Más detalles

5.2. Selección Adversa parte II el modelo de Rothschild y Stiglitz (1976)

5.2. Selección Adversa parte II el modelo de Rothschild y Stiglitz (1976) 5.. Selección Adversa arte II el modelo de Rothschild y Stiglitz (1976) Matilde P. Machado [email protected] Resumen: Muestra el imacto de la información imerfecta en el resultado de equilibrio de

Más detalles

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1

Bloque 33 Guía: Ecuación de la recta en el plano cartesiano SGUICEG055EM33-A17V1 SGUICEG055EM-A7V Bloque Guía: Ecuación de la recta en el lano cartesiano TABLA DE CORRECCIÓN ECUACIÓN DE LA RECTA EN EL PLANO CARTESIANO N Clave Dificultad estimada B Alicación Media A Alicación Media

Más detalles

Estática tica comparativa: aspectos formales. Microeconomía Douglas Ramírez

Estática tica comparativa: aspectos formales. Microeconomía Douglas Ramírez Estática tica comarativa: asectos formales icroeconomía Douglas Ramírez aimización de la tilidad Por simlicidad la elección es entre dos bienes (, ), las utilidades marginales son ositivas. Los recios

Más detalles

Paramagnetismo de Pauli

Paramagnetismo de Pauli Paramagnetismo de Pauli Hasta ahora no habíamos tenido en cuenta el esín electrónico a la hora de tratar sistemas magnéticos. En realidad, el hamiltoniano comleto de un electrón sometido a un camo magnético

Más detalles

Ecuaciones y sistemas ecuaciones

Ecuaciones y sistemas ecuaciones Ecuaciones y sistemas de ecuaciones trigonométricas Juan José Isach Mayo 7/0/007 Contents I Ecuaciones y sistemas ecuaciones trigonométricas Ecuaciones trigonométricas. Ejemlos de ecuaciones trigonométricas...............

Más detalles

GRUPOS EDUARDO microeconomía, macroeconomía, economía de la empresa ; móvil: ;

GRUPOS EDUARDO microeconomía, macroeconomía, economía de la empresa  ; móvil: ; microeconomía, macroeconomía, economía de la emresa www.ecocirculo.com ; móvil: 695.44.93 ; [email protected] Introducción a la Microeconomía Una equeña muestra de los cuadernos de rácticas que roorcionamos

Más detalles

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa

x obtendremos x dp Elasticidad de la demanda. El término p dx se representa por la letra griega η que representa Elasticidad de la demanda. El término se reresenta or la letra griega η que reresenta x cccccccccccc eeee dddddddddddddd cccccccccccc eeee = 00( xx xx ) dddd 00( = ) xx dddd = ηη Deendiendo del valor que

Más detalles

Tema 4: Aplicaciones del equilibrio de Nash

Tema 4: Aplicaciones del equilibrio de Nash Tema 4: Aplicaciones del equilibrio de Nash Microeconomía Avanzada II Iñigo Iturbe-Ormaeche U. de Alicante 2008-09 Bienes públicos Quién avisa a la policía? Cournot Bertrand Productos diferenciados Basado

Más detalles

TEORÍA MICROECONÓMICA II

TEORÍA MICROECONÓMICA II UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE ECONOMÍA SISTEMA UNIVERSIDAD ABIERTA z TEORÍA MICROECONÓMICA II CUADERNO DE EJERCICIOS MIGUEL CERVANTES JIMÉNEZ LAURA C. CASILLAS VALDIVIA ENRIQUE A.

Más detalles

q c q m R 2 q 1+q 2 =q m

q c q m R 2 q 1+q 2 =q m REPASO OLIGOPOLIO Y COMPORTAMIENTO ESTRATÉGICO MODELOS DE OLIGOPOLIO 1. Modelos de comportamiento Estratégico (NO LOS VAMOS A HACER). - Modelo de Empresa Dominante Generalizaciones a partir de competencia

Más detalles

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2.

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2. PROBLEMAS DE LÍMITES Y CONTINUIDAD MÉTODOS ALGEBRAICOS) Cálculo de ites or métodos algebraicos Resuelve los siguientes ites: a) 8 b) 8 c) a) ) ) 6) ) 8 Se reite el roceso) ) ) ) ) Las descomosiciones factoriales

Más detalles

MICROECONOMÍA I. Tema 5: La función de demanda individual y de mercado

MICROECONOMÍA I. Tema 5: La función de demanda individual y de mercado Tema 5. LA FUNCIÓN DE DEMANDA INDIVIDUAL DE MERCADO.- Efecto sustitución y efecto renta.- El excedente del consumidor 3.- De la función de demanda individual a la de mercado..- Efecto sustitución y efecto

Más detalles

Capítulo 4 MAXIMIZACIÓN DE LA UTILIDAD Y ELECCIÓN

Capítulo 4 MAXIMIZACIÓN DE LA UTILIDAD Y ELECCIÓN Caítulo 4 MAXIMIZACIÓN DE LA UTILIDAD Y ELECCIÓN 1 Críticas a los Métodos Económicos Se dice a veces que ningún individuo real hace el tio de cálculos requeridos ara una maximización de la utilidad El

Más detalles

Excedente del Consumidor

Excedente del Consumidor Excedente del Consumidor Microeconomía Douglas Ramírez Introducción Cuando el ambiente económico cambia esto uede afectar ositiva o negativamente al consumidor. Los economistas con frecuencia quieren medir

Más detalles

Análisis Matemático I

Análisis Matemático I Análisis Matemático I Práctica No. Paralelo Yuri Miranda Gonzáles Agosto 07 Contenido Introducción. Relaciones y funciones Reaso de inecuaciones 4 Funciones eseciales 5 Alicaciones de funciones 4 6 Límites

Más detalles

CARACTERÍSTICAS DE LA DEMANDA AGREGADA DE ENERGÍA ELÉCTRICA

CARACTERÍSTICAS DE LA DEMANDA AGREGADA DE ENERGÍA ELÉCTRICA CARACTERÍSTICAS DE LA DEMANDA AGREGADA DE ENERGÍA ELÉCTRICA 65 GENERALIDADES SOBRE LA DEMANDA DE UN BIEN CUALQUIERA. 66 CANTIDAD DEMANDADA DE UN BIEN: Aquella que están dispuestas a adquirir los compradores

Más detalles

PRÁCTICA 3. , se pide:

PRÁCTICA 3. , se pide: 3 3.- Dada la función de utilidad U, se ide: a) Calcular la función de la familia de curvas de indiferencia corresondientes a dicha función de utilidad Para calcular la familia de curvas de indiferencia

Más detalles

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS

TEMA 5 FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS Tema Funciones eonenciales, loarítmicas trionométricas Matemáticas CCSSI º Bachillerato TEMA FUNCIONES EXPONENCIALES, LOGARÍTMICAS Y TRIGONOMÉTRICAS COMPOSICIÓN DE FUNCIONES EJERCICIO : : halla Dadas las

Más detalles

NÚMEROS RACIONALES Q

NÚMEROS RACIONALES Q NÚMEROS RACIONALES Q Es el número ue se uede exresar como el cociente de dos números enteros, es decir, en forma de fracción 0. El conjunto se uede reresentar Q {, Z 0} {..., 2, 2, 1, 0, 1 8, 2 7, 1,...

Más detalles

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen Probabilidades Estadística Comutación Facultad de Ciencias Eactas Naturales. Universidad de Buenos Aires Ana M. Bianco Elena J. Martínez Vectores aleatorios Hasta ahora hemos estudiado modelos de robabilidad

Más detalles

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen

Ejemplos: 1) De una urna que contiene 6 bolillas blancas y 4 negras se extraen sin reposición 3 bolillas. Se definen Probabilidades Estadística Comutación Facultad de Ciencias Eactas Naturales Universidad de Buenos Aires Ana M. Bianco Elena J. Martínez Vectores aleatorios Hasta ahora hemos estudiado modelos de robabilidad

Más detalles

VALUACIÓN DE BONOS. 3. Tasa de rendimiento al vencimiento. las que diversos inversionistas descuentan los flujos futuros de un mismo bono y de esa

VALUACIÓN DE BONOS. 3. Tasa de rendimiento al vencimiento. las que diversos inversionistas descuentan los flujos futuros de un mismo bono y de esa 1 VALUACIÓN DE BONOS 3. Tasa de rendimiento al vencimiento El recio de mercado de un bono, como cualquier otro activo, se determina or oferta y demanda de numerosos inversionistas. Las tasas de rendimiento

Más detalles

Reciprocidad Cuadrática

Reciprocidad Cuadrática Caítulo 4 Recirocidad Cuadrática En este caítulo estudiamos una serie de resultados dirigidos a demostrar la Ley de Rerocidad Cuadrática, la cual fue robada or Gauss en su libro Disquisitiones Arithmeticae

Más detalles

Microeconomía. Restricción n Presupuestaría Douglas Ramírez

Microeconomía. Restricción n Presupuestaría Douglas Ramírez icroeconomía Restricción n Presuuestaría Douglas Ramírez Economía de Intercambio En una economía de intercambio la actividad económica consiste simlemente en el consumo e intercambio de mercancías que

Más detalles

Clase 3: Teorema de Fundamental de la Aritmética

Clase 3: Teorema de Fundamental de la Aritmética Clase 3: Teorema de Fundamental de la Aritmética Dr. Daniel A. Jaume, * 12 de agosto de 2011 1. Primos Definición 1.1 Un entero ositivo se dice que es un número rimo si tiene exactamente 2 divisores ositivos

Más detalles

Introducción a los. Árboles de Decisión

Introducción a los. Árboles de Decisión ntroducción a los Árboles de Decisión ntroducción: Un árbol de decisión es una forma gráfica y analítica de reresentar todos los eventos (sucesos) que ueden surgir a artir de una decisión asumida en cierto

Más detalles

Ecuaciones exponenciales y logarítmicas. Ecuaciones exponenciales

Ecuaciones exponenciales y logarítmicas. Ecuaciones exponenciales Ecuaciones eonenciales y logarítmicas Juan José Isach Mayo 8/0/009 Ecuaciones eonenciales Resuelve las siguientes eonenciales Ejercicio 6 9 6 7 6 9 6 7! 6 6 ( ) 7 7! 6 7 Ejercicio 6 7 Como k A k A entonces

Más detalles

Tema 11. El equilibrio general y la eficiencia económica. Microeconomía Intermedia 2011/12. Tema 11 1

Tema 11. El equilibrio general y la eficiencia económica. Microeconomía Intermedia 2011/12. Tema 11 1 Tema 11 El equilibrio general la eficiencia económica Microeconomía Intermedia 2011/12. Tema 11 1 1. El análisis de equilibrio general 2. La eficiencia en el intercambio Microeconomía Intermedia 2011/12.

Más detalles

Parte II. Teoría a del Consumidor

Parte II. Teoría a del Consumidor Parte II. Teoría a del Consumidor Tema 2: La conducta de los consumidores Tema 3: Teoría de la demanda Tema 4: El modelo de elección intertemoral. Parte I. Teoría a del Consumidor Tema 2: La conducta de

Más detalles

SOLUCIONES DE LOS EJERCICIOS PROPUESTOS

SOLUCIONES DE LOS EJERCICIOS PROPUESTOS SOLUCIONES DE LOS EJERCICIOS ROUESTOS TEMA 1 El IC recoge la subida de los recios de los bienes de una cesta de bienes y servicios que se considera reresentativa del consumo de una familia. Se obtiene

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo

Más detalles

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno:

Unidad 5. Aplicaciones de las derivadas. Objetivos. Al terminar la unidad, el alumno: Unidad 5 Alicaciones de las derivadas Objetivos Al terminar la unidad, el alumno: Resolverá roblemas de ingreso utilizando el ingreso marginal. Resolverá roblemas de costos utilizando el costo marginal

Más detalles

Organización Industrial

Organización Industrial Costos hundidos 1 1 Universidad de Montevideo Licenciatura en Economía, 2013 Objetivos Definiciones 1 Definir barreras a la entrada 2 Presentar el rol de los costos hundidos como barrera a la entrada 3

Más detalles

TEMA 4: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 4: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA T TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz TMA 4: TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que

Más detalles

TEMA 6: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 6: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TECNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IES Nuestra Señora de la Almudena Mª Jesús Saiz TEMA 6: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la arte de la física

Más detalles

Oligopolio. José C. Pernías. Curso Índice

Oligopolio. José C. Pernías. Curso Índice Oligopolio José C. Pernías Curso 2015 2016 Índice 1 Introducción 1 2 El modelo de Cournot 2 3 El modelo de Stackelberg 5 4 El modelo de Bertrand 7 5 Diferenciación de producto 8 Esta obra está licenciada

Más detalles

Conceptos Básicos para Diseño de motor Stirling con baja diferencia de temperatura

Conceptos Básicos para Diseño de motor Stirling con baja diferencia de temperatura Concetos Básicos ara Diseño de motor Stirling con baja diferencia de temeratura Prof. Roberto Román L. Deartamento de Ingeniería Mecánica Universidad de Chile 1 Introducción y Objetivos: En este documento

Más detalles

TEMA 4: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico

TEMA 4: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz TMA 4: TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que se

Más detalles

Apuntes de Microeconomía II

Apuntes de Microeconomía II . Facultad de Economía Auntes de Microeconomía II.......... Teoría del Consumidor, Teoría del Productor, Teoría de Juegos y Cometencia Imerfecta Por: Juan Carlos Mendieta Lóez [email protected]

Más detalles

DETERMINANTES DE LAS EXPORTACIONES NO TRADICIONALES EN EL PERU

DETERMINANTES DE LAS EXPORTACIONES NO TRADICIONALES EN EL PERU DETERMINANTES DE LAS EXPORTACIONES NO TRADICIONALES EN EL PERU 2002-2015 Rafael Bustamante Romaní MBA CENTRUM PUCP MG. Economía Finanzas UNMSM Doctorado (e) en Economía de los RRNN UNAM- México Docente

Más detalles

Oligopolio Dante A. Urbina

Oligopolio Dante A. Urbina Oligopolio Dante A. Urbina Contexto del oligopolio Un mercado oligopólico es aquel dominado por un grupo pequeño de vendedores o empresas. El índice de Herfindahl-Hirschman El hecho de que el mercado esté

Más detalles

Maximización n de la Utilidad

Maximización n de la Utilidad aimización n de la Utilidad icroeconomía Eco. Douglas Ramírez Los elementos básicos Hemos descrito hasta el momento los elementos básicos del roblema de decisión del consumidor Su conjunto de elección

Más detalles

AN ALISIS MATEM ATICO B ASICO. N = f0; 1; 2; :::; 8; 9; 10; ::::; 87; 88; :::::; n; n + 1; (n + 1) + 1; ::::g: Figura 1. Los numeros naturales.

AN ALISIS MATEM ATICO B ASICO. N = f0; 1; 2; :::; 8; 9; 10; ::::; 87; 88; :::::; n; n + 1; (n + 1) + 1; ::::g: Figura 1. Los numeros naturales. AN ALISIS MATEM ATICO B ASICO. DE LOS NATURALES A LOS REALES. Los numeros Naturales N: Los numeros naturales los escribimos con diez dgitos: N = f0; ; ; :::; 8; 9; 0; ::::; 87; 88; :::::; n; n + ; (n +

Más detalles

Tema 3. La utilidad y la elección. Microeconomía Intermedia 2011/12. Tema 3 1

Tema 3. La utilidad y la elección. Microeconomía Intermedia 2011/12. Tema 3 1 Tema 3 La utilidad y la elección Microeconomía Intermedia /. Tema 3 . La función de utilidad. La utilidad marginal 3. La utilidad marginal y la relación marginal de sustitución 4. La elección ótima Microeconomía

Más detalles

TEMA 2: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz TMA : TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que se

Más detalles

n veces El número real a recibe el nombre de base, n el de exponente y el resultado del producto es la potencia de orden n de a:

n veces El número real a recibe el nombre de base, n el de exponente y el resultado del producto es la potencia de orden n de a: Potenciación Sea a R; n N; la eresión a n de ne un número real asi: a n a a ::: a; n veces El número real a recibe el nombre de base, n el de eonente y el resultado del roducto es la otencia de orden n

Más detalles

GRUPOS EDUARDO. microeconomía, macroeconomía, economía de la empresa. ; móvil: ;

GRUPOS EDUARDO. microeconomía, macroeconomía, economía de la empresa.  ; móvil: ; www.ecocirculo.com ; móvil: 695.44.93 ; [email protected] Análisis Económico del Turismo Una equeña muestra de los cuadernos de rácticas que utilizan nuestros alumnos. Del cuaderno de rácticas (0), selección

Más detalles

Explique porque un amperímetro IDEAL, (como instrumento de medida de corriente eléctrica en un circuito) debe tener una resistencia interna de CERO Ω?

Explique porque un amperímetro IDEAL, (como instrumento de medida de corriente eléctrica en un circuito) debe tener una resistencia interna de CERO Ω? :: NTODUCCÓN [8.1] Medir es comarar todo objeto o ariable mensurable de interés con el resectio atrón de medida; ero en todo sistema: natural, físico, biológico, industrial, químico ó de cualquier naturaleza

Más detalles

D(X) = (Px, Y, G, Pbc, Pbs), consumidores, compradores (también pueden ser empresas que compran bienes)

D(X) = (Px, Y, G, Pbc, Pbs), consumidores, compradores (también pueden ser empresas que compran bienes) MERCA (X) = (Px, Y, G, Pbc, Pbs), consumidores, comradores (también ueden ser emresas que comran bienes) onde Px: Precio del bien, Y: Renta (salarios, alquileres, intereses, beneficios), G: gustos, Pbc:

Más detalles

2ª PRUEBA 23 de febrero de 2018

2ª PRUEBA 23 de febrero de 2018 ª PUE 3 de febrero de 8 Problema exerimental. obinas de elmholtz Modelo teórico. El camo magnético en el centro O de una bobina de N esiras circulares de radio, delgadas y aretadas, or las que circula

Más detalles

TEMA 7: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico

TEMA 7: TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA. 1.- Transformación de un sistema termodinámico TCNOLOGÍA INDUSTRIAL I. Deartamento de Tecnología. IS Nuestra Señora de la Almudena Mª Jesús Saiz TMA 7: TRMODINÁMICA. MÁUINA TÉRMICA Y MÁUINA FRIGORÍFICA La termodinámica es la arte de la física que se

Más detalles