EJERCICIOS DE PROGRAMACIÓN LINEAL
|
|
|
- Celia Casado Peña
- hace 9 años
- Vistas:
Transcripción
1 EJERCICIOS DE PROGRAMACIÓN LINEAL 1 Un fabricante desea encontrar la producción semanal óptima de los artículos A, B y C para maximizar sus beneficios. Las ganancias por unidad de estos artículos son: 2, 2 y 4 unidades monetarias respectivamente. Los productos A, B y C se procesan en dos máquinas, con las siguientes necesidades orarias por artículo y máquina: Especificaciones orarias por artículo A B C Máquina Máquina El número de oras disponibles por semana de cada máquina es de 230 y 360 oras respectivamente. Por necesidades de mercado la producción semanal de los artículos A y B debe de ser al menos de 160 unidades. Cuántas unidades debe producir el fabricante de cada artículo semanalmente? Cuál será su ganancia semanal? Solución producción semanal de A producción semanal de B producción semanal de C El planteamiento del problema: Max z = sj.a x i 0 i = 1, 2,3 Introduciendo las variables de olgura :,, x 6 y las variables artificiales: x 7 A Pasando a forma estandar:
2 A Max z = Mx 7 sj.a: = = 360 A + x 6 + x 7 = 160 x i 0, i = 1,...,7 A x 7 A x 6 x M M M+2 M M x 6 x /3-2/3-4/ /3 1/3 2/ /3 2/3 1/3 Estamos en el óptimo: óptimo = 110 unidades semanales de A óptimo = 50 unidades semanales de B óptimo n =90 unidades semanales de C x /3-4/3-2/3 La ganancia semanal será de 680 unidades monetarias.
3 2 En un almacén se guarda aceite de girasol y de oliva. Para atender a los clientes se an de tener almacenados un mínimo de 30 bidones de aceite de girasol y 50 bidones de aceite de oliva, y además el número de bidones de aceite de oliva no debe ser inferior a la mitad del número de bidones de aceite de girasol. La capacidad total del almacén es de 250 bidones. Sabiendo que el gasto de almacenaje de un bidón de aceite de oliva es de 100 ptas. y de uno de girasol de 70 ptas., determinar cuántos bidones de cada tipo ay que almacenar para que el gasto sea mínimo. Solución: : nº de bidones de aceite de oliva : nº de bidones de aceite de girasol min z = suj.a : luego : min z = suj.a : La solución es: x* 1 = 50, x* 2 =30, z* = Una compañía química se a especializado en la producción de un compuesto formado por tres componentes básicos: azufre, clorato de potasio y carbón vegetal. La disponibilidad mensual de azufre es de 800 kg, no abiendo problemas de abastecimiento para los otros productos. El contenido mínimo, en peso, de azufre a de ser del 20% y el de clorato potásico del 25%. Por el contrario la cantidad máxima, en peso, de carbón vegetal es del 15%. Los costes por kilo de azufre, clorato y carbón son respectivamente, 40, 50, y 25 unidades monetarias. Por otra parte el precio por kilo de venta de un kilo de compuesto es de 45 unidades monetarias. Además, debido a la demanda del mercado, la compañía debe producir la menos 1500 kg del compuesto. Decidir cuál es el programa de fabricación mensual del compuesto que garantiza la demanda y maximiza el beneficio. Solución: Sean, y los kilos de azufre, clorato de potasio y carbón vegetal, respectivamente en el compuesto. El coste del compuesto se puede expresar como: a su vez, el precio de venta es 45( + + ) y por lo tanto, el beneficio (función a maximizar) lo expresaremos como: z=45( + + ) - ( )=
4 Teniendo en cuenta los contenidos mínimos de los tres componentes deducimos las restricciones: 20/100 ( + + ) , 25/100 ( + + ) , 15/100 ( + + ) Por la demanda del mercado y por la disponibilidad de azufre 800. Luego el problema que resulta es Maximizar z= Sujeto a , 800, , , ,,, 0. La solución es: x* 1 = 800, x* 2 = 475, x* 3 = 225 y el beneficio z* = Una Cooperativa ganadera especializada en ganado ovino va a contratar dos tipos de veterinarios (con experiencia y sin experiencia) para atender el control de calidad de los piensos destinados a alimentar a sus animales. Necesita inspeccionar al menos 2100 raciones por día laboral (7 oras). Los veterinarios expertos pueden inspeccionar 30 raciones/ora con un nivel de seguridad de 98%, mientras que los veterinarios inexpertos solo inspeccionan 18 raciones/ora con un nivel de seguridad de 95%. Los sueldos respectivos son de 1000 y 600 ptas./ora y cada error de inspección supone a la compañía un coste adicional de 100 ptas. Si se desea contratar a lo sumo 6 veterinarios con experiencia y 10 sin experiencia, cuántos veterinarios de cada tipo tiene que contratar la compañía, a fin de minimizar el costo total de inspección diaria? Solución: Las variables de decisión del problema en esta primera parte son dos: : nº de veterinarios con experiencia a contratar : nº de veterinarios sin experiencia a contratar El coste diario de la inspección será: 7 [ ( , 02) + ( ,05) ]= Diariamente se deben inspeccionar al menos 2100 raciones, luego: Se desean contratar a lo sumo 6 veterinarios con experiencia y 10 sin experiencia, por tanto: 6, 10 Así, el problema completo que se obtiene es el siguiente:
5 min z = suj.a : , 0,, enteros Obsérvese que en la solución los valores de las variables deben ser números enteros. Si no tenemos esto en cuenta y el problema se resuelve con el Simplex, la solución es: x* 1 =6, x* 2 =6,6667, z*= La solución correcta se obtendría aplicando un algoritmo de programación lineal entera, y resulta ser: x* 1 =4 x* 2 =10, z*= Una cooperativa ganadera tiene en una misma comarca dos explotaciones de corderos. En esta comarca ay dos mataderos en los que se sacrifican los animales para abastecer al mercado. La cooperativa dispone también de un centro de distribución que sirve de posible intermediario entre las explotaciones y los mataderos. La red de distribución disponible para el transporte de los corderos a los mataderos se muestra en el esquema, donde E1 y E2 son las dos explotaciones, M1 y M2, los dos mataderos y CD es el centro de distribución. El número de cabezas de ganado que, criadas en cada explotación, diariamente deben enviarse al matadero es exactamente de 50 en E1 y 40 en E2. Debido a la capacidad de los mataderos, el número de cabezas de ganado que diariamente se pueden sacrificar en cada matadero es de 30 en M1 y 60 en M2. En el esquema, cada fleca representa un trayecto posible de envío, de modo que las posibles combinaciones de estos trayectos, o rutas, son las siguientes: E1 puede enviar directamente a M1 : E1 M1 Para transportar el ganado de E1 asta M2 ay tres rutas posibles: E1 CD M2 E1 E2 CD M2 E1 M1 M2 E2 solo tiene posibilidad de una ruta asta M2 : E2 CD M2 E2 tiene también solo posibilidad de una ruta asta M1 : E2 CD M2 M1 El coste (en ptas.) de transporte por cabeza enviada a través de cada trayecto se muestra al lado de cada fleca. Además ay una limitación en cuanto al número máximo de cabezas que se pueden enviar en los trayectos E1 E2 y CD M2; el límite es, respectivamente, 10 y 80 cabezas. El resto de los trayectos tienen capacidad suficiente para manejar el número de cabezas que las explotaciones puedan enviar.
6 E1 90 M CD E2 M2 Resolver el problema de Programación Lineal que permitiera decidir de forma óptima cuales deberían ser los canales de distribución de modo que la cooperativa minimizara el coste total diario de transporte de los corderos asta los mataderos. Observación: Como es lógico, se tienen que sacrificar en los mataderos todos los corderos que salen diariamente de las explotaciones. En el centro de distribución no puede quedar ningún cordero puesto que únicamente sirve de intermediario. Solución: Como ay siete posibles trayectos, necesitamos siete variables de decisión que representen el número de cabezas de ganado que se deben enviar en cada trayecto: : nº de cabezas de ganado transportadas por el trayecto E1 E2 : nº de cabezas de ganado transportadas por el trayecto E1 CD : nº de cabezas de ganado transportadas por el trayecto E1 M1 : nº de cabezas de ganado transportadas por el trayecto E2 CD : nº de cabezas de ganado transportadas por el trayecto CD M2 x 6 : nº de cabezas de ganado transportadas por el trayecto M1 M2 x 7 : nº de cabezas de ganado transportadas por el trayecto M2 M1 Los costes de transporte (en ptas./cabeza) figuran junto a cada trayecto en el esquema, luego el coste total de transporte estará dado por la siguiente función objetivo a minimizar: min z = x x 7 Hay tres tipos de restricciones: a) Restricciones de flujo neto : la cantidad de corderos (la enviada menos la recibida) que sale diariamente de las dos explotaciones E1 y E2 tiene que ser 50 y 40, respectivamente + + = 50 = 40 la cantidad de corderos que queda en el centro de distribución (la enviada menos la recibida) debe ser cero + = 0 la cantidad de corderos que queda en los mataderos (los que llegan menos los que salen) debe ser exactamente 30 (en M1) y 60 (en M2) puesto que se sacrifican todos los que salen de las explotaciones.
7 Obsérvese que = x 7 x 6 = 30 b) Restricciones de cota superior: + x 6 x 7 = c) Restricciones de no negatividad: x i 0, i = 1,...,7 La solución óptima de este problema es: * = 0, * = 40, * = 10, * = 40, * = 80, x 6* = 0, x 7* = 20, z * = Resolver con el Método del Simplex sin utilizar variables artificiales: Min z = Solución: Planteamos el problema dual: Suj.a : x i 0, i = 1,2,3 Max g = 3δ 1 + 5δ 2 Suj. a : δ 1 4 δ δ 1 + 3δ 2 18 δ i 0, i Introduciendo olguras: Max g = 3δ 1 + 5δ 2 δ 1 + δ 3 = 4 δ 2 + δ 4 = 12 2δ 1 + 3δ 2 + δ 5 = 18 δ i 0, i δ δ δ δ δ 4 6-2/ /3 δ 2 6 2/ /3-1/ /3 Solución óptima dual: Solución óptima primal δ 1 =0, δ 2 =6, g*=30 x 1 =0, x 2 =0, x 3 =5/3, z*= 18 (5/3) = 90/3 = 30
8 Resolver con el Método del Simplex sin utilizar variables artificiales: min z = sujeto a: , 0, 0 Solución : Para no utilizar variables artificiales pasamos al dual. Introduciendo olguras Dual: max g = 3δ 1 2δ 2 + 2δ 3 sujeto a: δ 1 + δ 2 + δ δ 1 +δ 2 + 2δ δ 1 + 2δ 2 + 3δ 3 43 δ i 0 i δ i 0 i Resolvemos por el método del Simplex: max g = 3δ 1 2δ 2 + 2δ 3 sujeto a: δ 1 + δ 2 + δ 3 +δ 4 = 15 2δ 1 + δ 2 + 2δ 3 + δ 5 = 26 5δ 1 + 2δ 2 + 3δ 3 +δ 6 = 43 δ δ δ δ 4 32/5 0 3/5 2/ /5 δ 5 44/5 0 1/5 4/ /5 δ 1 43/5 1 2/5 3/ /5 0-16/5 1/ /5 δ / /2 0 δ / /4-1/2 δ / /4 1/2 0-13/ /4-1/2 La solución óptima para el dual es δ 1 * = 2, δ 2 * = 0, δ 3 * = 11, con g* = = 28 La solución óptima primal es z* = 28
9 Con * = 0, * = 1 4, * = 1 2
1. RESOLVER el siguiente problema de programación lineal. max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500
1. RESOLVER el siguiente problema de programación lineal max z =15x 1 + 10x 2 suj.a : 2x 1 + x 2 1500 x 1 + x 2 1200 0 x 1 500 x 2 0 2 RESOLVER el siguiente problema de P.L.: max z = 2x 1 + 3x 2 2x 3
Ejercicios de Programación Lineal
Ejercicios de Programación Lineal Investigación Operativa Ingeniería Informática, UC3M Curso 08/09 1. Una compañía de transporte dispone de 10 camiones con capacidad de 40000 libras y de 5 camiones con
EJEMPLO 1. Solución: Definimos las variables originales como: = número de conejos. x = número de pollos.
EJEMPLO. En una granja agrícola se desea criar conejos y pollos como complemento en su economía de forma que no se superen en conjunto las 8 horas mensuales destinadas a esta actividad. Su almacén sólo
1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y
UNIVERSIDAD NACIONAL AUTONOMA DE NICARAGUA UNAN-MANAGUA FAREM - CARAZO Teléfono 2532-2668/Telefax 2532-2684 INVESTIGACIÓN DE OPERACIONES I TAREA Problemas de Transporte, transbordo y asignación Prof. :
Matemáticas aplicadas a las CC.SS. II 2º Bachillerato
4. PROGRAMACIÓN LINEAL 4.1. Introducción 1. Determina las variables, la función objetivo y el conjunto de restricciones de los siguientes problemas de programación lineal: a) En una empresa de alimentación
Dualidad 1. 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. 5 Condiciones de holgura complementaria.
Dualidad 1 1 Formas simétricas. 2 Relación primal-dual. 3 Dualidad: el caso general. 4 Teoremas de dualidad. Condiciones de holgura complementaria. 6 Solución dual óptima en la tabla. 7 Interpretación
Trabajo Práctico Nº 8: Programación Lineal
Trabajo Práctico Nº 8: Programación Lineal 1. Utilice el método gráfico para resolver los siguientes problemas: a. Maximizar Z = x1 + x2 x 1 + 5x 2 = 0 b. Maximizar
PROBLEMAS DE PROGRAMACIÓN ENTERA I
Problemas de Programación Entera I 1 PROBLEMAS DE PROGRAMACIÓN ENTERA I 1. Un departamento ha dispuesto 2 millones de pesetas de su presupuesto general para la compra de material informático, con el que
2. (a) Calcula los puntos del recinto 2x y[20 que hacen mínima la función f(x, y) = 2x + y. Cuántas soluciones hay? (7 puntos)
Alumno... Fecha: 25 Noviembre 2011 Opción A 1. En una empresa se produce queso y mantequilla. Para fabricar una unidad de queso se necesitan 10 unidades de leche y 6 unidades de mano de obra y para fabricar
EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL.
EJERCICIOS: TEMA 4: PROGRAMACIÓN LINEAL. 1º/ Un taller de fabricación de muebles de oficina dispone de 700 kg de hierro y 1000 kg de alumnio para la producción de sillas y sillones metálicos. Cada silla
Formulación del problema de la ruta más corta en programación lineal
Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,
SOLUCIÓN PRÁCTICA Nº 10. Programación Lineal. MATEMÁTICAS 1º VETERINARIA. Curso 2002-2003
SOLUCIÓN PRÁCTIC Nº 0 Programación Lineal MTEMÁTICS º VETERINRI Curso 00-00 Supongamos que se quiere elaborar una ración que satisfaga unas condiciones mínimas de contenidos vitamínicos diarios por ejemplo
Práctico N 5 Parte a: Programación lineal
U.N.C.P.B.A FACULTAD DE INGENIERÍA PROCESOS QUÍMICOS II Práctico N 5 Parte a: Programación lineal Planteo n 1: Supóngase que una compañía fabrica 2 conjuntos xx e yy. Cada unidad de los respectivos productos
UTALCA IMAFI. Resolver los siguientes ejercicios utilizando el método gráfico. Para ello:
Resolver los siguientes ejercicios utilizando el método gráfico. Para ello: (a). Modelar matemáticamente la situación planteada. (b). Graficar, en un mismo sistema de coordenadas, todas las restricciones
Porcil : 50% proteínas, 30% hidratos de carbono, 20% grasas. Megacerdina : 10% proteínas, 80% hidratos de carbono, 10% grasas.
1. Supongamos una granja de ganado porcino en la cual se funciona con dos tipos de piensos: Porcil y Megacerdina. Las composiciones de dichos piensos son: Porcil : 5% proteínas, 3% hidratos de carbono,
se trata de un problema de PROGRAMACIÓN LINEAL. Al conjunto de todas las soluciones del problema se le llama conjunto de soluciones factibles.
TEMA 11: PROGRAMACIÓN LINEAL Ciertos problemas que se plantean en la economía, en la industria, en la medicina, tienen como objeto MAXIMIZAR O MINIMIZAR una función llamada FUNCIÓN OBJETIVO, sujeta a varias
1.vejiga y tumor 2. recto, cóccix, etc 3. fémur, parte de la pelvis,etc.
1. PLANTEAR como un problema de P.L.: Acaban de diagnosticar que MARY, una perrita de compañía muy querida para sus dueños, tiene cáncer en una etapa bastante avanzada. Específicamente, tiene un tumor
UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 12 de septiembre de 2007
UNIVERSIDAD CARLOS III DE MADRID Ingeniería Informática Examen de Investigación Operativa 2 de septiembre de 2007 Problema. (2.5 puntos) Un fabricante de productos informáticos produce 3 modelos de routers
PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX
Prof.: MSc. Julio Rito Vargas Avilés Planteamiento del problema: PROBLEMA DE PROGRAMACIÓN LINEAL RESUELTO POR MÉTODO SIMPLEX Una compañía de manufactura se dedica a la fabricación de tres productos: A,
a) LLamamos x al número de collares e y al número de pulseras. Las restricciones son: x + y 50 2x + y 80 x, y 0
Nuria Torrado Robles Departamento de Estadística Universidad Carlos III de Madrid Hoja, ejercicios de programación lineal, curso 2010 2011. 1. Un artesano fabrica collares y pulseras. Hacer un collar le
Programación Lineal MARCAS GRADO I GRADO II UTILIDAD REGULAR 50% 50% $ 5 SÚPER 75% 25% $ 6
Programación Lineal 1. Una compañía destiladora tiene dos grados de güisqui en bruto (sin mezclar), I y II, de los cuales produce dos marcas diferentes. La marca regular contiene un 0% de cada uno de los
TEMA N 1.- MODELOS EN INVESTIGACIÓN OPERATIVA
UNIVERSIDAD DE ORIENTE NÚCLEO DE ANZOÁTEGUI EXTENSIÓN REGIÓN CENTRO-SUR ANACO, ESTADO ANZOÁTEGUI 1.1 Modelo de transporte Asignatura: Investigación Operativa I Docente: Ing. Jesús Alonso Campos TEMA N
UNIVERSIDAD DE MANAGUA
UNIVERSIDAD DE MANAGUA Sistemático de Programación Lineal Problemas de Programación Lineal: Solución Gráfica, Analítica, Sensibilidad y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIIC- 2016
Colección de Problemas II. mín Z = 8x 1 + 9x 2 + 7x 3 s. a: x 1 + x 2 + x x 1 + 3x 2 + x x 1 + x 2 x 3 30
1.- Dado el siguiente problema mín Z = 8x 1 + 9x + 7x 3 s. a: x 1 + x + x 3 40 x 1 + 3x + x 3 10 x 1 + x x 3 30 x 1 0, x 0, x 3 0 A) Plantear el problema dual y escribir las condiciones de la holgura complementaria
Programación Lineal y Optimización Segundo Examen Parcial Profr. Eduardo Uresti, enero-mayo 2013
Programación Lineal y Optimización Segundo Examen Parcial Profr. Eduardo Uresti, enero-mayo 2013 Matrícula: Nombre: NO HAGA MÁS DE 105 PUNTOS 1. Suponga que tiene una empresa que produce tres tipos de
PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015
PROGRAMACIÓN LINEAL (Selectividad) 2ºBachillerato C.C.S.S. Noviembre 2015 1. (S2015) Un heladero artesano elabora dos tipos de helados A y B que vende cada día. Los helados tipo A llevan 1 gramo de nata
Universidad Autónoma de Guadalajara 3.1 Modelo de Transporte. Nomenclatura
UNIDAD III. ANÁLISIS DE REDES OBJETIVO DE APRENDIZAJE: El alumno identificará y analizará problemas de optimización de funciones y recursos para mejorar la operación de una organización. Modelos de transporte
a) Cantidad a utilizar de cada ingrediente en las mezcla para minimizar los costes.
PROLEMA 5 La compañía de transportes "La perola negra" se ha diversificado introduciéndose en el sector de la alimentación, produciendo alimentos mezclados de forma especial. Actualmente ha recibido un
GUIA DE EJERCICIOS - TEORIA DE DECISIONES
GUIA DE EJERCICIOS - TEORIA DE DECISIONES PROBLEMAS EN SITUACION DE CERTIDUMBRE: 1 Un estudiante de Administración de Empresas en la UNAP necesita completar un total de 65 cursos para obtener su licenciatura.
Programación Lineal y Optimización Tercer Examen Parcial Respuesta: :Solución Profr. Eduardo Uresti, Enero-Mayo 2011
Programación Lineal y Optimización Tercer Examen Parcial Respuesta: : Profr. Eduardo Uresti, Enero-Mayo 2011 Matrícula: Nombre: 1 (30 puntos) La compañía Xeroch vende copiadoras. Uno de los factores de
UNIVERSIDAD DE MANAGUA
UNIVERSIDAD DE MANAGUA PROBLEMAS RESUELTOS DE PROGRAMACIÒN LINEAL POR METODO GRAFICO CON POM-QM. Profesor: MSc. Julio Rito Vargas Avilés Elaborado por: Yucep Gutiérrez Baltodano. Carlos Reynaldo Guevara.
Para poder elaborar el problema dual a partir del primal, este se debe presentar en su forma canónica de la siguiente forma:
TEORIA DE LA DUALIDAD. Cada problema de programación lineal tiene un segundo problema asociado con él. Uno se denomina primal y el otro dual. Los 2 poseen propiedades muy relacionadas, de tal manera que
PROBLEMA 1. Considere el siguiente problema de programación lineal:
PROBLEMA 1 Considere el siguiente problema de programación lineal: Sean h1 y h2 las variables de holgura correspondientes a la primera y segunda restricción, respectivamente, de manera que al aplicar el
UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I. Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012
UNIVERSIDAD DE MANAGUA Asignatura: Investigación de Operaciones I Prof.: MSc. Ing. Julio Rito Vargas Avilés junio 2012 Problemas de PL con varias variables Análisis de Sensibilidad Problema 1: Ken & Larry
Ejemplo 1: Programación Entera
Repaso Prueba 2 Ejemplo 1: Programación Entera Supongamos que una persona está interesada en elegir entre un conjunto de inversiones {1,,7} y quiere hacer un modelo 0,1 para tomar la decisión. Modelar
{x 3 y 3. Ejercicios. y la función objetivo que hay que maximizar es
Ejercicios 1. [S/97]Cada mes una empresa puede gastar, como máximo, un millón de pesetas en salarios y un millón ochocientas mil pesetas en energía (electricidad y gasóleo). La empresa sólo elabora dos
Prof. Pérez Rivas Lisbeth Carolina
Ingeniería de Sistemas Investigación de Operaciones Prof. Pérez Rivas Lisbeth Carolina Investigación de Operaciones Es una rama de las Matemáticas consistente en el uso de modelos matemáticos, estadística
3.1 Por inspección del tablero óptimo genere las respuestas a los numerales dados. X 1 = Cantidad de tarjetas de invitación a producir semanalmente en Kimberly Colpapel y X 2 = Cantidad de tarjetas de
UNIDAD III. INVESTIGACIÓN DE OPERACIONES
UNIDAD III. INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El alumno resolverá problemas utilizando la programación lineal y de proyectos para sugerir cursos de acción de mejora en las empresas turísticas
Programación entera 1
Programación entera 1 1. El modelo de programación entera. 2. Aplicaciones de la programación entera. 3. Solución gráfica de problemas enteros. 4. El algoritmo de ramificación y acotación. 5. El algoritmo
II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES
II. INTRODUCCIÓN A LA INVESTIGACIÓN DE OPERACIONES Objetivo de la unidad: El estudiante, conocerá los fundamentos en que se basan las herramientas de la investigación de operaciones para la toma de decisiones.
Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I)
Ingeniería de Telecomunicación Planificación Avanzada de Redes de Comunicaciones Curso 2006-2007 Pablo Pavón Mariño Práctica 1. Introducción a la optimización mediante herramienta MS Excel Solver (I) Objetivos
Programación Lineal. El modelo Matemático
Programación Lineal. El modelo Matemático 1 Modelización Definición 1.1 Consideremos el problema de optimización con restricciones, definido como sigue Min f(x) s.a. g i (x) b i i = 1, 2,..., m (P OR)
x 1, x 2 0 Maximizar 3x 1 + x 2 s.a 2x 1 + x 2 4 2x 1 + 3x 2 4 x 1 + 3x 2 3
EJERCICIOS DE INVESTIGACIÓN OPERATIVA. Hoja. Dado el PL: Maximizar x + x x s.a x + x + x x x x x, x, x Calcula la solución del problema aplicando el algoritmo del Simplex. Existe más de una solución óptima?
Figura 1: Esquema de las tablas simplex de inicio y general.
RELACIONES PRIMAL-DUAL Los cambios que se hacen en el modelo original de programación lineal afectan a los elementos de la tabla óptima actual el que se tenga en el momento, que a su vez puede afectar
Algunos conceptos que utilizaremos en lo sucesivo son: Sistema de restricciones lineales: conjunto de todas las restricciones.
A partir del planteamiento del problema de Programación Lineal expresado en su formulación estándar, vamos a estudiar las principales definiciones y resultados que soportan el aspecto teórico del procedimiento
Enero Febrero Marzo Abril. D: uds D: uds D: uds D: uds
PROBLEMA Una empresa dedicada a la fabricación de diferentes artículos, ante la inminente llegada de la estación invernal se plantea establecer su política de fabricación almacenae de estufas de gas para
Programación lineal. 1. Resolver cada inecuación grá camente por separado indicando mediante echas o sombreando, el semiplano solución.
I.E.S. CASTILLO DE LUNA Programación lineal En un problema de programación lineal con dos variables x; y, se trata de optimizar (hacer máximo o mínimo, según los casos) una función, llamada función objetivo
1. Considerar el problema de transporte definido por (Origen) a= (6, 7, 8), (Destino) b= (6, 9, 4, 2) y 4 1 5 6 C = 2 8 9 3.
UNIVERSIDAD DE MANAGUA CURSO: PROGRAMACIÓN LINEAL TAREA # 2 Problemas de Transporte, transbordo y asignación Prof. : MSc. Julio Rito Vargas Avilés III C 2015 1. Considerar el problema de transporte definido
A 2 E 4 I. Las cámaras situadas en puntos capaces de vigilar 2, 3 y 4 zonas cuestan 5, 7 y 8 unidades monetarias,
Programación Lineal Entera / Investigación Operativa 1 MODELIZACIÓN Y RESOLUCIÓN CON SOLVER. Hoja 3 Para los siguientes problemas, se pide: 1. Plantear el correspondiente modelo de Programación Lineal
Tema 3 Optimización lineal. Algoritmo del simplex
Tema 3 Optimización lineal. Algoritmo del simplex José R. Berrendero Departamento de Matemáticas Universidad Autónoma de Madrid Contenidos del tema 3 Teorema fundamental de la programación lineal. Algoritmo
La Dualidad en el Problema de Transporte
II Conferencia de Ingeniería de Organización Vigo, 5-6 Septiembre 2002 La Dualidad en el Problema de Transporte Francisco López Ruiz, Germán Arana Landín 2 Doctor Ingeniero Industrial, Departamento Organización
Planteamiento de problemas de programación lineal
Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Ejemplo. Protac Programación de máquinas M. En C. Eduardo Bustos Farías 2 M. En C. Eduardo Bustos Farías 3 M. En C. Eduardo
PROGRAMACIÓN LINEAL. FUNCIÓN OBJETIVO (Beneficio (en euros) obtenido por la venta de los dos tipos de cable):
Ejercicio 159 Para fabricar 2 tipos de cable, A y B, que se venderán a 1,50 y 1 el metro, respectivamente, se emplean 16Kg de plástico y 4Kg de cobre para cada hectómetro del tipo A y 6Kg de plástico y
EJERCICIOS PROGRAMACIÓN LINEAL
EJERCICIOS PROGRAMACIÓN LINEAL 1.- Una compañía fabrica y venden dos modelos de lámpara L 1 y L 2. Para su fabricación se necesita un trabajo manual de 20 minutos para el modelo L 1 y de 30 minutos para
Programación Lineal. El método simplex
Programación Lineal El método simplex El método simplex es una herramienta algebraica que permite localizar de manera eficiente el óptimo entre los puntos extremos de una solución a un problema de programación
Programación lineal: Algoritmo del simplex
Programación lineal: Algoritmo del simplex Se considera la formulación estándar de un problema de programación lineal siguiendo la notación utilizada en las clases teóricas: Minimizar c t x sa: Ax = b
Auxiliar 7: Dualidad
IN3701: Modelamiento y Optimización Profs: Richard Weber, Rodrigo Wolf Coordinador: M. Siebert Aux: V. Bucarey, N. Devia, P. Obrecht Auxiliar 7: Dualidad Lunes 5 de Diciembre de 2011 Pregunta 1: Dualidad
UNIVERSIDAD DE MANAGUA
UNIVERSIDAD DE MANAGUA Investigación de Operaciones I Problemas de Programación Lineal (Solución Gráfica, Analítica, Sensibilidad Y Método Simplex Prof. MSc. Ing. Julio Rito Vargas Avilés IIC- 2016 Resolver
UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4
Ing. César Urquizú UNIDAD UNO PROGRAMACIÓN LÍNEAL Parte 4 Ing. César Urquizú Teoría de la dualidad El desarrollo de esta teoría de la dualidad es debido al interés que existe en la interpretación económica
PROBLEMA DE FLUJO DE COSTO MINIMO.
PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y
COMPLETACION: Escriba la respuesta correcta. PARTE PRACTICA: Desarrolle en forma clara y ordenada cada uno de los siguientes ejercicios.
Funciones EXAMEN II PARCIAL /7/4 COMPLETACION: Escriba la respuesta correcta. Valor % c/u ) La pendiente de la ecuación x 5y es: ) El vértice de la función x es: x x ) El punto faltante de la función es
Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización.
PROGRAMACION LINEAL [Introducción] Es un procedimiento matemático que permite la planeación de actividades y la asignación de recursos productivos basados en criterios de optimización. Sirve para asignar
ESCUELA DE CIENCIAS CIENCIAS BASICAS TECNOLOGIA E INGENIERIA PROGRAMACION LINEAL Act No. 8. LECTURA LECCION EVALUATIVA 2
INTRODUCCION AL METODO GRAFICO Antes de entrarnos por completo en los métodos analíticos de la investigación de operaciones es muy conveniente ver un poco acerca de las desigualdades de una ecuación lineal.
maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa.
UNIDAD 5 MÉTODO SÍMPLEX maximización (con restricciones de la forma menor igual que). asociado al modelo primal de minimización y viceversa. minimización (con restricciones de la forma mayor que). tenga
Colegio Portocarrero. Curso Departamento de matemáticas. Matrices y programación lineal
Matrices y programación lineal Problema 1: En una confiteria se dispone de 24 kg de polvorones y 15 kg de mantecados, que se envasan en dos tipos de caja del modo siguiente: Caja tipo 1: 200 g de polvorones
MODELOS DE PROGRAMACIÓN LINEAL I. Juan Antonio Torrecilla García
MODELOS DE PROGRAMACIÓN LINEAL I 2.1. Construcción del Modelo P.L. 2.2. Solución Gráfica. 2.3. El Método SIMPLEX. 2.1. Construcción del Modelo P.L. MODELADO: EJEMPLO Una empresa fabrica dos tipos de cinturones
Evaluación y formulación de problemas de optimización de recursos empresariales
1 Evaluación y formulación de problemas de optimización de recursos empresariales Max ó Min Z = C X A X B XJ > 0 ; j = 1, 2,..., n Objetivo Mediante una recopilación de problemas representativos de programación
Introducción a la programación lineal
Introducción a la programación lineal La programación lineal se aplica a modelos de optimización en los que las funciones objetivo y restricción son estrictamente lineales. La técnica se aplica en una
PROGRAMACIÓN LINEAL MÉTODO GRÁFICO
1 PROGRAMACIÓN LINEAL MÉTODO GRÁFICO Dado un problema de programación lineal se debe: 1. Graficar cada una de las restricciones. 2. Encontrar el Polígono de factibilidad, que es la intersección de los
MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL
MÉTODO SIMPLEX REVISADO O FORMA MATRICIAL Algoritmo del método simplex que mejora la eficiencia de los cálculos, se realizan los mismos pasos del método simplex visto, sólo se diferencia en la manera de
Planteamiento de problemas de programación lineal. M. En C. Eduardo Bustos Farías
Planteamiento de problemas de programación lineal M. En C. Eduardo Bustos Farías 1 Objetivo Analizar diferentes ejemplos del uso de la metodología de la Investigación de Operaciones para el planteamiento
Dirección de Operaciones
Dirección de Operaciones 1 Sesión No. 9 Nombre: Problemas de transporte y asignación. Primera parte. Objetivo Al finalizar la sesión, el alumno será capaz de Contextualización Cuál es el valor de estudiar
Colegio Portocarrero. Departamento de matemáticas. PL con solución
PL con solución Problema 1: Un mayorista de frutos secos tiene almacenados 1800 kg de avellanas y 420 kg de almendras para hacer dos tipos de mezclas que embala en cajas como se indica a continuación:
INVESTIGACION DE OPERACIONES (HAMDY A. TAHA) PROBLEMAS DE PLANTEAMIENTO DEL CAPITULO II
INVESTIGACION DE OPERACIONES (HAMDY A. TAHA) PROBLEMAS DE PLANTEAMIENTO DEL CAPITULO II (TAHA) 2.2-1 Se procesan tres productos a través de tres opciones diferentes. Los tiempos en minutos requeridos por
MATE Método Simplex maximización estándar
MATE 3012 Método Simplex maximización estándar Problema de maximización estándar Un problema de maximización de programación lineal está en la forma estándar, si la función objetiva w = c 1 x 1 + c 2 x
Programación Lineal Entera.
Fundamentos de Investigación de Operaciones. S2/2003 Programación Lineal Entera. 1. El consejo directivo de la General Wheels Co. Está considerando siete grandes inversiones de capital. Estas inversiones
2º BACHILLERATO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II TEMA 4.- PROGRAMACIÓN LINEAL ACTIVIDADES PROPUESTAS PROFESOR: RAFAEL NÚÑEZ NOGALES
1.- INECUACIONES LINEALES Y SISTEMAS CON DOS INCÓGNITAS. PROGRAMACIÓN LINEAL 1 Sea la región factible definida por las siguientes inecuaciones: x + y 20 ; x y 0 ; 5x 13y + 8 0 a) Represéntela gráficamente
Contenido: Solución algebraica a los problemas de programación lineal con el método simplex.
Tema II: Programación Lineal Contenido: Solución algebraica a los problemas de programación lineal con el método simplex. Introducción El método simplex resuelve cualquier problema de PL con un conjunto
PROBLEMA DE FLUJO DE COSTO MINIMO.
PROBLEMA DE FLUJO DE COSTO MINIMO. EL PROBLEMA DE TRANSPORTE 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y
Universidad Nacional Autónoma de Nicaragua UNAN-Managua. Curso de Investigación de Operaciones
Universidad Nacional Autónoma de Nicaragua UNAN-Managua Curso de Investigación de Operaciones Profesor: MSc. Julio Rito Vargas Avilés. Estudiantes: FAREM-Carazo Unidad II Modelos de Programación Lineal
FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN
FACULTAD DE INGENIERÍA DEPARTAMENTO DE SISTEMAS DE PRODUCCIÓN Asignatura: Investigación de Operaciones 1 Periodo Académico: Julio - Diciembre de 2009 TALLER MÉTODO GRÁFICO 1. PROBLEMA DE PLANEACIÓN DE
Esterilización 1 4. Envase 3 2
9.- Una empresa de productos lácteos fabrica dos tipos de leche: entera y desnatada. El proceso de fabricación se lleva a cabo mediante una máquina de esterilización y otra de envase, donde el tiempo (expresado
1 de septiembre de 2017
- INSTITUTO TECNOLOGICO METROPOLITANO INGENIERIA DE PRODUCCCION Investigacion de operaciones I Planteamiento de Modelos - Metodo Grafico Wbaldo Londoño de septiembre de 207 Contenido - 2 3 4 5 6 7 8-9
Curso COLEGIO SANTÍSIMA TRINIDAD. Dpto de Matemáticas. Sevilla
COLEGIO SANTÍSIMA TRINIDAD Sevilla Dpto de Matemáticas Curso 2009-10 Boletín de Programación Lineal Matemáticas 2º Bach CC.SS. 1. Un frutero necesita 16 cajas de naranjas, 5 de plátanos y 20 de manzanas.
Colegio Portocarrero. Departamento de matemáticas. Tarea navideña.
Dadas las circunstancias, será obligatorio realizar, en lugar del trabajo sobre la película Una mente maravillosa, la siguiente relación de ejercicios de forma obligatoria para entregar el día 7 de enero.
PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS
PROBLEMAS PROGRAMACION LINEAL SELECTIVIDAD 2º BTO CCSS 1. Los 400 alumnos de un colegio van a ir de excursión. Para ello se contrata el viaje a una empresa que dispone de 8 autobuses de 40 plazas y 10
Problema 1. Oferta /15/ /20/0 5 40/30/0. Demanda 45/30/10/0 20/0 30/0 30/
Problema 1. Una empresa energética dispone de tres plantas de generación para satisfacer la demanda eléctrica de cuatro ciudades. Las plantas 1, 2 y 3 pueden satisfacer 35, 50 y 40 millones de [kwh] respectivamente.
Optimización y Programación Lineal
Optimización y Programación Lineal Método Simplex: Minimización 3 de enero de Método Simplex: Minimización () Optimización y Programación Lineal 3 de enero de / 4 Minimización Minimización En la definición
Matemáticas
a la a la Matemáticas a la En esta lectura daremos una introducción a la modelación de problemas mediante programación lineal; pondremos énfasis en las etapas que componen la modelación. Cerraremos estos
Modelos de Transporte: Problemas de Asignación. M. En C. Eduardo Bustos Farías
Modelos de Transporte: Problemas de asignación M. En C. Eduardo Bustos Farías as Problemas de Asignación Problemas de Asignación: Son problemas balanceados de transporte en los cuales todas las ofertas
Ejercicios de Programación Entera
Ejercicios de Programación Entera Investigación Operativa Ingeniería Informática, UC3M Curso 08/09. En una ciudad se intenta disminuir la contaminación reduciendo la circulación interurbana. Un primer
Fundamentos de Investigación de Operaciones Certamen # 1
Instrucciones: Fundamentos de Investigación de Operaciones Certamen # Profesores: Carlos Castro & Esteban Sáez 30 de abril de 2004 Responda cada pregunta en una hoja separada identificada con nombre y
Introducción a la Programación Lineal
UNIDAD 0 Introducción a la Programación Lineal. Modelo de Programación Lineal con dos variables Ejemplo: (La compañía Reddy Mikks) Reddy Mikks produce pinturas para interiores y eteriores, M y M. La tabla
Fundamentos de la programación lineal. Función Objetivo (F.O.): Para seleccionar qué función objetivo debe elegirse se toma en cuenta lo siguiente:
Fundamentos de la programación lineal Se llama programación lineal al conjunto de técnicas matemáticas que pretenden resolver la situación siguiente: Optimizar (maximizar o minimizar) una función objetivo,
Problemas de PL con varias variables Análisis de Sensibilidad
UNIVERSIDAD NACIONAL DE INGENIERIA UN-NORTE SEDE-ESTELI Asignatura: Investigación de Operaciones I Problemas de PL con varias variables Análisis de Sensibilidad M.C. Ing. Julio Rito Vargas Avilés 1 P.
Modelos de Transporte: método de la esquina noroeste. M. En C. Eduardo Bustos Farías
Modelos de Transporte: método de la esquina noroeste M. En C. Eduardo Bustos Farías as Problemas de transporte Surge cuando se necesita un modelo costo-efectividad que permita transportar ciertos bienes
