ESPECTRO ELECTROMAGNÉTICO
|
|
|
- Luis Miguel Rojas Vera
- hace 9 años
- Vistas:
Transcripción
1 ESPECTRO ELECTROMAGNÉTICO
2 Óptica: estudia los feómeos relacioados co las odas de la regió del espectro cuyas logitudes de oda o frecuecias correspode a lo que llamamos el visible Sesibilidad del ojo humao: 400 m-700 m. Newto fue el primero e recoocer que la luz blaca es mezcla de todos los colores del espectro visible. El color o es ua propiedad de la luz e sí misma, sio ua maifestació de uestro sistema de percepció Partícula (Efecto fotoeléctrico, mecáica cuática) Luz? (aturaleza dual) Oda (iterferecia y difracció) Luz Emitida e todas direccioes Propagació rectilíea
3
4 FRENTE DE ONDA ONDA PLANA ONDA ESFÉRICA
5 Pricipio de Huyges Cada puto e u frete de oda primario se comporta como fuete de odas esféricas secudarias tales que el frete de oda primario u istate posterior se lo puede represetar por la evolvete de estas odas secudarias. La velocidad y frecuecia de las odas secudarias es igual a la velocidad de fase y frecuecia de la oda primaria.
6 Para el estudio de la propagació de la luz a través de medios materiales usaremos el cocepto de rayo. El rayo es perpedicular al frete de oda e idica la direcció de propagació de la oda electromagética.
7 Reflexió y refracció. Rayo icidete. Rayo reflejado Rayo refractado Notar que el rayo se desvía o refracta al etrar al segudo medio.
8 De los experimetos surge las siguietes leyes que gobiera los procesos de reflexió y refracció: Ley de la reflexió: El rayo reflejado se ecuetra e el plao de icidecia y: Ley de la refracció: El rayo refractado se ecuetra e el plao de icidecia y: se se i c v i Ley de Sell. es el ídice de refracció del medio.
9 = (λ). Se puede usar la refracció para separar u haz de luz formado por odas de diferetes logitudes de oda e sus compoetes (arco iris).
10 - El pricipio de Fermat. (650) La trayectoria real etre dos putos tomada por u rayo es aquella que es recorrida e u tiempo que es u extremo respecto de otras trayectorias posibles. La distacia recorrida por el rayo (L) será: L a x b d x Notar que x, el puto dode el rayo toca al espejo, serà uestra variable. t L c seθ seθ
11 Al igual que para el caso de la reflexió, podemos demostrar la Ley de Sell usado tato el pricipio de Huyges como el de Fermat. Lo haremos sólo co Fermat. Ates de proceder, imagiemos esta situació: U caballero quiere socorrer a ua bañista. Debe recorrer area dode su velocidad es v = m/s y luego adar dode su velocidad es v = m/s. Cual es la trayectoria más rápida?
12 Tomemos dos putos fijos A y B e dos medios diferetes y u rayo refractado APB que los ue. El tiempo para ir de A a B viee dado por: v L v L t c L c L L t L L L
13 El pricipio de Fermat exige que el tiempo t que requiere el rayo para recorrer el camio APB debe ser u míimo. L L L a x b ( d x) Sustituyedo este resultado e: t L c L L c Y haciedo. dt dx 0
14 Que puede escribirse: se se
15 Reflexió itera total. Veamos u efecto iteresate y co fuerte aplicació tecológica. Supogamos u rayo que paso de u medio deso (vidrio por ejemplo) a uo meos deso (agua). La Ley de Sell predice etoces que el rayo al refractarse se alejará de la ormal. A medida que crece el águlo de icidecia, aumeta el águlo de refracció. Para este águlo, el águlo de refracció es de 90º. Para águlos de icidecia mayores a este águlo (que llamaremos águlo crítico), o existe rayo refractado y se produce la reflexió itera total.
16 se se se c se90 c se Para el caso del vidrio-aire, θ c = 4.8º.
17 Itesidad de Odas Reflejadas y Trasmitidas
18
19
20 Coeficietes de Fresel para la reflexió y la trasmisió Se puede demostrar que R + T =
21 Polarizació Hasta ahora estudiamos odas dode E y B matiee posicioes fijas e el espacio. E este caso se dice que la oda está liealmete polarizada (o plaamete). Por coveció se defie la direcció de E como la direcció de polarizació de la oda, y el plao determiado por E y la direcció de propagació de la oda es el plao de polarizació.
22 E la luz que os llega del Sol o de ua lámpara, o hay ua direcció privilegiada para E y por lo tato el campo rota costatemete e cualquier direcció. Decimos que la luz NO ESTÁ POLARIZADA. Represetació de ua oda NO POLARIZADA
23 Lámias polarizadoras
24 I0 I = (/) I0 U polarizador ideal deja pasar el 00% de la luz icidete e direcció de su eje de trasmisió y bloquea toda la luz que icide vibrado e la direcció perpedicular
25 Ley de Malus Cuado la luz atural icide sobre u polarizador, la itesidad trasmitida es la mitad de la icidete La itesidad es proporcioal al cuadrado del campo eléctrico Al pasar por u segudo polarizador que forma u cierto águlo co el primero
26 Polarizació por reflexió La direcció de propagació de la oda (vector S) está coteida e el plao de icidecia El campo E debe ser ortogoal a esta direcció Tiee ua compoete e el plao de icidecia y otra ortogoal a él Las dos compoetes se comporta de diferete maera respecto a la reflexió y a la refracció La compoete que vibra e el plao de icidecia resulta meos reflejada que la otra
27 Águlo de Brewster tg B Para este águlo la luz reflejada está totalmete polarizada e direcció perpedicular al plao de icidecia. 0 ' ' E E E E E E E r r Luz Reflejada Luz trasmitida
28 No hay reflexió si se icide co luz polarizada e el plao de icidecia
Polarización de una onda
Polarizació La luz atural La luz se geera por u dipolo (ua carga eléctrica) que vibra a cierta frecuecia y por tato geera u campo eléctrico. ste campo implica, a su vez, el correspodiete campo magético
Cap. 36: Interferencia. Principio de Huygens: Cada punto de un frente de onda es una fuente de frentes de onda secundarios
Cap. 36: Iterferecia Pricipio de Huyges: Cada puto de u frete de oda es ua fuete de fretes de oda secudarios BC = 1 = 1 t AD = = t 2 2 1, 1 < 2 1 > 2 1 2 θ 1 A t D θ 2 B 1 t C θ 1 θ 2 = () 1 1 1 2 2 Si
Prácticas de Física Aplicada a las Ciencias de la Salud Curso 2015/16. Óptica geométrica
Óptica geométrica. Objetivos Familiarizar al alumo co coceptos básicos e óptica geométrica, tales como los feómeos de reflexió, refracció o reflexió total. Comprobació de la Ley de Sell. Características
SERIE 2. Interferencia
SERIE 2. Iterferecia 1. E el puto cuya coordeada se toma como z = 0, icide dos odas coheretes proveietes de algú tipo de experimeto de iterferecia: E = A0 cos(kz - ωt) 1 i E = A1 cos(kz - ωt + ϕ) 2 i.
Física II (Biólogos y Geólogos)
Física II (Biólogos y Geólogos) SERIE 3 Iterferecia 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras
Óptica geométrica Espejos y lentes
0-03-04 U i v e r s i d a d C a t ó l i c a d e l N o r t e D e p a r t a m e t o d e E s e ñ a z a d e l a s C i e c i a s B á s i c a s. Óptica geométrica Espejos y letes Uidad. Óptica geométrica La
1. Óptica geométrica: conceptos básicos y convenio de signos.
. Óptica geométrica: coceptos básicos y coveio de sigos. Tal y como habíamos defiido previamete al estudio de las reyes de la reflexió y de la refracció, llamamos rayo a ua líea imagiaria perpedicular
ÓPTICA ) ) Se puede plantear un sistema de dos ecuaciones con dos incógnitas que permite calcular los índices de ambos medios.
ÓPTICA Septiembre 06. Preguta 4B.- Dos rayos que parte del mismo puto icide sobre la superficie de u lago co águlos de icidecia de 0º y 45º, respectivamete. a Determie los águlos de refracció de los rayos
Fundamentos físicos de la topografía
Fudametos físicos de la topografía Luis Muñoz Mato Liceciado e Física por la USC Título: Fudametos físicos de la topografía Autor: Luis Alberto Muñoz ISBN: 978 84 8454 789 1 Depósito legal: A 920-2009
OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS
OPTICA Y CALOR Guía 1: REFLEXIÓN Y REFRACCIÒN EN SUPERFICIES PLANAS Ley de Sell 1-1 U haz lumioso icide sobre ua lámia de vidrio bajo u águlo de 60, siedo e parte reflejado y e parte refractado. Se observa
( i 2 ) es el ángulo del prisma, se calcula este último.
ÓPTICA Modelo 08. Preguta 4B.- Sobre u material trasparete limitado por dos superficies plaas que forma u águlo de 60º icide, desde el aire, u rayo de luz moocromática co u águlo i = 45º, tal y como se
En la formulación de Bragg se supone que los diferentes planos cristalinos reflejan especularmente la onda electromagnética.
8/03/009 Determiació de estructuras cristalias mediate difracció de Rayos X Para que la difracció de Rayos X sea observable, la logitud de oda de la radiació debe ser meor o del orde de las distacias iteratómicas
TEMA 7: ÒPTICA:Propagació de la llum
TEM 7: ÒPTIC:Propagació de la llum Veiem els objectes perquè reflecteixe ua part de la llum que els arriba. Zoa il lumiada Llum Llum reflectida Focus de llum Ombra E u medi homogei, la llum es propaga
Fenómenos ondulatorios
Uidad Didáctica 7 Feómeos odulatorios .- Coceptos básicos. Frete de oda: es la superficie costituida por todos los putos de u medio que, e u mometo dado, se ecuetra e el mismo estado de vibració, es decir,
LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS
LA LUZ Y LAS ONDAS ELECTROMAGNÉTICAS. Naturaleza de la luz. Aálisis de los modelos corpuscular y odulatorio. Las teorías sobre la aturaleza de la luz arraca cietíficamete a fiales del siglo XVII, y casi
Física II (Biólogos y Geólogos)
Física II (Biólogos y Geólogos) SERIE 1 Reflexió y refracció e superficies plaas y curvas 1. a) U haz de luz se propaga e cierto tipo de vidrio. Sabiedo que la velocidad de la luz es c=3. 10 8 m/s, que
Física II (Biólogos y Geólogos)
Física II (Biólogos y Geólogos) SERIE 1 1. La luz correspode a la radiació electromagética e la bada agosta de frecuecias de alrededor de 3,84x10 14 Hz hasta aproximadamete 7,69x10 14 Hz, mietras que,
Reflexión y refracción en superficies planas y curvas
Física II (Biólogos y Geólogos) SERIE 1 Reflexió y refracció e superficies plaas y curvas 1. Cosidere u cojuto de 10 superficies plaas paralelas separadas etre sí por la misma distacia d. Cada par de superficies
Prisma óptico Fundamento
Prisma óptico Fudameto U medio material trasparete que esté limitado por dos caras plaas que forma etre sí u águlo diedro, costituye u prisma óptico. Si el prisma se itroduce e u medio material diferete,
MEDIDA DEL ESPACIADO EN UN DISCO DE VINILO DE 33 RPM. Introducción
MEDIDA DEL ESPACIADO EN UN DISCO DE VINILO DE RPM. Itroducció Cuado sobre u disco de viilo de revolucioes se hace icidir luz solar o de ua bombilla, se detecta de forma muy débil, casi imperceptible, ua
j Actividades a) E = hf = hc l = 6, Js 3, ms m = 3, J b) E = hf = hc m = 3, J
72 09 ONDAS ELECTROMAGNÉTICAS. LA LUZ j Actividades 1. Qué fases del método cietífico desarrollaro fudametalmete Faraday y Maxwell? Qué es más importate para el progreso de la Física, el trabajo experimetal
Física II (Biólogos y Geólogos) Reflexión y refracción en superficies planas
Física II (Biólogos y Geólogos) SERIE 1 Reflexió y refracció e superficies plaas 1. a) U haz de luz se propaga e cierto tipo de vidrio. Sabiedo que la velocidad de la luz es c=3. 10 8 m/s, que la logitud
Prácticas de Física Avanzada. Curso Difractometría.
1. Material. Prácticas de Física Avazada. Curso 2004-2005 4.- Difractometría. Láser de He-Ne. Objetivo de microscopio. Lete covergete de f' =+100 mm. Patalla de observació. Patallas co aberturas. Portadiapositivas
Problemas de fenómenos ondulatorios
Problemas de feómeos odulatorios.- Se tiee dos superficies plaas y reflectate que forma u águlo de 90º. Si llega u rayo de luz a ua de ellas co u águlo de 5º, calcula el águlo cuado se haya reflejado e
IMPLEMENTACIÓN DE FILTRO ESPACIAL ADAPTIVO PARA RECHAZO DE INTERFERENCIA EN ARREGLO DE SENSORES
IMPLEMENTACIÓN DE FILTRO ESPACIAL ADAPTIVO PARA RECHAZO DE INTERFERENCIA EN ARREGLO DE SENSORES Hery Piedo N. y Dr. Jorge Chau C. Radio Observatorio de Jicamarca Istituto Geofísico del Perú Lima Perú Diciembre
Graficación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación. Modelos de iluminación
Modelos de ilumiació Graficació Modelos de Ilumiació E busca de realismo... Modelos de ilumiació Modelos de ilumiació 3 El color o basta... Y la suavidad... Modelos de ilumiació Modelos de ilumiació 5
Evolución del concepto de Átomo (Resumen)
Evolució del cocepto de Átomo (Resume) Tomposo Propuso u p[átomo co cargad positive distribuida e ua esfera de 0-8 cm de diámetro co pequeñas partículas co carga egativa distribuidas e capas. La teoría
APUNTES DE FÍSICA I Profesor: José Fernando Pinto Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL
APUNTES DE FÍSICA I Profesor: José Ferado Pito Parra UNIDAD 11 DINÁMICA DEL MOVIMIENTO ROTACIONAL Cuado u objeto real gira alrededor de algú eje, su movimieto o se puede aalizar como si fuera ua partícula,
VECTORES. A partir de la representación de, como una recta numérica, los elementos
VECTORES VECTORES Los ectores, que era utilizados e mecáica e la composició de fuerzas y elocidades ya desde fies del siglo XVII, o tuiero repercusió etre los matemáticos hasta el siglo XIX cuado Gauss
Polarización. Propagación de la luz en medios anisótropos
Polaizació Popagació de la luz e medios aisótopos Polaizació de ua oda Popiedad de las odas tasvesales: La vibació es pepedicula a la diecció de popagació Se defie la diecció de polaizació como la diecció
CAPÍTULO XI CÍRCULO DE MOHR EN DOS DIMENSIONES
Resistecia de Materiales Capítulo XI Círculo de Mohr e dos dimesioes CAPÍTULO XI CÍRCULO DE MOHR EN DOS DIMENSIONES 111 Deducció del círculo de Mohr e dos dimesioes El círculo de Mohr es u método gráfico
Medios de Transmisión
39 Medios de Trasmisió 3. Fibra Optica La fibra óptica trasporta iformació e forma de u haz de luz que fluctúa e su itesidad. Luz es ua oda electromagética que se propaga a ua frecuecia mayor que la que
Sistemas de Partículas
Sistemas de Partículas. Sistemas de partículas. Fuerzas iteriores y exteriores.. Cetro de masas. a) Propiedades diámicas del C b) Pricipio de coservació del mometo lieal de u sistema de partículas. 3.
El fenómeno de difracción. La naturaleza de los fenómenos ondulatorios
El feómeo de difracció La aturaleza de los feómeos odulatorios Todos teemos ua idea aproximada del sigificado del térmio oda. Basta recordar el movimieto que se geera sobre la superficie de u líquido tras
Tema 3. Series de Fourier. Análisis de Espectros
Tema 3. Series de Fourier. Aálisis de Espectros Idice: Series de Fourier Serie Trigoométrica de Fourier Aálisis gráfico. Primeras compoetes de frecuecia Ejemplo Serie de Fourier e forma de Expoeciales
Estado gaseoso. Mezclas de gases ideales presión parcial de un gas en una mezcla de gases ideales ley de Dalton
Estado gaseoso Ecuació de estado de los gases perfectos o ideales Mezclas de gases ideales presió parcial de u gas e ua mezcla de gases ideales ley de Dalto Feómeos de disolució de gases e líquidos leyes
Análisis Espectral: Determinación de la Constante de Rydberg
Aálisis Espectral: Determiació de la Costate de Rydberg Objetivo Estudiar espectros de líeas de emisió de alguos elemetos, usado u espectrómetro de red y determiar la costate de Rydberg. Equipamieto -
f x dx F b F a f x dx F x C f, g f x g x dx g x
Tarea. Equatio Chapter Sectio Resuelta. Idica qué tipo de aplicació matemática (fució, operador, fucioal) es cada uo de los siguietes: Respuestas a. Ua itegral defiida b a f d F b F a Toma ua fució y arroja
CAPITULO 0 CONCEPTOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Algebra lineal Notación básica.
5 CAPIULO 0 CONCEPOS BASICOS DE ALGEBRA Y PROGRAMACION LINEAL Este capítulo proporcioa u pequeño resume acerca de coceptos básicos de álgebra y programació lieal que resulta fudametales para el bue etedimieto
Ejemplo: 0+0i y -3+0i representan los números reales 0 y 3 respectivamente. Si a=0 se considera un número imaginario puro a 0+bi
u_miii.doc EL SISTEMA DE LOS NÚMEROS COMPLEJOS: No eiste u úmero real que satisfaga la ecuació +0 Para resolver este tipo de ecuacioes es ecesario itroducir el cocepto de úmero complejo. U úmero complejo
3. Volumen de un sólido.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO 00. Lecció. Itegrales y aplicacioes.. Volume de u sólido. E esta secció veremos cómo podemos utilizar la itegral defiida para calcular volúmees de distitos tipos
REFRACCIÓN. OBJETIVOS Después de completar el estudio de este tema podrá usted:
REFRACCIÓN OBJETIVOS Después de copletar el estudio de este tea podrá usted:. Defiir el ídice de refracció y expresar tres leyes que describe el coportaieto de la luz refractada.. Aplicar la ley de Sell
9. Hallar un número de cuatro cifras que sea igual al cubo de la suma de las cifras.
Hoja de Problemas º Algebra II 9. Hallar u úmero de cuatro cifras que sea igual al cubo de la suma de las cifras. Solució: Sea el úmero buscado co a que si o, o seria de cuatro cifras. Teemos que ( ) como
Introducción al Método de Fourier. Grupo
Itroducció al Método de Fourier. Grupo 536. 14-1-211 Problema 1.) Ua cuerda elástica co ρ, y logitud L coocidos, tiee el extremo de la izquierda libre y el de la derecha sujeto a u muelle de costate elástica
o De la misma manera puede deducirse que, si la luz pasa a un medio de mayor índice de refracción, su longitud de onda también debe disminuir: Si n
ÓPTICA EA.S00 a) Explique los feómeos de reflexió y refracció de la luz. b) Tiee igual frecuecia, logitud de oda y elocidad de propagació la luz icidete, reflejada y refractada? Razoe las respuestas. a)
Sucesiones de números reales Sucesiones convergentes: límite de una sucesión
Sucesioes de úmeros reales Sucesioes covergetes: límite de ua sucesió Tato e la educació secudaria obligatoria como e el bachillerato se habla poco de las sucesioes de úmeros reales. Si acaso se dedica
UNIDAD DIDÁCTICA Nº 9. ÓPTICA GEOMÉTRICA.
UNIDAD DIDÁCTICA Nº 9. ÓPTICA GEOMÉTRICA. 1 ÓPTICA GEOMÉTRICA. La Óptica Geométrica se ocupa de los cambios de direcció que experimeta la luz cuado atraviesa u medio material. Para ello se cosidera que:
Para Newton la luz emite unos pequeños corpúsculos que se propagan en línea recta y a gran velocidad y que pueden ser reflejados por la materia.
NATURALEZA DE LA LUZ Es eidete que u rayo lumioso trasporta eergía, o hay más que tumbarse al sol o acercar la mao a ua bombilla para comprobarlo. Como sabemos las úicas formas de propagar la eergía es
METODO DE ITERACION DE NEWTON
METODO DE ITERACION DE NEWTON Supogamos que queremos resolver la ecuació f( ) y lo que obteemos o es la solució eacta sio sólo ua buea aproimació, para obteer esta aproimació observemos la siguiete figura
1. Rayo incidente, normal y rayo reflejado están en el mismo plano. 2. Los ángulos de incidencia y de refracción son iguales.
Reflexió i N r La reflexió es el cambio de direcció que se produce cuado u rayo de luz choca cotra ua superficie reflectate.. Rayo icidete, ormal y rayo reflejado está e el mismo plao.. Los águlos de icidecia
EJEMPLO. FRECUENCIA MUSICAL ACTIVIDAD 1 UNIDAD 4 MCCVT.
EJEMPLO. FRECUENCIA MUSICAL ACTIVIDAD 1 UNIDAD 4 MCCVT. ---------------------------------------------------------------------------- La altura de ua ota musical os permite distiguir si u soido es agudo
Ejercicios para exámenes de Matemáticas (CCAA y CTA) Vectores
Ejercicios para exámees de Matemáticas (CCAA y CTA Vectores Jua-Miguel Gracia 7 de octubre de 014 Ejercicio Sea a, b vectores de R 5 que satisface a = 10, a + b = 11, a b = 9 Demostrar que existe u β R
Bandas de Bollinger. Curso Estrategias de Inversión en Acciones. Tendencia alcista con alta volatilidad. Tendencia alcista con baja volatilidad
Badas de Bolliger La volatilidad hace referecia a la diferecia promedio etre los máximos y míimos que defie las fuerzas alcistas y bajistas a medida que éstos etra y sale del mercado. La volatilidad está
Aplicaciones del cálculo integral vectorial a la física
Aplicacioes del cálculo itegral vectorial a la física ISABEL MARRERO epartameto de Aálisis Matemático Uiversidad de La Lagua [email protected] Ídice 1. Itroducció 1 2. Itegral doble 1 2.1. Motivació: el
TEMA 2 CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE
TEMA CÁLCULO DIFERENCIAL DE DE UNA UNA VARIABLE Derivada de ua ució e u puto Sea : D y u puto iterior de Se dice que es derivable e eiste lim Dicho límite recibe el ombre de derivada de e Notas ) Notaremos
Axioma 1 (Principio de inducción matemática) Sea S N con la propiedad que: a) 1 S. b) k R, k S k + 1 S. Entonces S = N.
Iducció matemática A meudo deseamos probar proposicioes de la forma N, p. Por ejemplo: 1 N, 1 + + 3 + + 1 + 1. N, + 4. 3 N, par implica par. Proposicioes y 3 se puede probar usado la técica de variable
Series de Fourier Aplicación: Análisis de Señales
Series de Fourier Aplicació: Aálisis de Señales Jua E Dombald Estudiate de Igeiería Electróica Uiversidad Nacioal del Sur, Avda Alem 53, B8CPB Bahía Blaca, Argetia Juae_ce@hotmailcom Agosto Resume: E este
MINITAB y MODELOS DE REGRESIÓN
Prácticas de Fudametos Matemáticos para el estudio del Medio Ambiete www.um.es/docecia/jpastor [email protected] MINITAB y MODELOS DE REGRESIÓN 1. Itroducció Ua de las cuestioes de mayor iterés e las Ciecias
DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS)
DISTRIBUCIONES DE PROBABILIDAD.- DISTRIBUCIÓN BINOMIAL (BERNOULLI) DISTRIBUCIÓN NORMAL (GAUSS) www.cedicaped.com DISTRIBUCIÓN DE PROBABILIDAD Recordemos que el Espacio Muestral es el cojuto de todos y
Mecánica de Materiales II: Análisis de Esfuerzos
Mecáica de Materiales II: Aálisis de Adrés G. Clavijo V., Coteido Itroducció Fueras de volume Coveció de sigos de cauch Estado Triaial Circulo de Mohr Método gráfico Estado plao de Circulo de Mohr - Reglas
OPTICA GEOMÉTRICA. Rayo= lim Haz de luz. La Óptica Geométrica describe la Transmisión de la luz basándose En la aproximación de los rayos.
TEMA 7 OPTICA EOMÉTRICA Otica eométrica La trasmisió de la luz: Rayos de luz La Ótica eométrica describe la Trasmisió de la luz basádose E la aroximació de los rayos Ω Haz de luz Rayo Rayo lim Haz de luz
PROPIEDADES DE LAS SUCESIONES. Un tipo importante de sucesiones son las llamadas sucesiones monótonas.
ANÁLISIS MATEMÁTICO BÁSICO. PROPIEDADES DE LAS SUCESIONES. U tipo importate de sucesioes so las llamadas sucesioes moótoas. Defiició.. a: Ua sucesió de úmeros reales ( ) = se llama moótoa creciete si +
Prueba Integral Lapso / Área de Matemática Fecha: MODELO DE RESPUESTA (Objetivos del 01 al 11)
Prueba Itegral Lapso 016-1 175-176-177 1/7 Uiversidad Nacioal Abierta Matemática I (Cód 175-176-177) Vicerrectorado Académico Cód Carrera: 16 36 80 508 51 54 610 611 61 613 Fecha: 19 11 016 MODELO DE RESPUESTA
Probabilidad y Estadística 2003 Intervalos de Confianza y Test de Hipótesis paramétricos
Probabilidad y Estadística 3 Itervalos de Cofiaza y Test de Hipótesis paramétricos Itervalos de Cofiaza Defiició Dada ua muestra aleatoria simple es decir, u vector de variables aleatorias X co compoetes
Series de potencias. Desarrollos en serie de Taylor
Capítulo 9 Series de potecias. Desarrollos e serie de Taylor E la represetació (e icluso e la costrucció) de fucioes, desempeña u papel especialmete destacado cierto tipo de series, deomiadas series de
CALIENTE AIRE HÚMEDO
.- Itroducció.- CALIENTE AIRE HÚMEDO FUEGO AGUA SECO TIERRA FRIO.- Naturaleza eléctrica de la materia.-..- LOS RAYOS CATÓDICOS: La primera evidecia de partículas subatómicas se obtuvo e el estudio de la
