NÚMEROS RACIONALES Q

Tamaño: px
Comenzar la demostración a partir de la página:

Download "NÚMEROS RACIONALES Q"

Transcripción

1 NÚMEROS RACIONALES Q Es el número ue se uede exresar como el cociente de dos números enteros, es decir, en forma de fracción 0. El conjunto se uede reresentar Q {, Z 0} {..., 2, 2, 1, 0, 1 8, 2 7, 1,... } CARACTERISTICAS Los números enteros son racionales, ues se ueden exresar como cociente de ellos mismos or la unidad: Si a Z a a 1 Los números racionales no enteros se llaman fraccionarios. Así como en el conjunto de los números enteros (Z) cada número tiene un sucesor (el siguiente al 7 es el 8, el siguiente al -5 es el -4), no asa lo mismo con los racionales, ues entre cada dos números racionales existen infinitos números. Al exresar un número racional, no entero, en forma decimal se obtiene un número decimal exacto o bien un número decimal eriódico. PROPIEDADES Este conjunto hereda todas las roiedades del conjunto de los números enteros (Z) ara las oeraciones de adición y multilicación. En la multilicación aarece la roiedad del INVERSO MULTIPLICATIVO ó RECIPROCO (a 1 ); la cual establece ue: Todo número racional multilicado or su reciroco da como resultado el neutro o módulo de la multilicación (1). a Q a 0, a 1 tales ue a. a 1 1 Ejemlo: El reciroco de 2 es Ejemlo: El reciroco 2 es 2, uesto ue ( 2 ). ( 2 ) 1 OBSERVE: - Los miembros de esta clase se escriben como números de la forma /, en donde y son cualesuiera números enteros. Donde 0 - Los elementos del conjunto de NÚMEROS RACIONALES están ordenados, en el sentido de ue si a/b y c/d son dos racionales, y si a/b c/d, entonces debe cumlirse ue a/b < c/d, o ue a/b > c/d.

2 - Dos números racionales cualesuiera, a/b y c/d, en los ue se cumle ue a/b < c/d, constituyen en si mismos un conjunto esecial llamado intervalo cerrado, el cual tiene la PROPIEDAD DE DENSIDAD. Dicha roiedad establece ue entre dos números racionales así definidos uede establecerse una infinidad de números racionales de la forma m/n, tales ue ara cualuiera de ellos se odrá establecer ue a/b m/n c/d. - En un intervalo cerrado cualuiera de números racionales uede establecerse un rimer y un último elemento, ero la cantidad de números definibles entre estos dos no odrá contarse. Dicho intervalo se definirá en forma extensiva asi I {a/b,..., c/d}, donde a/b y c/d serán el rimer y el último elemento resectivamente. - El conjunto de NÚMEROS RACIONALES no tiene un rimer elemento ue ueda llamarse el menor, ni un último elemento ue ueda llamarse el mayor, or lo ue será un conjunto infinito. Tal clase de elementos rimero y último no ueden definirse. - El conjunto de NÚMEROS RACIONALES y cualuier INTERVALO CERRADO definido entre dos de sus elementos comartirán la característica de no oder enumerarse, o de oder indicarse cuantos elementos tienen, ero no la característica de no tener mayor y menor elemento. De alguna manera, se uede hacer ue un intervalo cualuiera de números racionales se arezca al mismo conjunto de racionales, ero sin llegar a ser igual a éste. Los números racionales manifiestan la tendencia de acercarse el uno al otro indefinidamente, lo cual los hace buenos símbolos ara reresentar la recisión de una medida. - Los números racionales definidos en el intervalo abierto -1 < a/b < 0 o en el intervalo abierto 0 < a/b < 1 se reresentan con un numerador a de menor valor absoluto ue el valor absoluto de su denominador b, y recibirán el nombre de FRACCIONES PROPIAS o VERDADERAS FRACCIONES DE LA UNIDAD. - Todos los números racionales ue no estén definidos en cualuiera de estos intervalos serán llamados FRACCIONES IMPROPIAS. - En el conjunto de NÚMEROS RACIONALES estarán bien definidas las oeraciones binarias de SUMA, RESTA, MULTIPLICACION, DIVISION Y POTENCIACION, ero no la oeración de RADICACION. - Los elementos del conjunto de NUMEROS RACIONALES reresentan satisfactoriamente a cualuier elemento del conjunto de NÚMEROS ENTEROS y del conjunto de NÚMEROS NATURALES. En consecuencia el conjunto Q {, } se constituye en una reresentación del conjunto de NÚMEROS RACIONALES. Proiedad aruimediana: el conjunto es denso en or construcción misma de ; es decir, ara cualuier areja de números racionales existe otro número racional situado entre ellos. FSC

3 REPRESENTACIÓN EN LA RECTA NUMÉRICA A cada unto en la recta se asocia un número racional. Entre cada ar de números racionales existe otro número racional. Se uede establecer el orden entre números racionales, ero no se uede decir cuál es el sucesor o antecesor de un número racional. OPERACIONES: SUMA - RESTA MULTIPLICACIÓN DIVISIÓN IGUAL DENOMINADOR ± m ± m. m n. m. n m n. n. m DISTINTO DENOMINADOR También se uede realizar: m n. n. n m. m Otra forma (Algoritmo de la suma) ± m n n ± m. n Observe: Es lo mismo ue realizar

4 OTRA DEFINICIÓN DE NÚMERO RACIONAL Toda exresión decimal finita o eriódica reresenta un número racional. Teniendo en cuenta el siguiente cuadro: Se uede convertir un número racional de la forma ( ), 0 a su resectiva clase de euivalencia en forma decimal. Ejemlo: 1 2 0,5 ó 0, 0, El `roceso inverso ara convertir una exresión decimal finita, eriódica o mixta a una exresión de la forma ( ), 0, reuiere de unas técnicas ue se detallaran a continuación: FSC

5 CASO 1 CONVERSIÓN DE EXPRESIONES DECIMALES EXACTOS A LA FORMA ( ), 0 Dado el caso del número decimal 0,5 Para ello decimos lo siguiente: Sea X 0,5 Como la exresión tiene un solo digito a artir del unto decimal, entonces multilicamos or. Si la exresión decimal tiene más dígitos a artir del unto decimal entonces multilicamos or múltilos de según el caso. Luego tenemos: Desués se deseja la variable: X 0,5. X 5 X 5 X 1 2 CASO 2 CONVERSIÓN DE EXPRESIONES DECIMALES PERIÓDICOS PUROS A LA FORMA ( ), 0 Dado el caso del número decimal 0, 0, Sea X 0, Luego multilicamos or X 0,. () Asi tenemos: X,

6 Luego restamos las ecuaciones: Entonces X 9 X 1 CASO CONVERSIÓN DE EXPRESIONES DECIMALES PERIÓDICOS MIXTOS A LA Dado el caso del número decimal,2456 FORMA ( ), 0 Sea X,2456 Multilicando or la otencia de ue tenga la cantidad de cifras ue antes del eriódo; en este caso se multilica or 00 Luego tenemos 00 X,2456 (00) X 24, 56 Ahora se multilica la nueva igualdad or múltilos de de acuerdo a la cantidad de dígitos ue se obtengan en la nueva ecuación. 00 (0)X 24, 56 (0) 0.000X 2456, 56 Restamos las ecuaciones y desejamos la variable: X FSC

Conjunto de Números Racionales.

Conjunto de Números Racionales. Conjunto de Números Racionales. El conjunto de los números racionales está formado por: el conjunto de los números enteros (-2, -1, 0, 1, 2, ) y los números fraccionarios y se representan con una Q. Números

Más detalles

LOS NÚMEROS RACIONALES

LOS NÚMEROS RACIONALES LOS NÚMEROS RACIONALES OBJETIVOS: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales y en el ámbito

Más detalles

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos

UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS. Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cuerpos cuadráticos UNIVERSIDAD NACIONAL MAYOR DE SAN MARCOS FACULTAD DE CIENCIAS MATEMÁTICAS EAP DE MATEMÁTICA PURA Fracciones continuas, ecuación de Pell y unidades en el anillo de enteros de los cueros cuadráticos Caítulo

Más detalles

Apuntes de los NÚMEROS REALES

Apuntes de los NÚMEROS REALES Apuntes de los NÚMEROS REALES Apuntes y notas tomadas de la dirección URL: http://dgenp.unam.mx/direccgral/secacad/cmatematicas/pdf/m4unidad03.pdf pág. 1 tres posibilidades ESQUEMA DE LOS NÚMEROS REALES

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # 12 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE # Ecuaciones Una ecuación es la a rmación de que dos exresiones algebraicas son iguales. Los siguientes son ejemlos de ecuaciones:

Más detalles

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria.

CONJUNTOS NUMÉRICOS. La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. CONJUNTOS NUMÉRICOS La noción de número es tan antigua como el hombre mismo ya que son necesarios para resolver situaciones de la vida diaria. Por ejemplo, usamos números para contar una determinada cantidad

Más detalles

En una recta numérica el punto que representa el cero recibe el nombre de origen.

En una recta numérica el punto que representa el cero recibe el nombre de origen. 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se van ampliando a medida que se necesita resolver ciertas problemáticas de la

Más detalles

Conjuntos Numéricos II

Conjuntos Numéricos II Conjuntos Numéricos II Números Racionales Son aquellos que pueden ser escritos de la siguiente forma: Donde recibe el nombre de numerador y el de denominador. Para cada elemento de este conjunto, los llamados

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #28 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASE #8 Identidades Trigonométricas Una identidad es una ecuación que es válida ara todos los valores de las variables ara los cuales

Más detalles

UNIDAD 6 AULA 360. Números decimales

UNIDAD 6 AULA 360. Números decimales UNIDAD 6 Números decimales 1. Números decimales. Ordenación y representación 2. Tipos de números decimales 3. Conversión de decimal a fracción 4. Operaciones con números decimales 1. Números decimales

Más detalles

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O

DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O DEPARTAMENTO DE MATEMÁTICAS B A C H I L L E R A T O FUNDACIÓN VEDRUNA S E V I L L A COLEGIO SANTA JOAQUINA DE VEDRUNA MATEMÁTICAS I LÍMITES Y CONTINUIDAD DE FUNCIONES Límite finito de una función en un

Más detalles

CONJUTOS NÚMERICOS NÚMEROS NATURALES

CONJUTOS NÚMERICOS NÚMEROS NATURALES CONJUTOS NÚMERICOS NÚMEROS NATURALES El conjunto de números naturales tiene gran importancia en la vida práctica ya que con sus elementos se pueden encontrar elementos u objetos de otros conjuntos. El

Más detalles

3. Elementos neutros axb N. Para la suma es el cero ya que: a + 0 = a 2. Asociatividad:

3. Elementos neutros axb N. Para la suma es el cero ya que: a + 0 = a 2. Asociatividad: INTRODUCCIÓN Las primeras ideas de número aparecen en los albores de la civilización. Los antiguos babilonios y egipcios conciben las fracciones. Con Pitágoras, los griegos descubren la necesidad de adoptar

Más detalles

Álgebra y Trigonometría

Álgebra y Trigonometría Álgebra y Trigonometría Conceptos fundamentales del Álgebra Universidad de Antioquia Departamento de Matemáticas 1. Números Reales El conjunto de los números reales está constituido por diferentes clases

Más detalles

TEMA Nº 1. Conjuntos numéricos

TEMA Nº 1. Conjuntos numéricos TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales

Más detalles

TEMA 1 CONJUNTOS NUMÉRICOS

TEMA 1 CONJUNTOS NUMÉRICOS TEMA 1 CONJUNTOS NUMÉRICOS. Objetivos / Criterios de evaluación O.1.1 Realizar correctamente operaciones con fracciones: Suma, resta, producto, cociente, potencia y radicación. O.1.2 Resolver operaciones

Más detalles

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre

Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 1º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre CONJUNTO DE LOS NÚMEROS ENTEROS Los números enteros están formados por: los números naturales (o enteros positivos y el cero) y los números negativos. El cero no tiene signo, no es ni positivo ni negativo.

Más detalles

Capítulo. Decimales. Copyright 2013, 2010, and 2007, Pearson Education, Inc.

Capítulo. Decimales. Copyright 2013, 2010, and 2007, Pearson Education, Inc. Capítulo 7 Decimales Copyright 2013, 2010, and 2007, Pearson Education, Inc. Los decimales La palabra decimal viene del latín decem, que significa diez. El sistema decimal es un sistema basado en posiciones

Más detalles

GUIA DE TRABAJO Nº 1 NÚMEROS - TEORÍA 2017 Nombre alumno:.. Fecha:

GUIA DE TRABAJO Nº 1 NÚMEROS - TEORÍA 2017 Nombre alumno:.. Fecha: GUIA DE TRABAJO Nº 1 NÚMEROS - TEORÍA 2017 Nombre alumno:.. Fecha: Contenidos Números naturales, enteros, racionales, representación en la recta numérica, propiedades. Densidad de Q. Decimales periódicos

Más detalles

TEMA 3. NÚMEROS RACIONALES.

TEMA 3. NÚMEROS RACIONALES. TEMA 3. NÚMEROS RACIONALES. Concepto de fracción Una fracción es el cociente de dos números enteros a y b, que representamos de la siguiente forma: b denominador, indica el número de partes en que se ha

Más detalles

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-3-1

Capítulo 5. Los números reales y sus representaciones Pearson Education, Inc. Diapositiva 5-3-1 Capítulo 5 Los números reales y sus representaciones 2012 Pearson Education, Inc. Diapositiva 5-3-1 Capítulo 5: Los números reales y sus representaciones 5.1 Números reales, orden y valor absoluto 5.2

Más detalles

EL CONJUNTO DE LOS NUMEROS RACIONALES

EL CONJUNTO DE LOS NUMEROS RACIONALES «Cuando me preguntan para qué puede servir una educación Matemática en el colegio a una persona que en su oficio no necesitará ningún conocimiento científico, una de mis respuestas es que la ciencia permite

Más detalles

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2.

PROBLEMAS DE LÍMITES Y CONTINUIDAD (MÉTODOS ALGEBRAICOS) lím. lím. Las descomposiciones factoriales se hacen dividiendo sucesivamente por x + 2. PROBLEMAS DE LÍMITES Y CONTINUIDAD MÉTODOS ALGEBRAICOS) Cálculo de ites or métodos algebraicos Resuelve los siguientes ites: a) 8 b) 8 c) a) ) ) 6) ) 8 Se reite el roceso) ) ) ) ) Las descomosiciones factoriales

Más detalles

Naturales (avanzado) Propiedades de la suma y de la resta. Propiedades de la multiplicación y la división. Jerarquía de operaciones.

Naturales (avanzado) Propiedades de la suma y de la resta. Propiedades de la multiplicación y la división. Jerarquía de operaciones. LEYENDA: (unidad interactiva) (unidad interactiva con ejercicios extra) (unidad no interactiva) (en roceso) ARITMÉTICA Naturales Naturales (básico) Sistema decimal. Orden. Oeraciones. Aroximación. Naturales

Más detalles

Números Racionales. a, siendo a y b números enteros, con b. distinto de 0.

Números Racionales. a, siendo a y b números enteros, con b. distinto de 0. Números Racionales Al dividir dos números enteros, no siempre resulta otro número entero. Esto llevó a la necesidad de ampliar el conjunto Z y dar paso a un nuevo conjunto, llamado de los Números Racionales

Más detalles

Lección 1 Números Reales

Lección 1 Números Reales Lección Números Reales 4º ESO MATEMÁTICAS ACADÉMICAS El número real 2 LECCIÓN. NÚMERO REAL.- CONJUNTOS NUMÉRICOS Números Naturales. Son los números más intuitivos y simples. Sirven, básicamente, para contar:

Más detalles

Introducción. Desarrollo. Palabras clave. Matemáticas Unidad 1 Significado y uso de los números. Números enteros

Introducción. Desarrollo. Palabras clave. Matemáticas Unidad 1 Significado y uso de los números. Números enteros Matemáticas Unidad 1 Significado y uso de los números Convertir fracciones a su escritura decimal y viceversa. Definir y utilizar los números negativos. Ubicar y representar números enteros, fraccionarios

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

Fracciones numéricas enteras

Fracciones numéricas enteras Números racionales Fracciones numéricas enteras En matemáticas, una fracción numérica entera expresa la división de un número entero en partes iguales. Una fracción numérica consta de dos términos: El

Más detalles

Grado Programa de 1922 Programa de 1940 Programa de 1961 Programa de 1972 Programa de 1993

Grado Programa de 1922 Programa de 1940 Programa de 1961 Programa de 1972 Programa de 1993 Anexo Anexo Los números decimales en los programas de Educación Primaria Grado Programa de 1922 Programa de 1940 Programa de 1961 Programa de 1972 Programa de 1993 1 2 3 4 Introducción al estudio de las

Más detalles

Departamento de Ingeniería Matemática- Universidad de Chile

Departamento de Ingeniería Matemática- Universidad de Chile Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Álgebra Lineal 08-4 Matrices elementales SEMANA 2: MATRICES Como veremos la resolución de sistemas de ecuaciones via

Más detalles

Capitulo I - Lógica Matemática

Capitulo I - Lógica Matemática UNIERSIDAD PRIADA DE MOQUEGUA JOSE CARLOS MARIATEGUI Caitulo I - Lógica Matemática Todos los tóicos relativos a las matemáticas se razonan desde el unto de vista lógico y or lo tanto hay ue tener muy en

Más detalles

Números. Conjuntos numéricos

Números. Conjuntos numéricos Contenidos: Conjuntos numéricos Nivel: 1 Medio Números. Conjuntos numéricos 1. Conjuntos numéricos Los conjuntos numéricos con los que has trabajado tanto en Enseñanza Básica como en Enseñanza Media, se

Más detalles

Tema 1.- Los números reales

Tema 1.- Los números reales Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional

Más detalles

Num eros Racionales. Clase # 1. Universidad Andrés Bello. Junio 2014

Num eros Racionales. Clase # 1. Universidad Andrés Bello. Junio 2014 UniV(>r.:ild-td Andr ::i Bello Num'eros Rac1onai(>S Numéros Racionales Clase # 1 Junio 2014 Conjunto de los números naturales N Definición Son los números desde el 1 al infinito positivo. N = {1, 2,

Más detalles

NÚMEROS REALES (lr) OPERATORIA EN lr El resultado de una operación entre racionales es SIEMPRE otro número racional (excluyendo la división por cero).

NÚMEROS REALES (lr) OPERATORIA EN lr El resultado de una operación entre racionales es SIEMPRE otro número racional (excluyendo la división por cero). NÚMEROS REALES (lr) La unión del conjunto de los racionales (Q) y los irracionales (Q ) genera el conjunto de los números reales el cual se expresa como lr. Es decir: OPERATORIA EN lr El resultado de una

Más detalles

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas.

LOGRO: Reconoce distintas representaciones de los números reales y usa sus propiedades para resolver Problemas. ESTANDARES Utilizo números reales en sus diferentes representaciones y en diversos contextos. Resuelvo problemas y simplifico cálculos usando propiedades y relaciones de los números reales y de las relaciones

Más detalles

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.

El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras. 1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más

Más detalles

Conjuntos numéricos. Apuntes de Matemática I. Tatiana Inés Gibelli C.U.R.Z.A.

Conjuntos numéricos. Apuntes de Matemática I. Tatiana Inés Gibelli C.U.R.Z.A. Conjuntos numéricos Apuntes de Matemática I Tatiana Inés Gibelli C.U.R.Z.A. Un concepto básico y elemental del lenguaje matemático es el de número. Para poder trabajar en matemática, es imprescindible

Más detalles

Número que expresa parte de un todo. Toda fracción se representa como el cociente de dos números enteros en la forma con q 0

Número que expresa parte de un todo. Toda fracción se representa como el cociente de dos números enteros en la forma con q 0 Fracciones Fracciones Número que expresa parte de un todo. Toda fracción se representa p como el cociente de dos números enteros en la forma con q 0 numerador denominador p q Propiedad fundamental de las

Más detalles

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D

Más detalles

DOCUMENTO DE TRABAJO 2009 TRIGONOMETRÍA

DOCUMENTO DE TRABAJO 2009 TRIGONOMETRÍA Prof. Juan Gutiérrez Césedes ANGULO TRIGONOMÉTRICO * ANGULO TRIGONOMETRICO Es aquel que se enera or la rotación de un rayo desde una osición inicial hasta otra osición final, siemre alrededor de un unto

Más detalles

ÍNDICE. Unidad I Conjuntos 10. Unidad II Sistemas de numeración 70. Presentación... 9

ÍNDICE. Unidad I Conjuntos 10. Unidad II Sistemas de numeración 70. Presentación... 9 ÍNDICE Presentación... 9 Unidad I Conjuntos 10 Antes de empezar... 12 1 Idea intuitiva de un conjunto... 13 2 Cardinalidad de un conjunto... 20 3 Concepto de conjunto universal, subconjunto; conjuntos

Más detalles

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez UNIDAD 1 CONCEPTOS BÁSICOS Números naturales, Números enteros, Números racionales, números irracionales y números reales Dr. Daniel Tapia Sánchez 1.1 Números Naturales (N) 1.1.1 Consecutividad numérica

Más detalles

LECCIÓN 44A EXPRESIONES ALGEBRAICAS

LECCIÓN 44A EXPRESIONES ALGEBRAICAS LECCIÓN 44A EXPRESIONES ALGEBRAICAS Las exresiones algebraicas son como las exresiones numéricas que vimos en la lección anterior exceto que usted uede usar letras y números en tales exresiones. Para resolver,

Más detalles

Prof. Daniel Villar Escuela Técnica del Buceo 2009

Prof. Daniel Villar Escuela Técnica del Buceo 2009 Matemática: Teórico 009 Seguramente el lector ya conoce estructuras numéricas, naturales, enteros, racionales. Sus diferencias y carencias. Qué hizo necesario la creación de una estructura aún más amlia

Más detalles

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA

Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA Estándares de Contenido y Desempeño, Estándares de Ejecución y Niveles de Logro Marcado* MATEMÁTICA * Se distinguen con negrita en el texto. ESTÁNDAR DE CONTENIDO Y DESEMPEÑO Nº 1 Conocer la estructura

Más detalles

TEMA 5: NÚMEROS RACIONALES ÍNDICE:

TEMA 5: NÚMEROS RACIONALES ÍNDICE: TEMA 5: NÚMEROS RACIONALES ÍNDICE: 1 INTRODUCCIÓN 2 EL CONJUNTO DE LOS NÚMEROS RACIONALES 3 REPRESENTACIÓN GEOMÉTRICA DE LOS NÚMEROS RACIONALES 4 SUMA DE NÚMEROS RACIONALES 5 MULTIPLICACIÓN DE NÚMEROS

Más detalles

UNIDAD I MATEMÁTICA 3 A

UNIDAD I MATEMÁTICA 3 A UNIDAD I MATEMÁTICA 3 A NÚMEROS REALES (R) Números Racionales Expresiones Decimales El Conjunto Q de los números racionales está formado por todos aquellos números que pueden expresarse en forma de fracción,

Más detalles

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST

TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRITERIO DE NYQUIST TRAZADO DE DIAGRAMA POLAR Y APLICACIÓN DE CRIRIO DE NYQUIST. TRAZADO DE DIAGRAMA POLAR. La función de transferencia P, tendrá el formato dado or la siguiente exresión generalizada: P ± m m P A P + A P

Más detalles

Chapter Audio Summary for McDougal Littell Pre-Algebra

Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter Audio Summary for McDougal Littell Pre-Algebra Chapter 5 Rational Numbers and Equations En el capítulo 5 aprendiste a escribir, comparar y ordenar números racionales. Después aprendiste a sumar

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales

Bases Matemáticas para la Educación Primaria. Guía de Estudio. Tema 3: Números racionales. Parte I: Fracciones y razones Números racionales Bases Matemáticas para la Educación Primaria Guía de Estudio Tema 3: Números racionales Parte I: Fracciones y razones Números racionales 1 Situación introductoria ANÁLISIS DE CONOCIMIENTOS PUESTOS EN JUEGO

Más detalles

2 entre dos números racionales distintos es siempre posible encontrar el que está entre ambos.

2 entre dos números racionales distintos es siempre posible encontrar el que está entre ambos. LICEO DE APLICACIÓN DPTO. DE MATEMÁTICA º Medio UNIDAD Nùmeros GUIA DE EJERCICIOS Nº Contenidos Números racionales Aprendizajes esperados - Determinan relación de orden con números racionales - Expresan

Más detalles

Números Naturales. Los números enteros

Números Naturales. Los números enteros Números Naturales Con los números naturales contamos los elementos de un conjunto (número cardinal). O bien expresamos la posición u orden que ocupa un elemento en un conjunto (ordinal). El conjunto de

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

CLASIFICACION DE LOS NUMEROS

CLASIFICACION DE LOS NUMEROS CLASIFICACION DE LOS NUMEROS NÚMEROS NATURALES En el desarrollo de las culturas fue evolucionando esta forma primitiva de representar objetos o cosas reales a través de símbolos naciendo así el primer

Más detalles

Aritmética para 6.º grado (con QuickTables)

Aritmética para 6.º grado (con QuickTables) Aritmética para 6.º grado (con QuickTables) Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Reciprocidad Cuadrática

Reciprocidad Cuadrática Caítulo 4 Recirocidad Cuadrática En este caítulo estudiamos una serie de resultados dirigidos a demostrar la Ley de Rerocidad Cuadrática, la cual fue robada or Gauss en su libro Disquisitiones Arithmeticae

Más detalles

TEMA 1: NÚMEROS REALES

TEMA 1: NÚMEROS REALES . Numeros racionales Ejemplo: TEMA : NÚMEROS REALES 4.............................................. Entonces puedo expresar el "" de infinitas formas, siendo su fracción generatriz la que es irreducible.

Más detalles

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( )

MATEMATICA CPU Práctica 5 FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES. r iv. ( p )( ) v. ( )( ) MATEMATICA CPU FUNCIONES POLINÓMICAS Y EXPRESIONES RACIONALES Sean los olinomios ( 5, q (, r ( y s ( a) Hallar los olinomios: i ( q( ii r( q( s( iii r ( s( iv r ( ( q( b) Calcular: i () ii q ( ) iii (

Más detalles

Conjunto de los Números Racionales

Conjunto de los Números Racionales Conjuntos Numéricos Los conjuntos que revisten una gran importancia dentro de las matemáticas, son los conjuntos numéricos, y es primordial el estudio de las diferentes propiedades y operaciones que pueden

Más detalles

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales

Números. Índice del libro. 1. Los números reales. 2. Operaciones con números enteros y racionales. 3. Números decimales 1. Los números reales 2. Operaciones con números enteros y racionales 3. decimales 4. Potencias de exponente entero 5. Radicales 6. Notación científica y unidades de medida 7. Errores Índice del libro

Más detalles

Preparación para Álgebra 1 de Escuela Superior

Preparación para Álgebra 1 de Escuela Superior Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales

Más detalles

Sistema de los Números Reales

Sistema de los Números Reales Sistema de los Números Reales El Conjunto de los Números Racionales Ysela Ochoa Tapia Ysela Ochoa Tapia Sistema de los Números Reales / Introducción Los racionales: Q Los números racionales permiten expresar

Más detalles

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo.

Resumen anual de Matemática 1ª Convocatoria: jueves 24 de noviembre, 2016 Octavo nivel 2ª Convocatoria: miércoles 1 de febrero, 2017 broyi.jimdo. Resumen anual de Matemática 1ª Convocatoria: jueves 4 de noviembre, 016 Octavo nivel ª Convocatoria: miércoles 1 de febrero, 017 broyi.jimdo.com Contenidos Los números... Objetivo 1... El conjunto de los

Más detalles

Representación de números en la recta real. Intervalos

Representación de números en la recta real. Intervalos Representación de números en la recta real. Intervalos I. Los números reales En matemáticas los números reales se componen de dos grandes grupos: los números racionales (Q) y los irracionales (I). A su

Más detalles

1.1. Los números reales

1.1. Los números reales 1.1. Los números reales El conjunto de los números reales está compuesto por todos los números racionales (Q) y todos los irracionales (I). Sin olvidar que los números racionales incluyen a los naturales

Más detalles

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b

GUÍA NÚMERO 2 NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma b Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO NÚMEROS RACIONALES Los números racionales son todos aquellos

Más detalles

Programa de: ARITMÉTICA SUPERIOR I Clave MAT- Créditos: 04

Programa de: ARITMÉTICA SUPERIOR I Clave MAT- Créditos: 04 Cátedra: Matemática Moderna (AB) Horas/Semana Preparado por: Pablo Smester A.M. Angel F. Baez A.M Alicia Martin A.M. Horas Teóricas 04 Fecha: Abril 2012 Horas Practicas 00 Actualizado por: Semanas 16 Fecha

Más detalles

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1. conjunto de todos ellos se les designa con la letra Q.

Matemáticas B 4º E.S.O. Tema 1 Los números Reales 1. conjunto de todos ellos se les designa con la letra Q. Matemáticas B º E.S.O. Tema 1 Los números Reales 1 TEMA 1 LOS NÚMEROS REALES 1.1 CLASIFICACIÓN DE LOS NÚMEROS REALES º 1.1.1 TIPOS DE NÚMEROS º Los números naturales son : 1, 2,,..., 10, 11,..., 102, 10,....

Más detalles

Números Racionales. Departamento de Matemáticas. Facultad de Ciencias Exactas. FMM012. Miguel Ángel Muñoz Jara 2016

Números Racionales. Departamento de Matemáticas. Facultad de Ciencias Exactas. FMM012. Miguel Ángel Muñoz Jara 2016 Números Racionales. FMM012 Departamento de Matemáticas Facultad de Ciencias Exactas. 2016 Miguel Ángel Muñoz Jara 2016 [email protected] 1 / 1 Actividad Inicial. Grupos de 3 integrantes En base a

Más detalles

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19

TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y

Más detalles

Sistema decimal (base 10)

Sistema decimal (base 10) Sistema decimal (base 10) Utiliza 10 dígitos: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Es un sistema posicional: el valor numérico de un dígito depende de su posición 717.75 El 7 rojo vale 700. El 7 verde vale 7.

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

Números reales Conceptos básicos Conjuntos numéricos

Números reales Conceptos básicos Conjuntos numéricos Números reales Conceptos básicos Conjuntos numéricos En la presente sección se hace una revisión de los principales conjuntos númericos, que se necesitan en un primer curso de Matemática de nivel universitario.

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Tema Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.

Más detalles

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números

*Número natural, el que sirve para designar la cantidad de. *El cero, a veces, se excluye del conjunto de los números *Número natural, el que sirve para designar la cantidad de elementos que tiene un cierto conjunto, y se llama cardinal de dicho conjunto. *Los números naturales son infinitos. El conjunto de todos ellos

Más detalles

FISICA I Repaso. Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino)

FISICA I Repaso. Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino) Si el alumno no supera al maestro, ni es bueno el alumno; ni es bueno el maestro (Proverbio Chino) Profesor: Cazzaniga, Alejandro J. Física I E.T.N : 28 - República Francesa Pág. 1 de 9 Conjuntos numéricos

Más detalles

TEMA 2. FRACCIONES Y NÚMEROS DECIMALES

TEMA 2. FRACCIONES Y NÚMEROS DECIMALES TEMA 2. FRACCIONES Y NÚMEROS DECIMALES ÍNDICE 1. Operaciones con fracciones 2. Operaciones con números decimales 3. Fracciones y números decimales 4. Fracción generatriz Tema 2. Fracciones y números decimales

Más detalles

Solución del 2do. nivel (3ra. etapa) 2da. Olimpiada Cientí ca Estudiantil Plurinacional Boliviana Responzable: Mgr. Alvaro H. Carrasco C.

Solución del 2do. nivel (3ra. etapa) 2da. Olimpiada Cientí ca Estudiantil Plurinacional Boliviana Responzable: Mgr. Alvaro H. Carrasco C. Solución del do. nivel (ra. etaa) da. Olimiada Cientí ca Estudiantil Plurinacional Boliviana Resonzable: Mgr. Alvaro H. Carrasco C.. Como 000 = entonces los divisores ares de 000 son: ; ; ; ; ; ; ; ; ;

Más detalles

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2

Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2 Instituto Raúl calabrini Ortiz Matemática º año NUMERO RACIONALE En la ecuación 0, todos los números que aparecen son enteros in embargo, cuando tratamos de resolverla, vemos que la ecuación no tiene solución

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Tutor: Antonio Rivero Cuesta 2.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.

Más detalles

TEMA 1. Números Reales. Teoría. Matemáticas

TEMA 1. Números Reales. Teoría. Matemáticas 1 1.- Los números reales Cuáles son los números reales? Los números reales son todos los números racionales y todos los números irracionales. El conjunto de los números reales se designa con el símbolo

Más detalles

Matemáticas - Guía 1 Proposiciones

Matemáticas - Guía 1 Proposiciones LOGROS: 1. Reconoce el conceto e roosición. 2. Clasifica las roosiciones en simles y comuestas. 3. Resuelve roosiciones comuestas utilizando los conectivos lógicos. 4. Halla el valor de verdad de una roosición

Más detalles

1. LÍMITE DE UNA FUNCIÓN REAL

1. LÍMITE DE UNA FUNCIÓN REAL CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS PROGRAMA: INGENIERIAS DE SISTEMAS Y CIENCIAS ADMINISTRATIVAS ACTIVIDAD ACADEMICA: CÁLCULO DIFERENCIAL DOCENTE:

Más detalles

Propiedades de la Multiplicación de Fracciones

Propiedades de la Multiplicación de Fracciones Propiedades de la Multiplicación de Fracciones El producto de fraccionarios, también posee propiedades que deben ser tomadas en cuenta al momento de resolver operaciones multiplicativas. Propiedad interna.-

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

TEMA 2 NÚMEROS FRACCIONARIOS

TEMA 2 NÚMEROS FRACCIONARIOS MATEMÁTICAS º ESO TEMA NÚMEROS FRACCIONARIOS Conversación en el mercado: - Qué le pongo? - Pues me voy a llevar medio de jamón, otro medio de queso y cuarto y mitad de salchichón. Ésta es una conversación

Más detalles

Unidad 1 Lección 1.1. Conjunto de los Números Reales. 03/09/2013 Prof. José G. Rodríguez Ahumada 1 de 22

Unidad 1 Lección 1.1. Conjunto de los Números Reales. 03/09/2013 Prof. José G. Rodríguez Ahumada 1 de 22 Unidad 1 Lección 1.1 Conjunto de los Números Reales 03/09/2013 Prof. José G. Rodríguez Ahumada 1 de 22 Actividad 1.1 Capítulo 1 - Section 1.1: Números Reales. Ejercicios de Práctica: Páginas 17 y 18 problemas

Más detalles

Pre-Universitario Manuel Guerrero Ceballos

Pre-Universitario Manuel Guerrero Ceballos Pre-Universitario Manuel Guerrero Ceballos Clase N 02 Operatoria Resumen de la clase anterior NÚMEROS Conjuntos numéricos Definiciones Orden Q Q* IN IN 0 R II C 9 número impar múltiplos {9, 18, 27, } divisores

Más detalles